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Abstract
In the -omics era, bioinformatics technologies allowed the development of several approaches useful to analyze biological 
systems. To provide a deep insight into a biological system, the interactions between molecules are usually modeled as a 
dynamic network (also known as “temporal network” or “time-varying network”). The latter allows investigating how the 
interactions evolve over time, contrary to a static network. This survey presents an assessment of the software tools for 
network alignment and motif discovery in dynamic networks. We considered a set of criteria belonging to the following 
macro areas: (i) methodology, (ii) functionality, and (iii) availability. For instance, we investigated the objective functions 
and the scores used for the processing, alignment methods, use of a method for the alignment of static networks adapted 
to the dynamic context, network discrimination performance, and other additional information. We reported how several 
issues may be transferred from static to dynamic networks by taking into account the temporal information. Furthermore, we 
encountered a systematic convergence toward iterative strategies both for network alignment and motif discovery, justified 
by the fact that a dynamic network is usually analyzed through the sub-analysis of its time points.
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1 Introduction

Over the past few decades, bioinformatics has made possible 
the development of novel strategies in molecular biology. A 
cell is a system composed of highly integrated subsystems 
interacting among them; thus, the analysis of these interac-
tions is crucial to understand the molecular-level dynamics. 
For instance, the analysis of interactions between genes and 
proteins is useful to describe the cellular functions or to 
predict protein functions (Barabási et al. 2011), as well as to 
study the disease–gene associations (Cinaglia et al. 2018). 
The biological networks are inherently dynamic structures 
that are represented through a graph model where the set of 

nodes (V) are the molecules, and the set of edges (E) are the 
known interactions between these: G = (V ,E).

In biology, depending on what the nodes and edges rep-
resent, we may classify a network as a Protein Interaction 
Network (PIN) (Athanasios et al. 2017), a gene regulatory 
network (Huynh-Thu and Sanguinetti 2019), or a signaling 
network (Ju and Wei 2017). A PIN concerns a mathematical 
representation of the physical contacts between the proteins; 
specifically, the nodes represent the proteins, and each edge 
is a protein–protein interaction (PPI) (Rao et al. 2014).

In the real-world systems, the interactions between mol-
ecules evolve over time. The static representation of a net-
work does not report if the different interactions take place 
contemporarily, or at different times. A static biological 
network reconstruction should be interpreted as a potential 
network where all edges and nodes will be hardly present all 
together in vivo1 (Klein et al. 2012).

Therefore, the static approach loses important temporal 
information, including both changes in the network topology 
and flow on the network. A dynamic network is a time-vary-
ing network where each instance is a network of interacting 
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molecules at time t. A relevant task for biological dynamic 
network analysis concerns the development of network 
alignment (NA) methodologies. NA allows finding impor-
tant genes and temporal functional changes in the biological 
networks, e.g., to study PPIs.

As all networks, a dynamic network is affected by the 
following operations that may perturb its topology: (i) node 
addition, (ii) node deletion, (iii) edge addition, and (iv) edge 
deletion. Furthermore, it is called “probabilistic” when it 
contains at least one uncertain interaction, otherwise it is 
“deterministic”. An important observation is that a proba-
bilistic network is a summary of all possible deterministic 
networks that are determined by the subset of interactions 
that take place (Ghoshal et al. 2013). The evaluation of the 
functional distance between two nodes (e.g., molecules) 
may be performed by calculating the average of the short-
est paths between these. The average of the shortest paths 
over all node pairs (i.e., mean path length) has been used as 
a measure for the network navigability. The search of the 
shortest paths is used to find functional clusters in biological 
systems, as well as to identify core pathways. The number 
of the shortest paths that go through an edge in a network is 
called “Edge Betweenness Centrality”. The latter is crucial 
to understand how the biological networks operate, as well 
as how these could be fixed or manipulated. Note that the 
counting of the shortest paths is a polynomial-complex time 
problem (Ren et al. 2018a).

Even though the genome-scale computational analysis 
of interactions on a dynamic network allows extracting a 
greater set of information related to PPIs, the static network 
analysis is still the most applied and studied, in that the most 
widely applied large-scale technologies for PPI detection 
do not provide temporal data. In several domains, the static 
networks are used as model for complex real-world systems 
both static and dynamic, independently. This approach is 
useful when the temporal aspect is not relevant. Otherwise, 
it is not optimal to identify the causes and the consequences 
of external stimuli.

Temporal protein complexes are typically constructed 
by the dynamic assembly or disassembly of proteins. Gene 
expression data provides potential insights into the dynam-
ics of PINs (Zahiri et al. 2020). For instance, data acquired 
by DNA microarray technologies under different conditions 
may be used simultaneously to construct time series. The 
latter is applied in several fields to report data changes over 
time; to give an example, a trend (e.g., in epidemiology, or 
in economy) is usually analyzed by using a representation 
based on time series (Cinaglia and Cannataro 2022).

