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identification of DNA motifs is a critical first step in a wide 
range of biological applications (He et al. 2012). To better 
understand gene regulation, cell function, and diseases, it 
is essential to recognize and research DNA motifs, which 
are the brief, repeated sequence patterns of DNA nucleo-
tides linked to a protein (Suter 2020). The existence of these 
motifs determines the specific Transcription Factor (TF) 
that each protein uses to bind to a corresponding region in 
the genome (Chaurasia and Ghose 2023). Both strands of 
DNA can include motifs. Additionally, TFs directly attach 
to the double-stranded DNA (Wang et al. 2014). To find 
such DNA motifs, one must look for them in sequences that 
have these Transcription Factor Binding Sites (TFBSs) (Lin 
et al. 2019). It is well known that TFs regulate gene activ-
ity in response to numerous environmental stimuli, which 

1  Introduction

One of the biggest and most challenging tasks in the dis-
ciplines of bioinformatics and data science is finding pat-
terns or motifs in the genomic DNA of organisms. The 
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Abstract
Motivation: Recognizing and studying DNA patterns is crucial for improving knowledge of illnesses, cell function, and 
gene control. Motifs determine which transcription factor a protein may bind to, leading to a better unraveling of gene 
expression. Advancements in the fields of deep learning and high-throughput sequencing have made possible the explora-
tion of motif discovery anew, with greater accuracy and performance. Methodology: In this paper, a novel deep learning 
framework (XDeMo – Transformer-based Deep Motifs) for DNA motif mining using Transformer models is proposed. 
Furthermore, a hybrid encoding scheme is also introduced, called ‘blended’ encoding specifically designed for use with 
deep learning transformer models that are trained using DNA sequences. Results: Our proposed transformer-based frame-
work for DNA motif discovery augmented by blended encoding outperforms many state-of-the-art deep learning models 
on many baseline performance metrics when trained on the standard datasets. Our models demonstrated robust perfor-
mance in predicting motifs with high discriminative power, precision, recall, and F1 score. Conclusion: The model’s 
ability to capture intricate sequence patterns and long-range dependencies led to the discovery of biologically meaningful 
motifs that were verified from known transcription factor binding motif databases. This shows that our novel framework 
can be effectively used to find DNA motifs and therefore, aid in further downstream analyses for biomedical and biotech-
nological applications.

Significance
XDeMo’s practical implications span the realms of gene regulation research, genomics tool development, molecular biol-
ogy, and diagnostic applications. It offers a robust foundation for further advancements in genomic analysis, with the 
potential to accelerate discoveries in gene regulation and the development of novel therapeutic strategies.
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has a substantial influence on the development of disease 
(Zhang et al. 2021). By attaching to certain DNA or RNA 
sequences, TFs can modify the expression of genes (Pardi-
ñas et al. 2018).

The quick discovery of multiple candidate motif posi-
tions throughout the genome has been made possible by the 
combination of Chromatin Immuno-precipitation sequenc-
ing (ChIP-seq), other advanced DNA sequencing technolo-
gies, and statistical analyses (Zambelli et al. 2012; Madrid 
et al. 2019). Using these high-throughput sequencing tech-
nologies along with computational approaches, the right 
TFBS based on motif sequence specificity may be identi-
fied. Studies by (Nutiu et al. 2011) and (Siggers and Gordân 
2013) show that such strategies are dependable and repro-
ducible. Deep Learning (DL), the most successful Machine 
Learning (ML) technique in bioinformatics, has been used 
in a variety of fields, including the categorization of DNA 
sequences (Xu et al. 2021). However, it has been discovered 
that there is not enough data to train the DL model for esti-
mating motif length (Jin et al. 2020). An abundance of freely 
accessible DNA pattern datasets with particular motifs is 
made available by databases like ENCODE (Encyclope-
dia of DNA Elements), JASPAR (Just Another Scaffolds/
Position-Weight Matrix (PWM) Database), TRANSFAC 
(TRANScription FACtor database), etc. to solve this prob-
lem (Alipanahi et al. 2015; Poliakov et al. 2014; Yang et al. 
2019). These datasets may be used to provide enough train-
ing instances for effectively predicting DNA motifs, as well 
as verification of motifs discovered to evaluate a particular 
model.

