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Abstract
In brain-related diseases, including Brain Tumours and Alzheimer’s, accurate and timely diagnosis is crucial for effective 
medical intervention. Current state-of-the-art (SOTA) approaches in medical imaging predominantly focus on diagnosing a 
single brain disease at a time. However, recent research has uncovered intricate connections between various brain diseases, 
realizing that treating one condition may lead to the development of others. Consequently, there is a growing need for accurate 
diagnostic systems addressing multiple brain-related diseases. Designing separate models for different diseases, however, 
can impose substantial overhead. To tackle this challenge, our paper introduces BrainMNet , an innovative neural network 
architecture explicitly tailored for classifying brain images. The primary objective is to propose a single, robust framework 
capable of diagnosing a spectrum of brain-related diseases. The paper comprehensively validates BrainMNet ’s efficacy, 
specifically in diagnosing Brain tumours and Alzheimer’s disease. Remarkably, the proposed model workflow surpasses 
current SOTA methods, demonstrating a substantial enhancement in accuracy and precision. Furthermore, it maintains a 
balanced performance across different classes in the Brain tumour and Alzheimer’s dataset, emphasizing the versatility of 
our architecture for precise disease diagnosis. BrainMNet undergoes an ablation study to optimize its choice of the opti-
mal optimizer, and a data growth analysis verifies its performance on small datasets, simulating real-life scenarios where 
data progressively increase over time. Thus, this paper signifies a significant stride toward a unified solution for diagnosing 
diverse brain-related diseases.

Keywords Alzheimer · Brain tumour · Deep learning · Multiple disease diagnosis

1 Introduction

Brain imaging data, including Magnetic Resonance Imaging 
(MRI), are extensively utilized to investigate brain function 
(Du et al. 2018; Shukla et al. 2023b). The approach’s prem-
ise is that scrutinizing neuro-imaging data and detecting 

anomalies allow one to unravel the brain’s workings. The 
insights gained from neuro-imaging data can then be har-
nessed to enhance diagnosis and treatment. Despite the effi-
cacy of AI solutions in addressing challenges and developing 
computer-assisted systems that support clinicians and expe-
dite diagnostics, clinicians still bear the primary responsibil-
ity for meticulously examining, analyzing, and documenting 
any disorder in patients. The main reason for this is the cur-
rent architectures’ need for more robustness and adaptability.

Numerous efforts have aimed to enhance existing 
architectures, promoting their application in the health-
care domain, where the capacity for critical and accurate 
decision-making holds paramount importance (Ozkaya and 
Sagiroglu 2023; Kabiraj et al. 2022; Roy et al. 2022). Spe-
cifically focusing on the brain, a multitude of diseases exist, 
encompassing conditions like ischemic stroke, prion dis-
eases, Alzheimer’s, Parkinson’s, as well as various postural 
hazards and sclerosis (Kumar et al. 2014; Taree et al. 2020; 
Du et al. 2018). While encountering such diseases daily is 
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relatively uncommon, addressing these challenges remains 
imperative. Furthermore, certain diseases within this spec-
trum are interconnected, as seen in the case of Alzheimer’s 
Disease ( AD ) and Brain tumour ( BT  ), (Speidell et al. 2019; 
Ingeno 2019; Staff 2018). Biologically, AD and BT  exhibit 
distinct cellular behaviours. Alzheimer’s is characterized by 
heightened cell death, whereas brain tumours are marked by 
uncontrolled cell proliferation akin to cancer (Lehrer 2018). 
Researchers made intriguing discoveries in a recent study 
involving a mouse model (Escarcega et al. 2022). The study 
uncovered that mice undergoing cancer and chemotherapy 
drugs experienced accelerated brain ageing. Specifically, 
it was found that individuals who had undergone chemo-
therapy had a higher prevalence of Alzheimer’s disease, a 
common form of dementia, than those who had never been 
exposed to chemotherapy. Moreover, in another independ-
ent study, it was noted that patients surviving cancer1 were 
experiencing treatment-related side effects such as cogni-
tive impairment, which subsequently increased the risk of 
Alzheimer’s disease (Kao et al. 2023). In summary, cancer 
treatment inhibits neurogenesis and increases oxidative dam-
age, DNA damage, and inflammatory responses in the brain. 
Clinicians often find it hectic to diagnose multiple diseases 
simultaneously, rendering treatment tedious and time-con-
suming. Recent literature has introduced several machine 
learning models to aid clinicians and, in turn, enhance the 
accuracy of medical systems (Gupta et al. 2020; Ranga et al. 
2020, 2022; Gupta et al. 2021). However, the current SOTA 
architecture is presently constrained in its ability to effec-
tively identify multiple interconnected abnormalities (Kujur 
et al. 2022). Much ongoing research is directed toward clas-
sifying different diseases individually (Yildirim and Cinar 
2020; Loddo et al. 2022; Salçin 2019).

To address these challenges to a certain extent, this paper 
introduces a robust average-weighted ensemble-driven archi-
tecture (named BrainMRIN  et or simply BrainMNet ) 
for classifying brain diseases using Magnetic Resonance 
Imaging (MRI) images. Thus, the key contributions are as 
follows:

1.1  Key contributions

• The paper introduces a novel neural architecture for brain 
MRI image classification, named BrainMNet , which 
leverages an innovative average-weighted ensemble 
approach.