This survey presents an overview of software tools 
available in the literature for NA and motif discovery 
applied to dynamic networks. We performed an extensive 
non-systematic review methodology. First and foremost, 
we introduced an analysis of static networks. Usually, the 

analysis of dynamic networks is based on existing meth-
odologies for static networks. Subsequently, the articles 
presenting the software tools for network alignment and 
motif discovery in dynamic networks have been investi-
gated to extract the relevant information, according to a 
set of criteria belonging to the following macro areas: (i) 
technology, (ii) functionality, and (iii) availability.

Our investigation used several well-known databases, 
such as: PubMed, Google Scholar, Medline, Crossref. The 
main keywords used for searching are reported as follows: 
network alignment, motif discovery, dynamic network, 
temporal network, time-varying network, network analysis, 
software, tool, method. The keywords were combined to 
improve the matching, according to the topic of interest. 
In addition, we also included the software tools used for 
comparison and/or testing, within the articles found. Only 
articles presenting original research published in English 
(American or British, indifferently) have been considered.

Software tools for NA and motif discovery in dynamic 
networks have been included or excluded based on the 
criteria reported as follows.

Inclusion criteria:

• full-text articles;
• availability;
• software tools often used for performance comparison 

(e.g., “DynaMAGNA++”), or as reference implemen-
tation by other methodologies.

As an alternative to a software tool, we included articles 
reporting an exhaustive set of information for the follow-
ing features:

• network alignment in dynamic networks: objective, 
score, strategy, and method;

• motif discovery: typology of network, strategy, and 
method.

In addition, articles referring to objects of particular inter-
est for the topic (e.g., topological measures, metrics, pat-
terns) were included in any case.

Exclusion criteria: the few articles that do not report 
a resource for downloading of the software tool, or the 
information described above, were excluded.

Our investigation identified the following candidate 
software tools and methodologies for dynamic networks:

• network alignment: DynaMAGNA++, DynaWAVE, 
Got-WAVE, Twadn, Tempo++, and Tempo;

• motif discovery: COMMIT, DynaMIT, SNAP, Mukher-
jee, Kovanen.
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An extensive assessment of these is reported in Sects. 4.1 
and  4.2 for network alignment and motif discovery, 
respectively.

Our contribution may be summarized as follows:

• presenting the state of the art for NA and motif discovery 
in dynamic networks;

• investigating the tools and algorithms of interest for NA 
and motif discovery in dynamic networks, by focusing 
on the strategies and methods used to implement these;

• performing a comparison between the NA tools for 
dynamic networks based on network discrimination per-
formance and strategies;

• performing a comparison between the motif discovery 
tools for dynamic networks based on strategies and meth-
odologies.

The rest of the paper is organized as follows: Sect. 2 intro-
duces dynamic networks; Sect.  3 reports the principles 
related to the static network analysis with a focus on NA 
and motif discovery in static network; Sect. 4 surveys the 
software tools for both NA and motif discovery in dynamic 
networks, by discussing a comparison between these within 
Sect. 5.

1.1  Related works

The software tools for static networks are widely discussed 
in literature, but the same is not true for dynamic networks. 
However, we reported a series of studies related to NA and 
motif discovery based on topics discussed in this paper. Ma 
and Liao (2020) presented a review focused on the alignment 
of PPI networks. The authors reported the methodologies 
applied for each software tool, by focusing on the following 
main features: local/global, pairwise/multiple, one-to-one/
many-to-many. This review is limited to static networks and 
introduced the dynamic networks only as example of a pos-
sible extension of the presented tools. For instance, Dyna-
MAGNA++ is mentioned as an extension of MAGNA++. 
The former is better explained in this paper, being a software 
tool developed for dynamic networks, contrary to the lat-
ter that is developed for static ones. Similarly, Milano et al. 
(2017) presented an extensive assessment of NA algorithms 
by focusing on the biological aspects. The same issue is also 
investigated at a lower level. For instance, Kim et al. (2018) 
investigated the dynamic network models by focusing on the 
ones with latent variables. This study focused on the math-
ematical representation of the models applied in the field of 
dynamic networks, excluding the algorithmic development. 
Hulovatyy et al. (2015) discussed how the methodologies 
for static analysis may be applied on each snapshot (i.e., a 
single time point at time t) to preserve partially time-varying 
network). Otherwise, Patra and Mohapatra (2020) presented 

a list of reviews on network motif discovery based on the 
mentioned criteria, by focusing attention on the contribution 
and the limitations of each one. However, the authors limited 
the investigation to the static networks.

According to our literature investigation, the software 
tools for dynamic networks are rarely investigated in a survey 
or a review, especially about the NA. The mentioned studies 
begin with an overview of the static models, and these only 
introduce the dynamic extensions. Briefly, it is also clear 
how many of these studies have included more than 5 years, 
or have not specifically related to dynamic networks. We 
extended the assessment of software tools for static networks 
to dynamic networks. The state of the art is reported at the 
beginning of each section. The methodologies are almost 
always classified into various categories based on the map-
ping and the pattern growth. We explored the software tools 
by focusing our attention on (i) methodology, (ii) functional-
ity, and (iii) availability (Sect. 4). For instance, we evaluated 
the objective function and the metrics/scores used for the 
preprocessing, the alignment method, and the eventual re-
use of a method for static alignment in the dynamic context, 
as well as the network discrimination performance, and other 
additional information. Furthermore, we explored how the 
methodologies for static networks have been adapted to a 
time-varying context (Sect. 3).