1.1  Research gaps

In recent years, several DL methods have emerged as pow-
erful tools for pattern recognition tasks in genomics. A com-
prehensive review of such DL models that are employed 
in the motif mining task is given in (Chaurasia and Ghose 
2023; Trabelsi et al. 2019). The most popularly used DL 
strategies for motif mining have been Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs), 
and their hybrids. While CNNs can learn short-term rela-
tionships, RNNs help to learn the distant interdependencies 
among the motif attributes. Hybrid models attempt to real-
ize both kinds of relationships among the motif features. 
Learning both contexts in the sequences is important to fully 
capture the complex patterns and relationships in the DNA 
sequence. Motifs that are critical for the regulation of genes 
could be missed by a model that can only capture short-range 
relationships. However, certain DNA motifs may consist of 
recurring patterns that happen at regular intervals, making it 
necessary for the model to acquire long-term relationships 
to recognize the motif. Nevertheless, recent advancements 

in DL technologies have given rise to several newer mod-
els like ResNet (Residual Neural Network) (He et al. 2016), 
U-Net (Falk et al. 2018), BERT (Bidirectional Encoder 
Representations from Transformers) (Kamath et al. 2022), 
GPT-3 (Generative Pre-trained Transformer 3) (Floridi and 
Chiriatti 2020), GPT-4 (Generative Pre-trained Transformer 
4) (OpenAI 2023), etc. Specifically, the Transformer model, 
a type of neural network architecture originally proposed 
for natural language processing tasks, has shown promise 
for sequence analysis tasks in genomics.

1.2  Transformer models

Transformer models use self-attention procedures to pro-
cess the complete input sequence at once, in contrast to con-
ventional RNNs that process input sequences one by one or 
word by word. As a result, transformers are better able to do 
tasks that call for a grasp of context and semantic links with 
greater training speeds and parallelizability and also are able 
to record long-range dependencies between various portions 
of the sequence (Vaswani et al. 2017). Further, this increased 
parallelizability also enables these models to be trained on 
large datasets faster than any other DL models. Self-atten-
tion allows the model to concentrate on distinct elements of 
an input sequence by assigning weights to each element to 
determine its significance for producing a prediction (Otten 
2023). DNABERT (Deoxyribonucleic Acid BERT) (Ji et 
al. 2021) and Enformer (Avsec et al. 2021) are based on 
Transformer models that can be used for the prediction of 
genomic elements from the DNA sequence. DNABERT is a 
pre-trained fine-tuned BERT model that uses k-mer tokeni-
zation to garner a comprehensive and transmissible interpre-
tation of upstream and downstream nucleotide contexts in 
genomic DNA sequences. DNABERT has been used to pre-
dict TFBSs, promoter sequences, and splice sites and also 
has been compared to several state-of-the-art models like 
DeepBind (Alipanahi et al. 2015), DESSO (DEep Sequence 
and Shape mOtif) (Yang et al. 2019), DanQ (Quang and Xie 
2016), etc. Enformer is another Transformer-based model 
that is used to predict the interactions between enhancer and 
promoter sequences. However, it has not directly been used 
to predict TFBSs or motifs in DNA sequences.

1.3  The proposed framework

In this paper, we propose a novel deep learning framework 
(XDeMo – Transformer-based Deep Motifs) for DNA motif 
mining using Transformer models. The proposed frame-
work leverages the multi-head self-attention mechanism 
of the Transformer model to learn long-range dependen-
cies and relationships of context between nucleotides in 
a DNA sequence. Further, we introduce a novel encoding 

1 3

   25   Page 2 of 13



Network Modeling Analysis in Health Informatics and Bioinformatics

mechanism for DNA sequences especially tailored to cap-
ture both local and global sequence information that can 
be easily used with deep learning models. Our ‘blended’ 
encoding approach generates a feature representation that 
preserves information about local patterns (short-range 
dependencies) via one-hot encoding while also retain-
ing information about k-mer frequencies over the whole 
sequence via raw embeddings (long-range dependencies). 
Machine learning models can employ this hybrid form to 
account for both short- and long-term dependencies when 
making predictions or classifications.

We establish the efficacy of our approach by evaluating 
it against current state-of-the-art DL methods on benchmark 
datasets through baseline performance metrics. The stan-
dard procedure for motif elicitation using computational 
analyses as well as the generalized DL framework for motif 
discovery are outlined in (Chaurasia and Ghose 2023), the 
latter of which we have applied in this paper.

The main research question addressed in this paper is 
whether the proposed deep learning framework can improve 
the accuracy and speed of DNA motif mining compared 
to existing methods. To answer this question, we conduct 
experiments to assess the performance of our framework and 
offer insights into the underlying mechanisms of the model. 
Our findings demonstrate that our framework performs at 
the cutting edge on several benchmark datasets. Overall, 
our proposed framework has the potential to advance the 
fields of DNA motif mining as well as machine learning, 
and enable the discovery of new regulatory motifs that are 
critical for understanding gene regulation and disease mech-
anisms. However, the model is bound by the quality and 
quantity of the labeled peak-called dataset used for training. 
The presence of motifs that align with known TF binding 
motifs is indicative of the model’s potential but requires 
further investigation to establish their functional relevance.

The development of a novel framework like XDeMo 
is imperative due to the escalating complexity of genom-
ics and computational biology. With the surge in data vol-
ume and diversity, there is a critical need for advanced tools 

capable of effectively handling intricate genomic datasets. 
XDeMo addresses this challenge by offering precise pre-
dictive capabilities, interpretability, and versatility across 
diverse research applications. It caters to the expanding 
knowledge of gene regulation, genetic variation, and dis-
ease mechanisms, ensuring researchers can navigate the 
evolving genomics landscape. Additionally, XDeMo inte-
grates cutting-edge techniques and supports the quest for 
targeted therapies, positioning it as an indispensable asset 
for genomics and computational biology investigations in 
the modern era.