• Experimental analysis validates the effectiveness of the 
BrainMNet architecture in diagnosing multiple brain 
diseases, including Brain tumour ( BT  ) and Alzheimer’s 

( AD ). For this purpose, a comprehensive workflow for 
implementing the BrainMNet architecture is proposed.

• The proposed workflow demonstrates superior per-
formance compared to current SOTA techniques in 
four-way multi-class single disease classification. The 
approach achieves a notable improvement of 3% in accu-
racy and 2% higher precision compared to all existing 
SOTA methods. Moreover, the BrainMNet architecture 
attains the highest F1-score for both disease diagnoses 
within a single framework, showcasing its remarkable 
efficacy.

• Additional study, involving a class-wise analysis for both 
diseases, reveals a well-balanced performance across var-
ious classes. Also, the conducted ablation and growth 
study supports the choice of regularizers and shows the 
efficacy of the proposed BrainMNet.

2  Related work

This section examines the current SOTA methods in the 
field of disease classification concerning brain MRIs. The 
literature review is structured into three main subsections: 
first, focusing on BT  classification; second, AD disease 
classification; and finally, a subsection dedicated to research 
on the simultaneous diagnosis of multiple diseases.

2.1  Brain tumour classification

This subsection delves into the literature closely related to 
the conducted study and the proposed network on BT  clas-
sification using MRI. A study by Aamir et al. (2022) aims to 
automate the detection of brain tumours using MRI scans, 
mitigating time-consuming and error-prone techniques. The 
approach involves pre-processing MRI images, extracting 
features using pre-trained models, and combining these fea-
tures through the partial least square method for identifica-
tion. Srinivas et al. (2022) conduct a comprehensive study of 
pre-trained models for classification from MRI images. The 
models utilized include VGG-16 (Simonyan and Zisserman 
2015), ResNet-50 (He et al. 2016), and Inception-V3 (Sze-
gedy et al. 2017), with VGG-16 outperforming others for BT  
localization. Mehnatkesh et al. (2023) propose an optimiza-
tion-based deep convolutional ResNet model combined with 
a novel evolutionary algorithm to optimize the architecture 
and hyperparameters of deep ResNet (He et al. 2016). Asif 
et al. (2023a) propose a novel deep stacked ensemble model 
named BMRI-NET, comprising DenseNet-201 (Huang et al. 
2017), ResNet-152v2, and InceptionResNetv2. Özkaraca 
et al. (2023) propose a modular deep learning model that 
retains the advantages of known transfer learning meth-
ods on DenseNet, VGG-16, and basic Convolutional Neu-
ral Network (CNN) for MRI classification, using tenfold 1 thanks to advancements in medical science.
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cross-validation for testing. Saurav et al. (2023) presents a 
novel lightweight attention-guided CNN architecture that 
uses channel-attention blocks focused on regions relevant to 
MRI classification. Asif et al. (2023b) employ pre-trained 
models (Xception (Fran et al. 2017), DenseNet-121, Incep-
tionResNetv2, DenseNet-201, and ResNet-152v2), modify-
ing the final architectures with deep, dense blocks and soft-
max layers to enhance multi-class classification accuracy. 
Abd El-Wahab et al. (2023) propose an architecture with 
13 layers, including trainable convolutional layers, average 
pooling, fully connected layers, and a softmax layer. The 
training involves five iterations and fivefold cross-valida-
tion for retraining, achieving 98.63% average accuracy with 
transfer learning and 98.86% using retrained fivefold cross-
validation to classify 3 classes. Zulfiqar et al. (2023) presents 
a transfer learning-based approach for multi-class classifica-
tion via fine-tuning pre-trained EfficientNets (Tan and Le 
2019). The work employs different variants of modified 
EfficientNets under various experimental settings, incorpo-
rating Grad-CAM visualization on MRI sequences. Thanki 
and Kaddoura (2022) apply a hybrid learning technique to 
binary classification, proposing a learning approach and 
comprehensively comparing existing supervised learning 
approaches. Yazdan et al. (2022) presents a dual-fold solu-
tion for BT  classification through MRI: a multi-scale CNN 
for robust classification and minimizing Rician Noise impact 
to improve model performance. The study focuses on four 
classes with the aim of outperforming the existing SOTA 
methods.