2  Dynamic biological networks

The dynamics of a network over time may be described 
through the temporal networks (also known as “dynamic net-
work”, or “time-varying networks”) (Mertzios et al. 2013). 
Temporal networks are based on a mathematical structure 
modeled to represent a link between nodes over time (i.e., 
“contact”). A contact is an extension of a static link that 
allows to represent more than one relationship between two 
nodes, thus being connected is not a transitive mathemati-
cal relation (Fisher and Pinter-Wollman 2021). Any system 
represented by pairwise interactions that evolve over time 
and of which the information about time is known could be 
modeled as a dynamic network.

Usually, “dynamic networks” and “temporal networks” 
are used mutually with reference to dynamic network, espe-
cially in bioinformatics and biology. However, network 
science differentiates the original meaning of the term 
“dynamic network” from “temporal network”: a dynamic 
network is used to investigate how a dynamic system affects 
the related network evolving over time; otherwise, a tem-
poral network is typically more data oriented and used to 
investigate a data set (e.g., it is particularly appropriate to 
study epidemic outbreaks) (Holme 2015). Note that if the 
dynamic systems on the network are faster than the contact 
dynamics, and the network at any given moment of time is 
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non-trivial, then we may define a static network evolving in 
time through the terms “dynamic network” and “temporal 
network”, indifferently.

More generally, the dynamic networks may be considered 
as a way of representing temporal networks; other lossless 
representations are based on graph sequence (or multilayer 
networks), time-node graph, time series of contacts on a 
static graph, timelines of contacts, and adjacency tensors. 
Therefore, the term “temporal networks” concerns all for-
malisms proposed to represent evolving networks without 
loss of information (e.g., temporal networks, time-varying 
networks, interaction networks) (Rossetti and Cazabet 2018). 
According to Joakim et al. (2020), dynamic network repre-
sentations may be grouped into the following representations 
ordered by temporal granularity:

• edge-weighted: the temporal information is included as 
labels on the edges and/or nodes of a static network;

• discrete: it is represented by multiple snapshots at suc-
cessive time points (discrete time intervals);

• continuous: it has no temporal aggregation and is the 
most complex for representation.

The edge-weighted model is able to represent only the actual 
state of a network, and its significant loss of temporal infor-
mation makes it not suitable to represent the evolution over 
time. Discrete and continuous models are able to represent 
the changes over time. However, continuous model is the 
most complex and rarely applied. Biological dynamic net-
works are almost always based on the discrete model, as well 
as the solutions presented in this paper.

In biology, dynamic networks are used to study the inter-
action between molecules (Doria-Belenguer et al. 2020), as 
well as to investigate the genetic control of metabolism or 
to evaluate the temporal aspects during cell differentiation.

2.1  Construction of dynamic networks

Cellular systems are highly dynamic in as much as a protein 
is not always active over a whole cell cycle, and time factor 
is crucial to understand its evolution. A static network does 
not consider time variable, being an overall representation of 
the evolution of the entire system under examination. Other-
wise, the construction of a dynamic network must take into 
account time factor, thus allowing to identify time point at 
which a protein exhibits its activity (Zhang et al. 2019).

A dynamic PIN (DPIN) is constructed by involving prot-
eomics, genomics, and transcriptome analysis. Therefore, the 
information related to protein expression may be acquired 
from gene expression data. To give an example, Li et al. 
(2020) proposed a method for the construction of DPINs by 
integrating time-course gene expression data and subcellu-
lar location data. A DPIN may be constructed by applying 

several approaches, mainly based on the following method-
ologies: (i) methods based on protein presence dynamics and 
(ii) methods based on co-expression alterations.

The first one constructs a DPIN by generating multiple 
static subnetworks. Each subnetwork is a static PIN con-
structed by mapping the interactions identified at differ-
ent time points or conditions. The second one constructs a 
DPIN analyzing highly co-expressed PPIs with a correlation 
coefficient over a defined threshold. Usually, this method is 
applied by using the Pearson correlation coefficient (PCC) as 
correlation method to evaluate the co-expression of coding 
genes between each pair of interacting proteins in expres-
sion profiles.

Briefly, a method based on protein presence dynamics 
reflects the changes in protein presence over time, while a 
method based on co-expression alteration reflects the differ-
ences of co-expression under different conditions. Therefore, 
as previously mentioned, a dynamic network is one whose 

Fig. 1  The figure shows for illustrative purpose only an example 
related to a synthetic dynamic network consisting of ten time points. 
Assuming invariant the number of nodes, the network evolves over 
time by varying its interactions (i.e., edges)



Network Modeling Analysis in Health Informatics and Bioinformatics (2022) 11:38 

1 3

Page 5 of 16 38

links are active only at certain points in time (i.e., time point) 
(Wang et al. 2014).