This paper is organized as follows: Sect.  2 elaborates 
upon the dataset employed, methodology, and experimental 
setup; Sect. 3 discusses the results obtained from training 
the model, and Sect. 4 concludes the paper with major find-
ings, limitations, significance, and future scope of the work.

2  Materials and methods

An overview of our XDeMo framework is given in Fig. 1. 
We have utilized the ENCODE ChIP-seq TFBSs datasets 
which is a large collection of high-quality, curated, and 
normalized peak-called transcription factor ChIP-seq data, 
which has been used by various DL models to predict regu-
latory regions in DNA sequences, like DeepBind, DeepSEA 
(Zhou and Troyanskaya 2015), DESSO, DNABERT, etc., 
which have shown promising results in predicting TFBSs 
and other genomic features. In our previous work (Chaura-
sia and Ghose 2023), we presented the generic framework 
for the motif discovery process that uses DL technologies. 
In the following subsections, we detail the methodology and 
experimental setup corresponding to this framework.

2.1  The ENCODE ChIP-seq dataset

The ENCODE ChIP-seq TFBS dataset (ENCODE Project 
Consortium 2012; Luo et al. 2019) is recognized as a bench-
mark dataset for motif discovery because of its significant 

Fig. 1  XDeMo framework overview
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shuffled positive sequences with matching dinucleotides 
composition (Alipanahi et al. 2015; Zeng et al. 2016). The 
negative set is generated so that it has a similar nucleotide 
composition, GC content, and an overall distribution to the 
positive set. From these sets, 300 lowest-ranked samples 
(non-overlapping and held out) were used for motif verifi-
cation and evaluation (called the evaluation set).

2.3  Dataset encoding

DNA sequences must be translated into a numerical format 
that DL models can use as input to generate predictions. The 
two most popular encoding schemes used in DL models for 
DNA sequence analyses are one-hot encoding (Choong and 
Lee 2017) and k-mer encoding (Gunasekaran et al. 2021). 
One-hot scheme encodes each base of a sequence as a binary 
quadruple (one for each base – A, G, C, and T) vector where 
each base is represented by a ‘1’ for its specific position in 
the encoding and the rest of the positions in the vector are 
‘0’. For example, ‘A’ may be encoded as (1, 0, 0, 0), ‘G’ as 
(0, 1, 0, 0), ‘C’ as (0, 0, 1, 0), and ‘D’ as (0, 0, 0, 1). This is 
a relatively straightforward method that effectively captures 
low-level interactions but yields a very sparse representation 
that ignores the high-order characteristics of the underlying 
sequence. Despite the limitations, it is still a popular tech-
nique used in many DL models when the dataset is small. 
On the other hand, k-mer embedding captures higher-order 
sequence information by creating subsequences of length 
‘k’ and representing them by a numerical low-dimensional 
vector based on aspects like the rate of occurrence. As a 
result, the model can discover intricate connections between 
the nucleotides in the sequences, potentially improving its 
performance in specific contexts. However, k-mer encoding 
also suffers from sparsity when datasets are large.

To overcome these limitations, we have introduced 
a novel encoding scheme (see Fig.  2). In this ‘blended’ 
encoding scheme, we first generate k-mer embedding for 
all k-mers of length 6 (decided upon by trial and error) for 
each sequence in a set to generate a fixed-length numeri-
cal vector. Each k-mer is represented as a base-4 number 
with k digits that denote the position of the k-mer in the 
embedding. The value of each digit is determined by the 
corresponding nucleotide’s code in the k-mer (A = 0, C = 1, 
G = 2, T = 3). This creates a mapping of each k-mer to a 
unique position in the k-mer embedding in the range [0, 
4k-1]. This allows us to represent the sequences as fixed-
length numerical vectors where each element corresponds 
to a specific k-mer and its value represents the frequency 
of occurrence. Next, we introduce a binary representation 
of the resulting embeddings where each unique k-mer is 
denoted by a vector of all zeros, except for a ‘1’ at the posi-
tion corresponding to that k-mer and the resulting one-hot 

contribution to expanding our comprehension of TFBSs and 
the associated regulatory processes in the human genome. 
It provides an expansive and representative sampling of 
TFBSs in distinct biological situations, with over 690 ChIP-
seq datasets reflecting a wide range of regulatory factors, 
spanning numerous human cell types and embracing vary-
ing treatment conditions.