2.2  Alzheimer’s disease classification

This subsection delves into the literature closely related to the 
conducted study and the proposed network for Alzheimer’s 
classification using MRI. Shukla et al. (2023a) presents vari-
ous SOTA on CNN models built from scratch for binary and 
multi-class classification comparison. They achieve 94% accu-
racy in multi-class and 99% in binary classification. Nancy 
Noella and Priyadarshini (2023) explore diverse machine 
learning classifiers, including bagged ensemble, Iterative 
Dichotomiser 3 (ID3), Naive Bayes, and Multi-class Sup-
port Vector Machine (SVM), for Alzheimer’s classification. 
Balasundaram et al. (2023) propose an approach that utilizes 
a reduced version of datasets to achieve accurate predic-
tions, enabling faster training. Their method involves image 
segmentation to isolate the hippocampus region from brain 
MRI images. They compare models trained on segmented 
and unsegmented images. Salehi et al. (2023) introduce a 
Long Short-Term Memory (LSTM) network that leverages 
the temporal memory characteristics of LSTMs. The network 
efficiently studies patterns using stratified shuffled split cross-
validation inherent in MRI scans, achieving an accuracy of 
98.67% in binary classification. Ghazal et al. (2022) adopt a 

transfer learning approach for multi-class classification using 
AlexNet (Krizhevsky et al. 2012), achieving an overall accu-
racy of 91.70% . Shanmugam et al. (2022) propose an approach 
focused on the early detection of multistage cognitive impair-
ment by targeting cognitive functions and memory loss. They 
use transfer learning primarily with pre-trained networks, such 
as GoogleNet (Ballas et al. 2015), AlexNet, and ResNet-18. 
Marwa et al. (2023) presents an analysis pipeline that involves 
a lightweight CNN architecture and 2-dimensional (2d) 
T1-weighted MRI. The pipeline not only proposes a fast and 
accurate diagnosis module but also suggests both global and 
local classifications for AD . Samhan et al. (2022) introduces a 
cost-effective CNN network achieving 100% accuracy on train 
data for AD classification which is an overfit model.

2.3  Interconnected and multiple disease 
classification

This subsection delves into the literature closely related to 
the conducted study and the proposed network for both BT  
and AD classification using MRI (Majd et al. 2019; Roe 
et al. 2010; Sánchez-Valle et al. 2017).

Kujur et al. (2022) propose a stratified k-fold cross-valida-
tion method utilizing CNNs trained from scratch, ResNet-50, 
InceptionV3, and Xception, to detect Alzheimer’s and brain 
tumours simultaneously. Acquarelli et al. (2022) assess the 
value of CNNs in diagnosing Brain tumours and Alzhei-
mer’s disease, addressing challenges related to limited case 
numbers in datasets and resulting in interpretability in terms 
of relevant regions. Chandaran et al. (2022) reviews pre-
trained CNNs for classifying multiple diseases, including 
AD , BT  , Hemorrhage, Parkinson’s, and Stroke, using trans-
fer learning. Namachivayam and Puviarasan (2023) develop 
a computerized brain disease detection system focusing on 
Alzheimer’s, tumour, and Parkinson’s diseases. They employ 
a transfer learning approach with InceptionV3 and VGG-
19 models for efficient disease detection. Arabahmadi et al. 
(2022) conducts a comprehensive review of existing deep 
learning methods applied to MRI data to classify multiple 
diseases. Ismail et al. (2022) propose a multimodal image 
fusion technique to combine MRI neuro-images with modu-
lar sets of images. They employ a CNN with three clas-
sifiers–softmax, SVM, and random forest–to forecast and 
classify Alzheimer’s brain multimodal progression and Mild 
Cognitive Impairment (MCI) disease through high-dimen-
sional magnetic resonance characteristics.

3  Material and methodology

This section presents a thorough outline of the datasets used 
in this research, the pre-processing techniques applied, and 
the architecture proposed for classifying multiple diseases 
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in brain MRI. The upcoming section will assess the efficacy 
of the proposed architecture in identifying both BT  and AD.

3.1  Datasets

This investigation primarily employed two datasets:

• Brain tumour MRI dataset ( BTD ) (Nickparvar 2021): 
encompasses 7023 MRI images of human brains catego-
rized into four distinct classes: glioma, meningioma, no 
tumour, and pituitary. These images are collected from 
three sources primarily—Figshare (Cheng 2017), SAR-
TAJ,2 and Br35H (Hamada 2020).

• Alzheimer disease dataset ( ADD ) (Dubey 2019): con-
sists of four distinct categories: Mild Demented, Moder-
ate Demented, Non Demented, and Very Mild Demented. 
The dataset as a whole is composed of 6400 images.

Illustrated in Figs. 1 and 2 are sample images from each 
class extracted from the BTD and ADD datasets, respec-
tively. The figures illustrate the variation in dataset samples 
from different classes. For instance, in Alzheimer’s data, 
it is evident that classifying between different classes is a 
tedious and time-consuming process. This exerts pressure on 
clinicians, leading to reduced accuracy and efficiency. This 
observation underscores the need for automated machine 
learning models to assist clinicians.

3.2  Dataset pre‑processing and analysis

All images obtained from the specified datasets underwent 
consistent resizing to dimensions of 224 × 224, followed by 
rescaling within the range of 0 to 1. Upon meticulous exami-
nation, it became evident that the training datasets displayed 
a degree of imbalance, as depicted in Fig. 3. This imbalance 
could potentially lead to bias, overfitting, and underfitting 
during training, potentially compromising performance 
outcomes.