According to Holme and Saramäki (2012), a dynamic 
network may be considered as a series of “static” networks, 
where each one is a snapshot observed at t consecutive time 
points. Previously, a generic network has been reported as 
G = (V ,E), where V and E denote the set of nodes and set 
of edges, respectively. In a snapshot-based representation, 
we may denote a dynamic network as G = [G1,G2,… ,Gt] , 
where Gi = (Vi,Ei) represents the i-th snapshot and 0 ≤ i ≤ t 
with t the total number of time points. Usually, nodes are 
considered invariant over time (i.e., Gi = (V ,Ei) ). A snap-
shot-based representation may be converted to an event 
duration-based representation, to give an example: if an edge 
connects two nodes in t1 , t2 , and t3 , then the event between 
these two nodes is active from t1 to t3 . The node set of the 
snapshots is combined in an event duration-based represen-
tation. Formally, it may be explained as follows: given a 
dynamic network H(V, T), with V a set of nodes and T a 
set of events, we may define an event as a temporal edge 
consisting of 4-tuple: u, v, ts , te . Where two nodes (i.e., u 
and v) interact from a time ts to te , the event is active at time 
t ( ts ≤ t ≤ te ). Therefore, the duration of the event is te − ts . 
Two nodes may have more than one event, while two events 
cannot be active on the two same nodes within the same 
period. If two events between the same two nodes are active 
at the same time, then they are combined into a single event. 
For illustrative purposes only, a synthetic dynamic network 
consisting of ten time points is reported in Fig. 1 by repre-
senting its evolution over time, as described.

In addition, Fig. 2 shows a static network (i.e., PIN) and 
a dynamic network (i.e., DPIN) having a set of time points 
ti , with 0 ≤ i ≤ 2 . In this figure, time points represented in 
the figure concern the states of the network over time, where 
each time point ti evolves at ti+1 by changing its topology. 
Consequently, the set of the shortest paths evolve over time, 
by changing the functional distance between molecules at 
each time point. The analysis is performed on a dynamic 
network given time-dependent representation, contrary to 
static networks that provide an output temporally decontex-
tualized. In a static network, an interaction that occurred for 
a very short period of time is represented in the same way 
as an interaction that occurred for a more relevant period of 
time. This issue does not afflict the dynamic networks that 
take into account the time variable.

3  Static networks

This section reports an overview related to two crucial issues 
for network analysis in bioinformatics (i.e., network align-
ment, and motif discovery) by focusing attention on static 
networks, to evaluate how several methodologies have been 

extended into a dynamic context. The latter is detailed in 
Sects. 4 and 5. Network alignment aims to transfer biologi-
cal knowledge between organisms by using a well-studied 
model organism to investigate a less well-studied organism. 
It is applied to find regions of topological and functional 
similarities (or dissimilarities) between molecular networks 
of different organisms. Otherwise, motif discovery is applied 
to gene regulation networks to mine the building blocks of 
a complex network. These are particularly useful to identify 
the fundamental patterns in networks.

3.1  Network alignment

Network alignment (NA) is a crucial challenge for computa-
tional analysis of biological systems. It aims to find a node 
mapping that conserves similar regions between compared 
networks. NA approaches may be categorized as local or 
global: local NA (LNA), and global NA (GNA), respec-
tively. LNA looks for small local regions of high similarity 
(i.e., small subnetworks), admitting a many-to-many map-
ping. GNA looks for the best overlapping of the entire net-
works in input by mapping large suboptimal subnetworks 
(Guzzi and Milenkovic 2018). It performs a one-to-one (or 
injective) mapping, admitting a suboptimal matching among 
local network regions. NA may also be categorized as one-
to-one, many-to-many, or one-to-many (Faisal et al. 2015). 
A one-to-one NA maps a node from a given network to at 
most one unique node from another network. On the other 
hand, in a many-to-many NA, a node from a given network 
can be mapped to several nodes from another network. In 

Fig. 2  An example of DPIN, with the related static PIN where all 
edges and nodes are present all together. In the figure, the origi-
nal PIN is constructed by the interactions observed at different time 
points. The DPIN changes its topology, as well as the functional dis-
tance between molecules, at each time point. In a static network, an 
interaction occurred for a very short period of time and could be con-
sidered that it occurred for a more relevant period of time. Otherwise, 
this issue does not affect the dynamic networks that take into account 
the time variable
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addition, the latter may categorize as one-to-many NA if a 
node from the latter network can be mapped to at most one 
node from the former network. To give an example, Fig. 3 
shows a one-to-one node mapping between two static net-
works, as follows: given two static networks G1 = (V1,E1) 
and G2 = (V2,E2) , with ||V1

|| ≤ ||V2
|| (no loss of generality), 

the NA between G1 and G2 produces a set of aligned node 
pairs (v, f(v)), with v ∈ V1 , by performing a one-to-one node 
mapping f ∶ V1 → V2 . Meng et al. (2016) introduced a sys-
tematic comparison of LNA and GNA. The authors reported 
that GNA is superior to LNA in topological alignment qual-
ity. However, with respect to biological alignment quality, 
GNA is superior to LNA for topological information only 
(T), while LNA is superior to GNA both for sequence infor-
mation only (S), combined topological and sequence infor-
mation (T &S), and in the best of T, S, and T &S. Briefly, 
GNA outperforms LNA both topologically and biologically, 
if only topological information is used, while LNA is supe-
rior to GNA (only in biological quality) if also sequence 
information is included. In any case, GNA is always the best 
in terms of topological alignment. In addition to the afore-
mentioned categorizations, an NA may be categorized as 
pairwise or multiple: the former aligns two networks, while 
the latter is able to align more than two networks (Vijayan 
et al. 2020).