Furthermore, quality control procedures in the dataset, 
such as biological replicates and the use of IDR (Irrepro-
ducible Discovery Rate) analysis, guarantee a high level 
of data dependability. This thorough curation procedure 
yields a dataset enriched with easily replicated TFBSs, with 
the presence of false positives minimized. Additionally, 
because of its broad acceptance and widespread application 
in several motif-finding algorithms, such as DeepBind and 
DeepSEA, it has become a frequent indicator for measuring 
and evaluating the performance of these methods. Finally, 
because the dataset was generated by several ENCODE 
TFBS ChIP-seq production groups, it demonstrates a wide 
range of experimental methodologies and approaches.

As a result, the extensive scope of the ENCODE ChIP-
seq TFBS dataset, restricted quality control, widespread 
acceptance, and different origins all establish it as a baseline 
dataset for motif discovery.

2.2  Data preprocessing

Preprocessing any dataset for quality, reduction of noise, 
and bias, is the first step in any machine-learning task. 
We downloaded the standard baseline 690 uniform TFBSs 
ChIP-seq datasets from the ENCODE website (available at 
https://hgdownload.soe.ucsc.edu/goldenPath/hg19/encod-
eDCC/wgEncodeAwgTfbsUniform/) (ENCODE Project 
Consortium 2012; Luo et al. 2019). These datasets contain 
peak-called TF binding profile ChIP-seq experiments (Hitz 
et al. 2023) of numerous TFs for various human cell lines for 
the standard hg19 reference genome (i.e., GRCh37) (avail-
able at https://hgdownload.soe.ucsc.edu/goldenPath/hg19/
bigZips/). We have filtered out any trials that have received 
any extra processing or whose quality is not deemed to be 
good, as was done in the DeepBind model. Subsequently, 
to examine and compare the model’s performance with that 
of other models for each TF, we clustered the cumulative 
experiments by TF. We further filtered out any experiments 
that had ambiguous nucleotide bases (i.e., other than A, G, 
C, and T) and selected the top-ranked 14,300 (set A) and 
7,300 (set B) ChIP-seq peaks for each TF. Sets A and B con-
tain datasets for a total of 49 and 63 unique TFs, respec-
tively. Next, a positively labeled set of DNA sequences 
was generated from sets A and B for each TF, centered at 
the peak and spanning a 201 bp (base pair) region of each 
ChIP-seq peak, while the negative set was constructed from 
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2.4  Model architecture and training

The transformer, a prominent design for sequence-to-
sequence tasks, serves as the foundation for our model 
architecture. In the context of DNA motif identification, 
however, we simplify the transformer by excluding the 
decoder layers that are generally employed to generate out-
put sequences in cases such as language translation tasks.

Since the emphasis of DNA motif discovery is on learn-
ing patterns and representations in input sequences rather 
than generating output sequences, disregarding the decoder 
layer is reasonable in this case.

Our transformer model (see Fig. 3) consists of an embed-
ding layer, several transformer layers, and an output layer. 
The embedding layer takes the input data and maps it to 
a higher dimensional space using a linear transformation 
followed by a GELU (Gaussian Error Linear Unit) activa-
tion function (Hendrycks and Gimpel 2016) and dropout for 
regularization to prevent overfitting. The choice of GELU 
over the widely used ReLU (Rectified Linear Unit) activa-
tion (Fukushima 1975) is that GELU retains negative values 
instead of setting them to zero as ReLU does. The smooth-
ness and continuous nature of GELU further contribute to 
more stable and predictable updates during training, improv-
ing the performance of the optimizer. The transformer lay-
ers are made up of several transformer encoders stacked on 
top of each other that form the core of our model. Each of 
these layers consists of a multi-head attention mechanism 

encoded vector has a length equal to the number of possible 
k-mers i.e., 4k. Now we concatenate the k-mer embedding 
vector with the binary (one-hot) vector to obtain a complete 
representation of the sequence information, both low-level 
and high-level features can be captured in this representa-
tion. However, since the dataset is large in our case, sparsity 
is still an issue that is dealt with by dimensionality reduction 
involving principal component analysis (PCA) to reduce 
the feature space to 201 dimensions. This is necessary to 
prevent overfitting, reduce any outliers or noisy data, and 
increase computational performance. Each of the positive, 
negative, and evaluation datasets for each TF is encoded 
using this blended encoding approach. The amount of vari-
ance retained is measured for each of the sets for each TF, 
separately (see Supplementary Table 1). It is worth noting 
that the overall average amount of variance retained after 
PCA is approximately 0.92 (i.e., 92%) which is more than 
satisfactory.