As evident from Fig. 3, the BTD dataset demonstrates 
a relatively balanced distribution, while there is a notable 

Fig. 1  The figure shows images from each class of the BTD Dataset, accompanied by the respective class label positioned above each image

Fig. 2  The figure shows images from each class of the AD Dataset, accompanied by the respective class label positioned above each image

2 https:// github. com/ sarta jbhuv aji/ brain- tumour- class ifica tion- datas 
et.

https://github.com/sartajbhuvaji/brain-tumour-classification-dataset
https://github.com/sartajbhuvaji/brain-tumour-classification-dataset
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Fig. 3  a Data distribution of 
BTD dataset. b Data distribu-
tion of ADD dataset
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imbalance within the ADD dataset. To address these 
concerns and rectify the imbalance, we employed the 
Synthetic Minority Over-sampling Technique (SMOTE) 
(Chawla et al. 2002) with a batch size of 7000. Following 
the application of the SMOTE up-scaling technique, the 
count of training data increased to 8000 for the BTD data-
set and 12800 for the ADD dataset, mitigating the identi-
fied imbalance issues to a certain extent. Thus, the current 
paper proceeds to propose a novel architecture framework, 
BrainMNet , to help assist clinicians in achieving precise 
multi-disease classification.

3.3  Proposed architecture: BrainMNet

BrainMNet represents an ensemble-based Convolutional 
Neural Network (CNN) designed to classify brain MRI 
images. This network is constructed by combining two 
distinct CNN architectures, denoted as M1 and M2, 
developed from the ground up. M1 encompasses 34 lay-
ers, while M2 is composed of 26 layers. Fusing these two 
CNNs through an average-weighted ensemble methodol-
ogy enhances the robustness and efficacy of BrainMNet 
in managing the intricate task of analyzing brain MRI 

Fig. 4  A detailed overview of BrainMNet architecture and data flow
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images. For an overview of the BrainMNet architecture 
and the data dimension at each layer during training, 
please refer to Fig. 4. Both the M1 and M2 architectures 
process rescaled brain images with a consistent dimen-
sion of 224 × 224 × 3.This format standardizes the images 
to a resolution of 224 pixels in height and 224 pixels in 
width, with three RGB channels. Essentially, each image 
is treated as a 224 × 224 pixel image with three color chan-
nels, enabling the models to perceive the images using 
red, green, and blue intensities to effectively classify brain 
MRI images.

In M1, four convolutional blocks follow the input layer, 
each comprising a Maxpooling-2d layer and three con-
secutive 2d convolutional and batch normalization layers. 
The neuron counts for these blocks’ layers are 16, 32, 64, 
and 128. Similarly, M2 has four convolutional blocks with 
Maxpooling-2d layers, 2d convolutional layers, and batch 
normalization layers. The neuron counts within these 
blocks are set to 16, 32, 64, and 128.

The primary distinction between M1 and M2 lies in 
the convolutional layer count within each block, result-
ing in distinct feature extraction capabilities. The sub-
architectures yield soft predictions collectively used to 
generate a hard prediction. BrainMNet offers significant 
advantages in scenarios with limited available data, par-
ticularly when the existing data exhibit high similarity, 
presenting challenges in discerning unique features for 
precise classification.

The outputs generated by M1 and M2 form the soft 
predictions. Subsequently, the average-weighted layer pro-
cesses these soft predictions to produce the ultimate hard 
prediction. Due to the distinctive characteristics of the sub-
architecture models, they adapt to the same distribution in 
varying manners. The training process persists until each 
model reaches its point of convergence or until no further 
reduction in the loss value is achieved.

In terms of the equations used for training, let SPi denote 
the soft prediction from the ith model and wi represent the 
weight factor associated with SPi . The generalized formula 
for the average-weighted ensemble, involving n models to 
compute the final soft prediction (Final SP), is as follows:

Here, wi ≥ 0 ∀ i , and 
∑n

i
wi = 1 . In this formulation, we 

compute the FinalSP by taking the weighted sum of the soft 
predictions from all n models. The weight assigned to each 
model represents its contribution to the final prediction, and 
these weights are normalized to ensure their combined sum 
equals 1.

Note that BrainMNet consists of two distinct sub-archi-
tectures ( n = 2 ), namely, M1 and M2. There is a possibility 
of expanding the number of sub-architectures, ensuring the 
robustness and applicability of the architecture. The next 
section tests the applicability of BrainMNet in multi-disease 
classification for BT  and AD (Speidell et al. 2019; Kao et al. 
2023; Escarcega et al. 2022; Ingeno 2019; Staff 2018).

4  Proposed workflow for BT  and AD 
diagnosis

Section elucidates the comprehensive workflow for employ-
ing BrainMNet to detect both AD and BT  . Prior evidence 
shows that both diseases are interconnected (Kao et al. 2023; 
Escarcega et al. 2022; Roe et al. 2010). The workflow com-
mences with the collection of medical records in the form 
of MRI scans for both ailments. Subsequently, two distinct 
pipelines were established, each specialized for diagnosing 
one of the diseases. The initial pipeline is trained using Brain 
tumour Data ( BTD ), resulting in a well-trained BrainMNet 
architecture. Similarly, another pipeline is trained using the 
Alzheimer Disease Data ( ADD ) dataset.