Alignment measures are crucial to evaluate the similarity 
among mapped nodes, and the number of conserved edges, 
as well as its cost function. Usually, the following measures 
are applied: edge correctness (EC) (Zaslavskiy et al. 2009), 
induced conserved structure (ICS) (Patro and Kingsford 
2012), and symmetric substructure score ( S3 ) (Saraph and 
Milenković 2014).

Let f be the injective mapping (described previously) 
between the nodes of two given networks G1 and G2, with 
G1 = (V1,E1) and G2 = (V2,E2).

EC is defined as the number of edges conserved by f on 
the total number of edges of G1 (i.e., E1 ). Therefore, it is 
equal to 1 only if G2 contains an isomorphic copy of G1.

Formally, EC is defined as follows:

ICS measures the ratio of the number of edges aligned 
between G1 and G2 to the number of edges from the induced 
subnetwork (i.e., f (V1‖G2) ). It is defined as follows:

S3 was introduced to overcome the asymmetries of EC and 
ICS by considering the edges of both networks (Vijayan 
et al. 2015). It is defined as follows:

S3 maximizes the accuracy of the alignment (i.e., GNA) 
directly during its construction, with respect to the amount 
of conserved edges, and it turns out to be a good compro-
mise between EC and ICS. Briefly, EC penalizes the mis-
aligned edges in the smaller network, while ICS penalizes 
the misaligned edges in the larger network (Guerra and 
Guzzi 2020).

NA is usually applied between two networks, even 
if some software tools are extended to multiple NA 
(Gligorijević et al. 2016). Methods for multiple NA are 
generally based on traditional NA strategies. For instance, 
Singh et  al. (2008) carried out a pairwise-alignment 
method to evaluate the scores between every pair of net-
works, before performing a spectral partitioning method 
(i.e., clustering). Other solutions have been developed to 
find subnetwork by mapping pathways, e.g., applying a 
one-to-many mapping between each molecule in a pathway 
and a set of molecules of another (Ay et al. 2011).

NA may also be evaluated indirectly. A common 
approach consists of measuring the frequency of Gene 
Ontology (GO) terms (Consortium 2006) to improve the 
alignment between PPI networks. The scores based on GO 
terms usually do not take into account the global depend-
ency, evaluating each pair of proteins independently. 
Therefore, the semantic similarity of a mapping may be 
combined to GO, in order to investigate if a network topol-
ogy encodes significant biological information, and to 
evaluate the biological similarity between all pair of pro-
teins. To give an example, GO could be used to improve 
the quality of a similarity matrix built on local structural 
information, by taking into account the biological pro-
cesses (Zhu et al. 2020).

EC(G1,G2, f ) =
��f (E1)

⋂
E2

��
��E1

��
.

ICS(G1,G2, f ) =
��f (E1)

⋂
E2[f (V1‖G2)]��

��E2[f (V1‖G2)]��
.

S3(G1,G2, f ) =
||f (E1)

||
||E1

|| + ||E(G2[f (V1)])
|| − ||f (E1)

||
.

Fig. 3  The figure shows a one-to-one node mapping between G1 and 
G2. The latter is shown through dashed lines, while conserved edges 
with green lines, and no-conserved edges with red lines
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3.2  Motif discovery

As mentioned previously, the second key issue of this sec-
tion concerns the motif discovery. A motif is a small sub-
network which occurs frequently in a given network. It may 
be considered as the basic building block of a biological 
network useful to uncover both functions and local proper-
ties related to this one. Therefore, it is a pattern of inter-
connections occurring in complex networks at numbers that 
are significantly higher than those in randomized networks 
(Ivarsson and Jemth 2019). Figure 4 shows a non-exhaustive 
example of a motif within a static network.

In bioinformatics, the analysis of motifs is used to investi-
gate the large-scale structure of a biological network, as well 
as to detect its homology. The motif discovery allows study-
ing proteins functions in the PPI complex, e.g., to discover 
the biological meanings of unknown proteins (Cai et al. 
2020). It is crucial to explore the properties of a biological 
network.

Given a motif topology, counting the number of embed-
ding is a subgraph isomorphism problem (NP-complete). It 
is afflicted by the explosion in the number of distinct map-
pings (i.e., combinatorial explosion due to occurrence iso-
morphism) that occurs when more vertices in the motif are 
identical. Consequently, identical vertices may be mapped 
to the input graph in different possible combinations. A pos-
sible solution is to recognize the indistinguishable vertices. 
The conventional approach for motif discovery generates 
a set of candidate patterns, by applying statistical or struc-
tural measures, e.g., based on the frequency of the motifs 
in the input network on a randomized version of this one. 
It performs a preliminary computation to identify an initial 
set of candidates that is used to generate other novel ones as 
long as a given condition is respected by an iterative strat-
egy (e.g., limiting the computation to a specific subclass of 
motifs) (Jazayeri and Yang 2020). In this context, the edge/
node-disjoint subgraph embeddings may also be performed 
to evaluate the frequency and significance.