Table 1  Experimental setup
Set Number of 

evaluation 
samples
for each TF

Dataset size 
for each TF
(number of 
samples)

Train, Test, Validation data-
set split for each TF
Train 
(75%)

Valida-
tion 
(12.5%)

Test 
(12.5%)

A1 300 14,300 10,500 1,750 1,750
A2 300 14,300 21,000 3,500 3,500
B 300 7,300 10,500 1,750 1,750

Fig. 3  XDeMo model architecture. There are ‘n’ transformer layers in 
which each layer has a multi-head self-attention mechanism followed 
by normalization and feedforward layers. These multi-head attention 

networks focus on different parts of the input feature embeddings com-
ing from the embedding layer to generate complex representations

 

Fig. 2  Blended encoding scheme block diagram. Here, ‘+’ denoted concatenation
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Fig. 4  Comparison of median test AUCs among the various DL mod-
els (a part of the data is based on (Alipanahi et al. 2015) and (Zhou 
and Troyanskaya 2015). All violin plots contain swarm plots within 
them to show the frequency of occurrence of the values. The individual 
plots have been scaled to this frequency. Part (a) shows the median test 

AUCs for only those TFs from set A that are in the standard JASPAR 
and HOCOMOCO databases. Parts (b) and (c) show the median test 
AUCs for all the TFs considered in their respective sets. XDeMo-A1, 
XDeMo-A2, and XDeMo-B refer to the XDeMo models for sets A1, 
A2, and B, respectively
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Fig. 6  Motifs discovered in XDeMo versus the motifs from known databases (HOCOMOCO). The upper part of each subplot displays the known 
annotated motif from HOCOMOCO and the lower part displays the corresponding motif as discovered by our model

 

Fig. 5  Comparison of baseline performance metrics among the XDeMo model variants. Each subplot contains a swarm plot as well as a boxplot 
within it
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2.6  Performance evaluation metrics

Performance was compared with state-of-the-art DL mod-
els like DeepBind (Alipanahi et al. 2015), DeepBind* 
(DeepBind with the rest of the dataset that was not used 
for DeepBind) (Alipanahi et al. 2015), DeepSEA (Zhou 
and Troyanskaya 2015), DNABERT (Ji et al. 2021), Basset 
(Kelley et al. 2016), DanQ (Quang and Xie 2016), Deep-
Site (Zhang et al. 2019), and DESSO (Yang et al. 2019) 
using baseline performance metrics like AUC (area under 
the receiver operating characteristic curve), F1 score, preci-
sion, and recall. Each of these models plays a pivotal role 
in elucidating the intricacies of DNA motif identification, 
and their collective examination unveils the comprehensive 
landscape of deep learning methodologies in this domain. 
Further, since these models have been trained for the same 
standard datasets of ChIP-seq peak experiments, they con-
stitute the ensemble of models under consideration. For a 
passive exploration of these models, their unique attributes 
and contributions, and their performance comparisons, see 
(Chaurasia and Ghose 2023).

All performance metric computations and analyses were 
performed on a Tesla T4 GPU machine (with an Intel Xeon 
CPU running at 2.20 GHz maximum speed).

3  Results and discussion

We calculated and compared the median test AUC for 
each TF in each experimental setup of our XDeMo model 
with other DL models as well as for two traditional com-
putational models as given in DeepBind (Alipanahi et al. 
2015). The non-DL models use the MEME-ChIP algorithm 
(https://meme-suite.org/meme/tools/meme-chip) according 
to the method described in the DeepBind paper. MChIP-I 
corresponds to the top motif discovered through MEME-
ChIP and MChIP-V corresponds to the sum of scores of 
the top five motifs discovered. We also calculated the F1 
score, precision, and recall for the held-out test dataset as 
well as for each epoch while training the models for each 
TF in each experimental set. Further, we computed the mean 
training AUC and mean validation AUC over each epoch, 
as well as their overall averages for individual TFs in sets 
A1, A2, and B. To reduce the impact of outliers and pro-
vide a more accurate approximation of the model’s actual 
performance, we find that median AUCs are a better met-
ric in comparison to mean AUCs. However, we report both 
metrics in our manuscript for completeness (see Supple-
mentary Information for more details). Figure 4 presents the 
median test AUCs for different DL models considered here 
for the ENCODE datasets A and B. As is apparent from the 
plots, our model, XDeMo reports the highest median test 

followed by a feedforward neural network. The self-atten-
tion mechanism allows the model to record relationships 
between distinct points in the sequence, while the feed-for-
ward networks furnish non-linear transformations.

Finally, the output layer takes the output from the trans-
former layers and applies a linear transformation followed 
by a sigmoid activation function to produce the final predic-
tions. The model is trained using the binary cross-entropy 
loss function (Mannor et al. 2005), and optimized using a 
gradient-based method, Adam (Adaptive Moment Estima-
tion) (Kingma and Ba 2014). The model’s hyperparameters 
are tuned automatically using the grid search method (see 
Supplementary Table 2 for the choice of hyperparameters 
for each experimental setup). However, in some cases 
some of the hyperparameters are fine-tuned manually and 
early stopping is implemented in addition to dropout regu-
larization to further manage overfitting to achieve a better 
performance.

Since Transformer models offer the advantage of shorter 
training times due to their high parallelizability, we can 
effectively train our models with large datasets. In a meta-
nalysis paper of various DL models by Trabelsi et al. (Tra-
belsi et al. 2019), some general guidelines are discussed for 
model selection and evaluation, one of them being that the 
training sample set should have at least 10,000 data points. 
We used set A to create two experimental setups viz. set A1 
and set A2 with 10,500 and 21,000 training samples, respec-
tively. In set A1, we kept only the even-numbered samples 
from the positive set and the odd-numbered samples from 
the negative set. For sets A2 and B, we considered the full 
dataset from both positive and negative sets. Table 1 shows 
the experimental setup of these sets along with the non-
overlapping train, test, and validation splits.