Once these pipelines are trained and the model weights 
are learned, they can be deployed for real-world testing. Dur-
ing testing, a single MRI scan of a patient is input into the 
system, enabling experts to identify both diseases simulta-
neously. This approach offers a vital advantage: if a patient 
undergoing brain tumour treatment exhibits symptoms of 
Alzheimer’s, the system can identify these signs during rou-
tine tumour checkups. This enables the timely initiation of 
Alzheimer’s treatment. Hence, the methodology accommo-
dates the potential detection of singular or multiple diseases. 

(1)FinalSP = w1 ⋅ SP1 + w2 ⋅ SP2 +⋯ + wn ⋅ SPn.

Fig. 5  Visual representation of 
proposed workflow for utilizing 
BrainMNet architecture
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This simultaneous diagnosis of interconnected diseases 
enhances efficiency, promotes a comprehensive understand-
ing, and facilitates holistic treatment approaches. By diag-
nosing shared features, the approach leads to more effective 
treatments. Figure 5 shows a visual representation of the 
complete workflow. We now validate the efficacy of the pro-
posed workflow against SOTA methods.

5  Experimental analysis

First, compare the proposed methodology with the SOTA in 
individual pipelines, i.e., approaches that address either BT  
or AD exclusively. Subsequently, compare the performance 
with SOTA methods designed for multi-disease classifica-
tion. This encompasses studies that focus solely on BT  and 
AD , as well as works proposed for handling more than two 
diseases. While the proposed architectural framework can 
encompass more than two diseases, it is left as an intrigu-
ing avenue for future exploration. This study restricts the 
analysis to the simultaneous classification of two diseases. 
The complete experimental code is made available anony-
mously.3 The dataset employed in this research has already 
been thoroughly examined in Sect. 3.1.

5.1  Implementation and reproducibility

Experimental setup: A Google Colaboratory Notebook 
with 24GB of RAM, running Python-3 on a T4 GPU, con-
ducted all experiments. Additionally, BrainMNet incorpo-
rates hyperparameters—specifically, learning rate, epochs, 
and batch size—set at 0.001, 100, and 32, respectively, 
across all pipelines. The baseline SOTA methods retained 
parameters as originally reported in their respective papers. 
The training-test split consistently followed previous litera-
ture. Furthermore, the activation function for feature extrac-
tion is ELU, softmax activation is used for multi-class clas-
sification, and the data split ratio is 75% for training, 5% for 
validation, and 15% for testing.

Code repository: The GitHub repository provides public 
access to the comprehensive source code, facilitating proper 
code reproducibility. The repository consists primarily of 
three files: visualization.py, train.py, and requirements.txt. 
A detailed step-by-step README outlines commands for 
replicating the Python environment using requirements.
txt, including the names and versions of all libraries. Sub-
sequently, it provides instructions for utilizing train.py for 
model training and visualization.py for reproducing experi-
mental analyses. Additionally, for direct real-world deploy-
ment and testing, the repository includes trained model 

weights saved in the HDF5 binary data format (h5py), 
compatible with the TensorFlow framework. Individual 
README files and comments in each line of code offer 
additional support. Section 3.1 covers dataset details, and 
code comments explain file paths for different datasets.

5.2  Performance metrics

• Accuracy (Acc): measures the proportion of correctly 
predicted instances to the total number of instances 

• Loss: is a measure of the dissimilarity between predicted 
values and actual values, often used during training to 
guide the optimization process. It is typically inversely 
related to accuracy; as the loss decreases, accuracy tends 
to improve. In other words, minimizing the loss function 
leads to higher accuracy. We consider the categorical 
cross-entropy loss function ( L(⋅) ), which for N classes is 
computed as follows: 

 where y and ŷ are true distributions (ground truth) of the 
categories and predicted distribution of the categories, 
often obtained from a neural network or other classifier 
respectively. These are typically represented as a one-hot 
encoded vector.

• Precision: quantifies the accuracy of positive predictions 
made by a model. It measures the proportion of true posi-
tive predictions out of all instances the model predicted 
as positive 

 where True Positives (TP) are instances correctly pre-
dicted as positive, and False Positives (FP) are instances 
incorrectly predicted as positive when they are negative.

• Recall: also known as sensitivity or true positive rate, 
is a metric in classification that measures the ability of 
a model to correctly identify all relevant instances from 
the total number of actual positive instances 

 where False Negatives (FN) are instances incorrectly 
predicted as negative when actually positive.

• F1-score: is a composite metric that integrates precision 
and recall into a single measurement to comprehensively 
assess a model’s efficacy. When the evaluation calls for 
accounting for false positives and False negatives inside 

(2)Acc =
Number of Correct Predictions × 100

Total Number of Instances
.

(3)L(y, ŷ) = −

N
∑

i=1

yi log(ŷi),

(4)Precision =
TP

TP + FP
,

(5)Recall =
TP

TP + FN
,

3 https:// github. com/ sg- resea rch08/ Brain- Analy sis.

https://github.com/sg-research08/Brain-Analysis
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a single indicator, its relevance stands out, making it a 
crucial tool for evaluating overall performance. When 
class distributions are unbalanced, or the effects of false 
positives and negatives are noticeable, this significance 
increases. Further, the F1-score acts as a deciding factor, 
favoring models with higher F1-scores as the best choice 
when different classifiers excel in recall and precision 
individually. It is computed as follows: 

5.3  Training BrainMNet pipeline

First, training the individual pipeline in the proposed 
workflow on ADD and BTD datasets is performed 

(6)F1-Score = 2 ×
Precision × Recall

Precision + Recall
.

separately in line with Fig. 5. Figure 6a, b for BT  and AD 
diagnosis, respectively, illustrates the train and test phase 
learning curves. The learning curves for model accura-
cies exhibit a smooth progression without any indications 
of overfitting. The loss is inversely related to accuracy 
following a similar observation and is omitted from the 
current version of the paper.