The frequency of a motif is generally used to infer the sta-
tistically significant subgraph matches. In a set of networks, 
the frequency of a motif is considered as the number of items 

of the set containing the pattern. Similarly, in a single network, 
it is defined as the number of embeddings of the pattern in 
the network. Usually, a methodology defines a threshold to 
discriminate the frequent/significant candidates. The measures 
applied to motifs may be classified as (i) statistical measures 
and (ii) structural measures mainly. The statistical significance 
of a motif in a network is usually measured by using two main 
parameters: Z-score and P-value (Gupta et al. 2007). Given a 
motif m and a target network tn, the Z-score is the difference 
between the frequency of m in tn and its mean frequency in a 
sufficiently large set of randomized networks, divided by the 
standard deviation (SD) of the frequency values for the rand-
omized networks. The P-value is the probability (P) that the 
frequency of m in a randomized network is equal to or larger 
than the frequency of m in tn. Otherwise, the structural meas-
ures may be categorized into two main groups: (i) motif-based 
node degree and (ii) motif-based edge degree (Xia et al. 2019). 
The first denotes the number of motifs that include the same 
node. The second is based on the ratio between the number of 
triangles including a specific edge in a motif, and the number 
of all existing triangles for the same edge in the network.

To illustrate this statement, we describe an example for 
counting independent motif instances. Just for the sake of sim-
plicity, the method is based on only two main steps: (i) pre-
processing and (ii) processing. Let us denote by G = (V ,E,P) 
the probabilistic network, by M the motif pattern, and by 
G� = (V ,E) the resulting deterministic network.

The preprocessing builds an overlap graph based on all 
embeddings discovered in G′ . In addition, it counts the non-
overlapping motif embeddings, by calculating a score (i.e., 
priority value) for each node. The latter may be performed 
by applying a heuristic strategy. Otherwise, the processing 
extracts the nodes with the highest score from the overlap 
graph, by populating the result set with the corresponding 
embeddings. Each of these needs to be evaluated also accord-
ing to the probability that it exists to the motif count. Note 
that every time a node is extracted, this is removed along with 
all of its neighbors from the overlap graph. The processing 
is performed by using the proposed method, iteratively. Spe-
cifically, it operates until all nodes are computed, that is, the 
overlap graph is empty.

A similar approach is applied by Ren et al. (2018b). Fur-
thermore, Sarkar et al. (2019) presented a mathematical model 
that can also capture the dependencies between the overlap-
ping embeddings, in order to count the independent instances 
of a given motif topology in a probabilistic biological network.

4  Dynamic networks

The analysis of dynamic networks is a crucial topic which 
growing in diverse fields. In biology, the system consist-
ing of interconnected units (e.g., genes, or proteins) may 

Fig. 4  A non-exhaustive example of a motif consisting of four nodes 
(vertices) and four edges in a static network. The box on the left high-
lights the motif
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be modeled through a dynamic network based on nodes 
and edges that evolve over time. Therefore, network theory 
allows studying both topological and biological hypotheses 
in order to investigate evolutionary system. It is important to 
clarify that a “static-temporal approach” allows performing 
the methods for the analysis of static networks, on dynamic 
networks (Chen et al. 2014). It considers a dynamic network 
as a series of snapshots, where each one may be represented 
through a static network. Starting from this assumption, it 
analyzes the snapshots independently, joining all results on 
the original time-series. However, this strategy is limiting, 
because it discards the relationships between the snapshots. 
Biological dynamic networks are studied in several fields, 
e.g., including the temporal dynamics of protein complexes 
in PPI networks (Ou-Yang et al. 2014), the prediction of 
protein complex (Dai et al. 2020), or the identification of 
motifs (Elhesha and Kahveci 2016).

This section presents the software tools and the related 
approaches for NA and motif discovery. According to Chen 
et al. (2014), no accepted criteria to perform an overall com-
parison between algorithms for NA or motif discovery (both 
for static and dynamic networks) is generally accepted in 
literature, thus it is hard to say which one is better. There-
fore, we based our considerations on the criteria described 
as follows.

The features used to compare the tools for alignment of 
dynamic networks have been focused on:

• the objective function and score calculation;
• the strategy used to perform the alignment;
• the tool used as core for alignment where this strategy 

is implemented (i.e., the alignment of dynamic networks 
could be performed by aligning each time point within 
the dynamic network, iteratively);

• the method used to design the algorithm (e.g., GNA, or 
LNA);

• network discrimination performance;
• other minor additional information (e.g., tool availability, 

documentation availability).

As in motif discovery in dynamic networks, the features for 
comparison have been focused on:

• the type of motif, e.g., DNA sequence motif, RNA 
sequence motif, or generic motif (not typed);

• the strategy used to perform the discovering;
• other minor additional information (e.g., tool availabil-

ity).