2.5  Motif evaluation

We trained a separate transformer model for each TF in 
each experimental setup and obtained the prediction scores 
over the unlabeled evaluation dataset. From these prediction 
scores, we extracted 30 bp sub-sequences from the evalua-
tion dataset from the center of the predicted position in the 
reference sequence (hg19) and used the MEME (Multiple 
Expectation-maximization for Motif Elicitation) programs 
(https://meme-suite.org/meme/tools/meme) to visualize the 
top three motif sequences ranging from 6 bp to 30 bp. The 
verification of the discovered motifs was accomplished by 
aligning them with recognized motifs in the HOCOMOCO 
(HOmo sapiens COmprehensive MOdel COllection avail-
able at https://hocomoco11.autosome.org/) database using 
Tomtom (available at https://meme-suite.org/meme/tools/
tomtom) for the TFs present in the JASPAR and HOCO-
MOCO databases.
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than those models trained on sets A1 and A2. XDeMo-A2 
has the best performance among the three variants due to 
the size of the dataset being doubled as compared to A1 and 
B. Set A2 contains 10,500 positive sequences whereas sets 
A1 and B contain only 5,250 positive samples. Between sets 
B and A1, XDeMo’s performance is better on A1 for most 
of the TFs, mainly because this set has been derived using 
alternate sampling from a larger set and thus may contain a 
greater number of higher quality samples than set B in terms 
of signal values of the peak-called data. Additionally, set B 
contains 63 TFs while set A comprises 49 TFs making set A 
more robust in terms of signal attributes as these TFs have a 
greater ChIP-seq peak experiments across different human 
cell lines.

In contrast to all other models evaluated, XDeMo 
employs the GELU function rather than ReLU activation. 
GELU is a smooth and continuous function in contrast to 
ReLU, which is a piecewise linear function with a flat gradi-
ent for negative inputs. By offering a well-behaved gradient 
over the entire input space, GELU’s smoothness aids the 
Adam optimization further. Training may become more reli-
able and effective as a result. Also, GELU helps to capture 
non-linear and complex patterns in the sequences which are 
important for eliciting high-level motif features. ReLU often 
suffers from the problem of ‘dying neurons’, especially for 
negative samples where many neurons become inactive 
due to zero gradients and their contribution to the network 
becomes void (Lu 2020). By translating negative inputs into 
non-zero values, GELU, on the other hand, maintains infor-
mation from negative sequences that helps our model retain 
more information and perform better.

The baseline DL models use either a one-hot encoding 
scheme (DeepBind, DeepSEA, DanQ, Basset, DeepSite) 
or k-mer encoding (DNABERT) both of which have some 
limitations. The sparsity of one-hot and k-mer encoding 

AUCs for almost all TFs, in each set (see Supplementary 
Table 3 for more details). The lowest median test AUC for 
any TF that is in JASPAR or HOCOMOCO is greater than 
0.95 which is superior to the DeepBind versions as well as 
DeepSEA. Even when we consider the full set of TFs in 
sets A and B, the minimum value for median test AUC is 
approximately 0.94. Table 2 displays the comparison of the 
test AUC, mean precision, mean recall, and mean F1 scores 
among the various DL models over the ENCODE ChIP-seq 
datasets on the held-out set. All our XDeMo models report 
superior values for all the standard metrics considered here 
(shown in boldface).

The choice of a model can be aided by comparing the 
average AUCs for training and validation. Overfitting may 
be indicated if the training AUC is noticeably greater than 
the validation AUC. On the other hand, underfitting or poor 
generalization may be present if the validation AUC is sig-
nificantly lower than the training AUC. Figure 5 represents 
various performance metrics compared across the three 
XDeMo model variants. The fact that all of our models have 
comparable mean training and validation AUCs shows that 
our model accurately captures the relationships and pat-
terns seen in training sequences and generalizes to previ-
ously unseen sequences well. Further, the test set AUCs 
for all three models are also very high and comparable to 
both validation and training set AUCs, confirming that the 
model is indeed not suffering from the common problems 
of overfitting or underfitting in any way and can make accu-
rate predictions on the evaluation set. XDeMo has higher 
precision (accurately predicted true positive rate) than any 
other model, meaning that it has the least number of false 
positives. Similarly, our model has the highest sensitivity 
or recall rates as well as the cumulative F1 score (harmonic 
mean of precision and sensitivity). However, it is worth not-
ing that XDeMo trained on set B performs slightly worse 

Table 2  Comparison of various baseline performance metrics across 
various DL models and XDeMo. A part of the data presented in this 
table is based on (Ji et al. 2021). DNABERT-6 refers to the DNABERT 

model that uses 6  bp wide k-mers. The table has been color-coded 
according to their values ranging from the lowest (towards the red 
spectrum) to the highest (towards the green spectrum)
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DNABERT uses the pre-trained BERT model which was 
initially built for language translation and other NLP (Natu-
ral Language Processing) tasks, it has to be fine-tuned to 
adapt to the DNA motif discovery problem. This fine-tuning 
further adds to the computation time and complexity of the 
network, making it less interpretable.