5.4  Comparison against single disease diagnosis

This subsection compares the performance of BrainMNet 
against works individually in classifying BTD dataset. The 
train and test data split results are reported in Table 1. 
The metrics used for comparison are accuracy, precision, 
recall, and F1-score.

Observation: In the ADD dataset, our BrainMNet 
achieves the highest levels of accuracy and precision. 
The recall value of BrainMNet approaches 100 (though 
not best), indicating minimal occurrences of false nega-
tives. While BrainMNet demonstrates superior precision, 
and Loddo et al. (2022) exhibits greater recall, analysis 
turn to the F1-score to determine the optimal classifier. 
Notably, the average F1-score across all classes favors the 
BrainMNet model, showing its efficacy. Similar observa-
tions can be made in BTD dataset, showing the proposed 
architecture’s robustness and adaptability to different 
brain-related disease diagnoses.

5.5  Comparison against multiple disease diagnosis

This subsection compares the performance of BrainMNet 
against works that classify multiple diseases using the 
same neural architecture. Table 2 reports the train and test 
data results. The metrics used for comparison are accu-
racy, precision, recall, and F1-score.

Observation: BrainMNet attains comparable levels of 
accuracy and other metrics in the ADD dataset. The test 
performance closely aligns with the training performance, 
underscoring the efficacy of the approach. In contrast, 
real-world test performance insights in Kujur et al. (2022) 
make it challenging to assess its practical utility. Addi-
tionally, Namachivayam and Puviarasan (2023) focuses 
on a slightly different dataset that does not consider class-
wise distribution within each disease category ( AD , BT  , 
Parkinson), opting to directly classify between different 
disease categories—a distinct line of work. Similarly, 
Acquarelli et al. (2022) compares the model using the 
Matthews Correlation Coefficient, an uncommon metric 
in existing literature. Consequently, this paper excludes 
this metric from the comparative study.

Fig. 6  Performance of BrainMNet up to 100 epochs for model accu-
racy on a BTD dataset b ADD dataset
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5.6  Class‑wise performance analysis of BrainMNet

To conduct a class-wise performance analysis of 
BrainMNet class reports for both datasets, reporting Pre-
cision, Recall, and F1-Score are generated and reported in 
Table 3. Figure 7 also visualizes the confusion matrices 
for the four class classifications.

Observation: It is evident from the results that there 
is a minimal disparity in metric values across classes in 
both datasets, indicating that BrainMNet contributes to 
achieving balanced class-wise performance.

Table 1  Comparison of 
different SOTA methods on 
single disease diagnosis of AD 
and BT

Dataset SOTA Train Acc Test Acc Precision Recall F1-Score

ADD BrainMNet 97.89 96.88 97.10 96.80 96.89
El-Latif et al. (2023) 95.30 – 95.93 95.80 95.90
Ahmed et al. (2022) 90.00 – 91.34 87.34 88.09
Mohammed et al. (2021) 94.80 – 93.00 97.75 –
Acharya et al. (2019) 94.54 – 88.33 96.30 93.64
Loddo et al. (2022) 97.71 – 96.67 98.22 –
Murugan et al. (2021) 95.23 – 96.00 95.00 95.27
Balasundaram et al. (2023) 94.10 – 96.50 94.75 95.50
Yildirim and Cinar (2020) 90.00 – 86.65 90.62
Bangyal et al. (2022) 94.63 – 94.75 94.75 94.50

BTD BrainMNet 99.97 98.26 98.31 97.81 97.98
Salçin (2019) 91.66 – 95.00 94.33 93.51
Shafi et al. (2021) – 97.82 97.54 98.01 98.61
Sachdeva et al. (2016) 95.23 – – – –
Hadjouni et al. (2023) – 96.75 94.00 93.75 93.75
DNN(Mohsen et al. 2018) 96.97 – 97.00 97.00 97.00
KNN (K=1) (Mohsen et al. 2018) 95.45 – 95.6 95.50 95.50
KNN (K=3) (Mohsen et al. 2018) 86.36 – 89.20 86.40 86.60
LDA(Mohsen et al. 2018) 95.45 – 95.70 95.50 95.50
Dewan et al. (2023) 97.00 – 96.00 96.00 96.00
VGG19 91.70 – 91.00 91.07 90.60
MobileNetV2 89.76 – 89.77 89.76 89.83
ResNet50 93.08 – 93.90 93.08 93.15
EfficientNetB1 93.17 – 93.34 93.17 93.14
DenseNet121 89.93 – 89.80 89.93 89.79
Mohsen et al. (2017) 93.94 – 94.10 93.90 96.30