4.1  Alignment of dynamic networks

In the literature, nearly all methods for the alignment of 
dynamic networks assume that the evolution rate is the same 

both for the target network and the source network (Zhang 
et al. 2016). NA (both statics and dynamics) considers an 
objective function and an optimization strategy to maximize 
it. As it is easy to see, the alignment of dynamic networks 
is based on the same notions applied for alignment of static 
networks. We report the following tools for the alignment 
of dynamic networks: DynaMAGNA++, DynaWAVE, GoT-
WAVE, Tempo, Tempo++, Twadn.

DynaMAGNA++ (Vijayan et al. 2017) is an extension 
of MAGNA++ (Vijayan et al. 2015). The latter is a soft-
ware tool for NA of static networks (see Sect. 3). Dyna-
MAGNA++ is able to align dynamic networks in event dura-
tion-based representation (i.e., H(V, T), see Sect. 2). To give 
an example, Fig. 5 shows the NA performed by using Dyna-
MAGNA++, which works as follows: given two dynamic 
networks H1(V1, T1) and H2(V2, T2) , with ||V1

|| ≤ ||V2
|| (no 

loss of generality), an NA between H1 and H2 produces a 
set of aligned node pairs (v, f(v)), with v ∈ V1 , by perform-
ing a one-to-one node mapping f ∶ V1 → V2 . This approach 
makes comparable the NA for static and dynamic networks. 
According to the authors, DynaMAGNA++ is based on 
GNA, but this principle is also applicable to LNA. It general-
izes an aligned edge to an aligned event, computing both the 
measure of dynamic edge conservation and the conserved 
event time (CET). Therefore, DynaMAGNA++ is able to 
evaluate events with similar end-nodes by calculating also 
the time during which two dynamic edge pairs are active. 
The event-based measure is a version adapted to dynamic 
networks of S3 : DS3 . Furthermore, the Graphlet Degree Vec-
tor (GDV) (Milenković et al. 2010) has been extended to 
implementing Dynamic GDV (DGDV) to measures NC in 
dynamic networks. Briefly, DynaMAGNA++ aligns two 
dynamic networks by evaluating the incident edges and the 
graphlet changes during the dynamic events, to calculate a 
value based on DGDV. A pair of nodes belonging to two 

Fig. 5  The figure (Vijayan et  al. 2017) shows the alignment per-
formed by using DynaMAGNA++ on two dynamic networks (i.e., 
H1 and H2), in event duration-based representation. Solid lines repre-
sent the events between nodes. For instance, the event between u

3
 and 

u
4
 is active from start time 8 to end time 10. The mapping between 

two nodes is reported by using a dotted line
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different networks are similar, if their DGDVs are similar. 
However, DynaMAGNA++ does not scale well to large 
networks, in terms of alignment quality and runtime. This 
problem has been overcome by DynaWAVE.

DynaWAVE (Vijayan and Milenkovic 2018) works by 
aligning dynamic networks in event duration-based repre-
sentation, similarly to DynaMAGNA++. It has been devel-
oped extending an existing tool [i.e., WAVE (Sun et al. 
2015)] from NA of static networks. WAVE maximizes its 
objective function by using a greedy seed-and-extend strat-
egy based on the Weighted Edge Conservation (WEC) meas-
ure for edge conservation (EC), and a static GDV for node 
conservation (NC). WEC has been extended in DynaWAVE 
as Dynamic WEC (DWEC) to support dynamic edges (i.e., 
event).

Graphlet-orbit Transitions WAVE (GoT-WAVE) 
(Aparício et al. 2019) is an improvement of DynaWAVE for 
temporal Global Pairwise NA (GPNA). Both use DWEC 
to evaluate EC, but GoT-WAVE applies the Graphlet-orbit 
Transitions (GoT) as measure for NC. GoT is based on the 
construction of a matrix consisting of the product between 
the nodes’ vector and the transitions’ vector. Each matrix 
is used as a feature for the related dynamic network. Dur-
ing the alignment, GoT-WAVE joins the matrices of the two 
dynamic networks, performing also the principal compo-
nent analysis (PCA) to reduce the size of resulting matrix. 
Furthermore, it computes the cosine similarity between 
nodes’ features, by using the latter as node similarities in 
the objective function. Briefly, GoT provides to GoT-WAVE 
more accuracy ( + 30%) and speed ( + 60%), compared to 
DynaWAVE. Note that WAVE, DynaWAVE, and GoT-
WAVE use all the same optimization strategy to maximize 
the objective function.

Tempo performs the identification of co-evolving 
dynamic networks. It uses an own score to evaluate the simi-
larities between the aligned nodes, as well as the topology 
over time. Furthermore, it assigns a penalty for each dis-
connected component in the aligned subnetworks (Elhesha 
et al. 2019a). Briefly, Tempo works by performing a pair-
wise alignment between pairs of static networks belonging to 
each of the two input networks, respectively. For each align-
ment, an initial similarity score is calculated. The dynamic 
alignment score is the sum of all the scores calculated for 
each static alignment. Subsequently, it performs a series of 
k swaps (k is an input parameter) between the aligned nodes 
to maximize this similarity score. Therefore, it works itera-
tively, limiting its computation to a maximum of k steps. The 
tool is not provided publicly; we take into account the data 
reported within the related paper.