The predicted scores from our model were translated to 
30 bp length sequences centered at the peaks of the scores 
with a threshold value ranging from 0.5 to 0.9. These 
sequences were stacked vertically and motif visualizations 
based on positional nucleotide probabilities (MEME) were 
compared with known motifs from the HOCOMOCO data-
base (containing a large number of high-quality human TF 
binding models) using Tomtom (Pearson correlation coef-
ficient and E-value less than unity). Figure 6 displays the 
Tomtom motif comparisons for all the annotated TFs in 
JASPAR and HOCOMOCO that were matched with their 
counterparts in these databases. Our model can predict 34 
motifs out of the 39 annotated TF motifs with high statisti-
cal significance (p-value less than 0.05, E-value less than 1 
for class A, B, and C motifs in HOCOMOCO version 11) as 
well as the rest of the unannotated ones. None of the earlier 
DL models have been able to predict as many DNA motifs 
as our model. Our trained models can accurately predict 
motifs in a small number of sequences with ease and are 
also scalable and flexible to accommodate a larger number 
of sequences.

4  Concluded comments

Our paper makes a significant contribution to the field of 
computer science, genomics, and information technology 
by proposing a novel deep learning-based approach for 
DNA motif prediction. In this paper, we used a Transformer-
based model with a self-attention mechanism to solve the 
challenge of DNA motif mining. We also introduced a novel 
encoding mechanism and used it to train our models. Our 
approach was aimed at capturing both short-range and long-
range relationships as well as complicated patterns in DNA 
sequences, allowing us to predict DNA motifs with high 
accuracy with shorter training times. Through extensive 
experimentation and evaluation on a benchmark dataset, we 
demonstrated the effectiveness of our approach. Our model 
achieved a high AUC of 0.987 (XDeMo-A2), indicating its 
ability to discriminate between binding and non-binding 
sequences. Additionally, it exhibited strong performance in 
terms of F1 score (0.942, XDeMo-A2), precision (0.982, 
XDeMo-A2), and recall (0.96, XDeMo-A2), highlighting 
its capability to accurately identify true TFBSs and motifs 
while minimizing false positives. We further discerned that 
our Transformer-based technique outperformed standard 

restricts the non-transformer models to a small dataset 
size, thereby resulting in reduced model performance. The 
computation time for training these models is also high 
owing to a large number of convolution kernels in CNN or 
hybrid models. For instance, training a DanQ model on an 
NVIDIA Titan X GPU (Graphics Processing Unit) over 60 
epochs roughly requires 360 h (i.e., 15 days) (Quang and 
Xie 2016). DNABERT which is a transformer-based model, 
reports a humongous pre-training time of 25 days for their 
models on eight NVIDIA 2080Ti GPUs (Ji et al. 2021). Our 
simplified transformer model architecture enhanced with 
blended encoding alleviates these limitations significantly. 
On the one hand, our encoding scheme alleviates the prob-
lem of sparsity while retaining the majority of low-level 
and high-level feature information including the positional 
weightage of these features (see Supplementary Table 1 for 
details about variance retention rates). On the other hand, 
the architecture of the transformer model enables it to effi-
ciently learn these features and make accurate predictions 
on the potential binding sites and associated motifs quickly. 
For instance, XDeMo-B trained for a particular TF takes 
approximately 10 min over 50 epochs on a Tesla T4 GPU 
(Intel Xeon CPU @ 2.20  GHz). The approximate lower 
limit on the total time it takes to train all XDeMo model 
variants for all TFs in their respective set is 30 h, while the 
upper limit depends on the hyperparameter tuning proce-
dure time for some motifs that are more complex than oth-
ers (estimated at 4–5 days’ total training time for all models 
on average). This immense speedup can be attributed to the 
advantage of the transformer model’s high parallelizability 
in contrast to CNN, RNN, or hybrid models.