Table 2  Comparison of 
different SOTA methods 
carried out on multiple disease 
diagnosis

Dataset SOTA Train Acc Test Acc Precision Recall F1-Score

ADD BrainMNet ( AD , BT ) 97.89 96.88 97.10 96.80 96.89
Kujur et al. (2022) ( AD , BT ) 98.51 – 98.79 98.42 98.50

BTD BrainMNet ( AD , BT ) 99.97 98.26 98.31 97.81 97.98
Kujur et al. (2022) ( AD , BT ) 84.26 – 83.43 89.12 84.99

Table 3  Class-wise comparison on ADD and BTD based on different 
metrics

Dataset Class Precision Recall F1-Score

ADD NonDemented 98.0 98.0 98.0
VeryMildDemented 100.0 100.0 100.0
MildDemented 95.0 94.0 95.0
ModerateDemented 95.0 95.0 95.0

BTD glioma 96.0 100.0 98.0
notumour 98.0 93.0 96.0
pituitary 98.0 99.0 99.0
meningioma 98.0 99.0 98.0
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Fig. 7  Confusion matrix for 4 
classes on a BTD Dataset and b 
ADD Dataset
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5.7  Ablation and data growth study of BrainMNet

This subsection analyzes the performance of the proposed 
architecture across various parameters, including dataset 
size and optimizers. Additionally, it further examines the 
algorithm’s runtime.

5.7.1  Study on different regularizers

The model architecture’s performance is initially assessed in 
the first study using widely popular optimizers: (Kingma and 
Ba 2014), AdaGrad (Duchi et al. 2011), Stochastic Gradi-
ent Descent (SGD), and RMSprop (Ruder 2016). Tuned to 
their widely adopted default hyperparameter values suitable 
for most machine learning algorithms, these values are set 
as default in the TensorFlow library. The default values are 
as follows—Adam ( �1 = 0.9, �2 = 0.999, � = e−7 ), AdaGrad 
(initial accumulator value = 0.1, � = e−7 ), SGD (momentum 
= 0.0), and RMSProp ( � = 0.9 , momentum = 0.0, � = e−7 ). 
Figure 8a, b illustrates the results for the ADD and BTD 
datasets, respectively, and summarizes the observations:

Observations: (a) In the ADD dataset, SGD outper-
forms other optimizers among train accuracies and is 

followed by Adam. However, in test accuracies, the perfor-
mance of SGD drops slightly, while Adam achieves stable 
and the highest performance.

(b) In the BTD dataset, although SGD achieves the high-
est train accuracies, Adam exhibits comparatively stable 
train and test accuracies, making it an ideal choice for the 
tumour dataset.

Thus, the above ablation study validates using Adam as 
the optimizer in our experiments.

5.7.2  Data growth study on accuracy as metric

The performance of BrainMNet across different dataset 
sizes is analyzed in this experiment. The model’s efficiency 
in real-world deployments, where data per class are initially 
limited and tend to increase over time, is assessed. Initially 
conducted by considering only p% of the data from each 
class, the experiment evaluates the model’s efficiency using 
the accuracy metric. The study considers p values ranging 
from 20 to 100 with increments of 20. The plots for train 
and test accuracy on ADD and BTD datasets are depicted 
in Fig. 9a, b, respectively. Summarizing the observations:

Observations: Both datasets consistently exhibit stable 
train accuracies across varying dataset sizes, suggesting 
the architecture’s ability to extract features from input MRI 

Fig. 8  Performance of BrainMNet up to 100 epochs for model accuracy on a BTD dataset and b) ADD dataset
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images. While the test accuracies initially show slight decre-
ments, a significant improvement is observed when 40% of 
data from each class are provided. This improvement brings 
the performance to a level comparable to many SOTA base-
lines reported in Table 1, demonstrating the effective per-
formance of our model architecture, even on small datasets.

5.7.3  Data growth study on runtime

This study presents the average runtime of the proposed 
model architecture across different dataset sizes. The 

findings are depicted in Fig. 10. It is evident that in the ADD 
dataset, a 20% increase in data results in a corresponding 
20% increase in runtime. Similarly, for the BTD dataset, the 
runtime increases by approximately 20–25% with every 20% 
increase in data size.

6  Discussion

In this section, a detailed discussion is carried out for both 
results in Tables 1 and 2.

Fig. 9  Performance of 
BrainMNet up to 100 epochs 
for model accuracy on a BTD 
dataset and b ADD dataset



 Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:11    11  Page 14 of 17

6.1  Comparison against single disease diagnosis

ADD dataset: It can be observed from Table 1 that the ini-
tial approach by Acharya et al. (2019) employed shearlet 
transformation in conjunction with the k-nearest neighbors 
(KNN) method, achieving only 94.54% accuracy. Subse-
quently, introducing automatic feature extraction through 
the Deep Neural Network (DNN) AlexNet and SVM 
ensemble, as proposed by Mohammed et al. (2021), slightly 
improves accuracy while enhancing precision and recall. 
Efforts to address the class imbalance and growing param-
eters in DNN, as undertaken by Ahmed et al. (2022) using 
synthetic oversampling, prove ineffective and lead to dete-
riorated results. The classification of Alzheimer’s disease 
in MRI data sees improvement when Yildirim and Cinar 
(2020) leveraged feature selection with Convolutional Neu-
ral Networks (CNN). It was later that Bangyal et al. (2022) 
observed that incorporating domain ontology into CNN 
could serve as an alternative method to enhance accuracy 
and focus on precision and recall metrics. To mitigate the 
complexity and training time load associated with deep 
networks, El-Latif et al. (2023); Murugan et al. (2021) and 
Balasundaram et al. (2023) utilized small datasets and seg-
mentation, respectively, for faster training. Notably, the work 
by Loddo et al. (2022) using the power of deep ensembles 
ranks as the second-best among the compared literature. In 
conclusion, the proposed model, BrainMNet , surpasses the 
existing SOTA on all evaluation metrics.

BTD dataset: The initial approach by Sachdeva et al. 
(2016) involved using contour models to delineate tumour 
regions, followed by applying a genetic algorithm, result-
ing in an accuracy of 95.23% . Another study by Mohsen 
et  al. (2017) explored the use of fuzzy c-means for 

segmentation and applied Discrete Wavelet Transform 
(DWT) followed by Principal Component Analysis 
(PCA) for feature extraction, achieving an initial accu-
racy of 93.94% , later improved to 96.97% Mohsen et al. 
(2018). Approximately a year later, Salçin (2019) adopted 
the faster R-CNN architecture to reduce the overhead of 
feature selection and harness the power of deep learning. 
Combining these ideas, Shafi et al. (2021) proposed an 
ensemble model comprising the region of interest (ROI) 
and collective normalization, Lloyd max quantization for 
feature extraction, and Support Vector Machines (SVM) 
as base learners, resulting in an improved accuracy of 
97.82% . In contrast, Dewan et al. (2023) streamlined the 
pre-processing feature extraction, employing pre-trained 
models to achieve a comparable performance of 97% . On 
the contrary, proposed BrainMNet achieves the highest 
accuracy of 99.97% without significant pre-processing 
overhead and excels in performance across almost all 
metrics.

6.2  Comparison against multiple disease diagnosis

The approach by Kujur et al. (2022) incorporates a CNN 
model after addressing class imbalance. Performance evalu-
ation involves standard architectures like ResNet50, Incep-
tionV3, and Xception, resulting in the best performance of 
98.51% and 84.26% on ADD and BTD , respectively.

In contrast, the proposed model adopts a novel CNN 
architecture with two separate parallel pipes to enhance fea-
ture learning. This innovative approach yields superior met-
ric performance, with the highest accuracy reaching 97.89% 
and 99.97% on ADD and BTD dataset, respectively.

Fig. 10  Performance of 
BrainMNet up to 100 epochs 
for model accuracy on BTD 
dataset and ADD dataset
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7  Conclusion and future directions

This paper introduces a novel architecture designed to 
classify brain images. The primary objective is to offer 
a unified and robust solution for diagnosing brain-related 
diseases. The current study substantiates the effective-
ness of BrainMNet in the context of Brain tumour and 
Alzheimer’s disease diagnosis. The proposed model work-
flow surpasses current SOTA methods while demonstrat-
ing balanced performance across different classes within 
each disease. The model undergoes an ablation study to 
validate the selection of Adam as the optimizer and assess 
its effectiveness in terms of both accuracy and runtime 
across varying dataset sizes. One minor limitation of the 
paper could be the absence of real-world testing, which 
was omitted due to cost constraints, as the authors had no 
access to such resources. Another drawback is not leverag-
ing the recent advancements in the potential capabilities of 
human-in-the-loop medical systems. An intriguing avenue 
for future research involves extending the application of 
this architecture to the simultaneous diagnosis of condi-
tions, such as Parkinson’s disease and other closely related 
or interrelated brain disorders. Also, considering segmen-
tation state-of-art methods as pre-processing before feed-
ing into deep networks can also be a potential direction to 
improvise metrics Pal et al. (2022); Gangopadhyay et al. 
(2022); Roy et al. (2017b, 2017a); Roy and Shoghi (2019); 
Roy et al. (2017b).

Furthermore, an intriguing avenue for exploration 
involves assessing the performance of the BrainMNet work-
flow trained on Alzheimer’s and tumour data against a sin-
gular BrainMNet architecture trained on MRI images that 
encompass four distinct classes: ‘No Disease,’ ‘Tumour,’ 
‘Alzheimer,’ and ‘Tumour and Alzheimer.’ Currently, the 
scope of this study is constrained due to the unavailability of 
an MRI dataset featuring patients recovering from tumours 
with mild symptoms of Alzheimer’s. Despite this limitation, 
the direction shows promise, as a comparable architecture to 
BrainMNet achieves a train and test accuracy of 98% and 
97% on ‘No Disease,’ ‘Tumour,’ and ‘Alzheimer’ classes. 
However, its applicability is restricted when diagnosing both 
diseases simultaneously, as the ‘Tumour’ class only includes 
patients with tumours and no signs of Alzheimer’s, and the 
same applies to the ‘Alzheimer" class. Additionally, theo-
retical analysis of the workflow can be a possible research 
direction.
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