The multi-head self-attention network of the transformer 
layers focuses on individual parts of the input sequences 
simultaneously, allowing the model to capture long-term 
dependencies effectively. As motifs might appear at differ-
ent junctures within the sequence, this can be advantageous 
for DNA motif detection. Transformers are also adapt-
able to varied dataset sizes since the number of layers and 
model dimensions may be simply increased or decreased 
during hyperparameter tuning (see Supplementary Table 2 
for details on the choices of hyperparameters and Supple-
mentary Table 4 for actual hyperparameters selected by 
grid search with early stopping and dropout regularization). 
Compared to DNABERT, our model has a maximum of 6 
transformer layers with a maximum of 512 hidden units and 
8 self-attention heads per layer. Since these parameters are 
fixed in DNABERT and flexible in our model, XDeMo can 
adapt well to different complexities of the various motifs 
and TFs. Moreover, DNABERT is more complex with dou-
ble the number of transformer layers and a higher number 
of hidden units and self-attention heads per layer which is 
another reason for its much higher pre-training time. Since 
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While the model’s predictions exhibit a high degree of 
accuracy, the capacity to elucidate the underlying biologi-
cal mechanisms and rationale behind specific predictions 
is of paramount importance. This interpretability factor 
can guide experimental design and hypothesis generation, 
empowering researchers to craft experiments that validate 
the model’s predictions with precision.

The proposed encoding scheme, in itself, can be indepen-
dently employed wherever genomic sequence patterns need 
to be analyzed using deep learning techniques. Machine 
learning models can easily incorporate this hybrid form of 
encoding to account for both short- and long-term depen-
dencies. Because of this flexibility, researchers may be able 
to strike a balance between both of these kinds of dependen-
cies based on the specific demands of their research. It is a 
versatile approach that may be used for a variety of genomic 
tasks, making it a valuable tool in genomics and computa-
tional biology.

4.2  Future initiatives

Future initiatives in the domain of motif mining offer excit-
ing prospects for enhancing our understanding of DNA 
sequences. The integration of additional attention mecha-
nisms represents a promising avenue for improving motif 
predictions. Sparse attention, in particular, holds the poten-
tial to enhance the model’s ability to pinpoint crucial motifs 
amid complex genomic backgrounds. Moreover, a com-
prehensive assessment of the model’s performance across 
an extensive array of benchmark datasets is paramount. 
Expanding the scope to encompass datasets characterized 
by varying motif attributes, complexities, and distribu-
tions would provide a holistic understanding of the mod-
el’s strengths and limitations. Such an inclusive evaluation 
would ensure that the model’s applicability extends across 
diverse genomic contexts, fortifying its utility in real-world 
applications.

In essence, the accurate prediction of regulatory 
sequences stands as a pivotal element in comprehending 
disease-associated variants and designing diagnostic assays 
for conditions with a genetic underpinning. The XDeMo 
framework, with its multifaceted contributions, emerges as 
a versatile tool poised to catalyze advancements across vari-
ous facets of genomics and computational biology.

XDeMo is generalizable and scalable to different data-
set sizes which enhances the robustness of our model. Our 
work paves the way for the use of sophisticated deep learn-
ing techniques in genomics research and has the potential 
to better knowledge of gene control processes, personalized 
drug discovery, and machine learning.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s13721-

RNNs, CNNs, their hybrids as well as other transformer 
models (DNABERT) in capturing complicated sequence 
patterns when compared to existing advanced algorithms. 
The Transformer model’s multi-head self-attention mecha-
nism enabled it to successfully understand relationships 
across distant nucleotide bases, resulting in better predic-
tion accuracy. Moreover, our analysis revealed biologically 
meaningful motifs discovered by the model. A majority of 
these motifs aligned well with known TF binding motifs, 
validating the ability of our model to capture important reg-
ulatory sequences.

Nonetheless, it is crucial to acknowledge that the per-
formance of the model is intrinsically linked to the quality 
and volume of the labeled peak-called dataset used during 
training. The existence of motifs that align with known TF 
binding motifs suggests potential in the model, but their 
functional importance requires additional examination and 
confirmation.

4.1  Practical applications

The practical ramifications of the proposed XDeMo frame-
work are extensive and encompass diverse domains within 
genomics and computational biology. Firstly, the model’s 
development and validation of an exceptionally precise 
motif prediction tool hold great potential for researchers 
involved in regulatory genomics. The accurate identifica-
tion of transcription factor binding sites (TFBSs) and motifs 
is paramount for unraveling the intricacies of gene regula-
tion. With its impressive precision and recall metrics, the 
model serves as a valuable asset for pinpointing regulatory 
sequences, thereby expediting focused experiments aimed 
at unraveling the mysteries of gene regulatory networks.

Secondly, the comparative analysis against existing algo-
rithms underscores the supremacy of the Transformer-based 
approach. This revelation carries practical implications for 
researchers and practitioners in search of cutting-edge tools 
for sequence analysis. The Transformer’s capacity to cap-
ture intricate sequence patterns and interrelationships across 
nucleotide bases can significantly benefit a wide array of 
applications, including variant detection, investigations into 
disease associations, and endeavors in the realm of func-
tional genomics.

Furthermore, the model’s discovery of biologically 
meaningful motifs offers a valuable resource for molecular 
biologists and geneticists. These motifs provide invaluable 
insights into potential regulatory elements embedded within 
genomic sequences. Experimental validation of these motifs 
has the potential to deepen our understanding of gene regu-
lation, potentially unearthing novel targets for therapeutic 
interventions and drug discovery.
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