Tempo++ is an improvement of Tempo, it aligns 
dynamic networks with different evolutionary rates (Elhe-
sha et al. 2019b). It is able to identify co-evolving patterns 
in dynamic networks with varying rates of evolution. Two 

subnetworks are co-evolving if their topologies remain simi-
lar, even though their topologies evolve over time. Tempo++ 
adopts a dynamic programming technique similar to the 
dynamic time warping (DTW) (Linke et al. 2020) algorithm 
to measure the similarity (or dissimilarity) between the two 
given dynamic networks. Tempo++ bases its dynamic pro-
gramming technique on a double indexed iterative procedure 
to map the time points of a network to the multiple consecu-
tive time points of the other one, as opposed to DWT that 
maps only one time point of a network to multiple consecu-
tive time points of the other one. The tool is not provided 
publicly; we take into account the data reported within the 
related paper.

Time Wrapping algorithm for Aligning Dynamic 
Networks (Twadn) allows the alignment of dynamic PPI 
networks (Zhong et al. 2020). It uses NetCoffee2 (Hu et al. 
2019) and BLASTP (Altschul et  al. 1990). The former 
extracts the topological feature of each node in a series of 
static networks based on a time sequence, while the latter 
aligns the proteins evaluating both e-value and bit-score for 
each protein pair, as sequence similarity scores. E-value and 
bit-score are usually applied for local sequence comparison 
for searching protein sequence, in genomics (Pearson 1995). 
It performs its computation through four main steps: (i) pair-
wise sequence alignment, extracting only the similar pairs; 
(ii) topological feature extraction from each static network 
by using NetCoffee2; (iii) the evaluation of dynamic time 
warping similarity of all pairs of proteins; (iv) alignment of 
the dynamic PPI networks applying its simulated annealing 
technique.

DynaMAGNA++, DynaWAVE, GoT-WAVE, Twadn, and 
Tempo, assume that the networks have same and uniform 
evolutionary rates. Unlike, Tempo++ does not base its com-
putation on this assumption (see Fig. 6).

4.1.1  Summary of dynamic network alignment tools

Table 1 summarizes the tools discussed above, reporting 
the following information for each tool: name, year, objec-
tive function and/or similarity scores (i.e., “Objective/
Score”), strategy, method applied for the alignment (i.e., 
“Method”), the algorithm used to align snapshots/networks 
(i.e., “Core”).

Figure 7 depicts the accuracy of the NA performed by 
DynaMAGNA++, DynaWAVE, Got-WAVE, and Twadn for 
biological synthetic networks with respect to the Area Under 
the Receiver Operating Characteristic (AUROC); range [0, 
1], the higher score is the best result. Tempo and Tempo++ 
are not available for download, consequently these have not 
been tested. Data shown in the mentioned figure is reported 
in Table 2, based on the analysis described below.

Let i a random node, and i′ a node with a link to all 
neighbors of i, then p is the probability of establishing a 
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link between i and i′ . Let j a node linked to i and i′ , q is 
the probability of removing one of the two links ((j, i), or 
(j, i�) ). According to Zhong et al. (2020), the comparison 
has been based on two models consisting of 10 synthetic 
dynamic networks generated with [p = 0.3, q = 0.7] , and 
[p = 0.7, q = 0.6] , respectively. AUROC is a performance 
measurement used to evaluate classification models with 
different settings. Therefore, we used it to evaluate the per-
formance of each objective function in terms of accuracy 
(Aparício et al. 2019). Formerly, it is defined as follows:

where TPR is the true positive rate, and FPR is the false 
positive rate.

In addition, Table 3 reports other additional information: 
Graphical User Interface (GUI) and/or Command Line Inter-
face (CLI), programming language used for development 

AUROC =
∑

TPRΔFPR,

TPR =
|True Positives|

|True Positives ∪ False Negatives|

FPR =
|False Positives|

|False Positives ∪ True Negatives|
.

(i.e., “Language”), code availability, documentation avail-
ability (i.e., “Documentation”).

Fig. 6  Two dynamic networks (i.e., G1 and G2) evolve at different 
time rates: from t

1
 to t

4
 for G1, and from t

1
 to t

3
 for G2. In this figure, 

the alignment between G1 and G2 has been performed by assuming 
different evolutionary rates. The alignment is shown through dashed 
lines, while subnets aligned in G1 are highlighted in bold

Table 1  Tools for network 
alignment of dynamic networks

Name Year Objective/score Strategy Method Core

DynaMagna++ 2017 DS
3 Evolutionary search GPNA MAGNA++

DynaWAVE 2018 DWEC Greedy GPNA WAVE
GoT-WAVE 2019 DWEC, GoT Greedy GPNA WAVE for GoT
Tempo 2019 Own score with penalty Iterative (k swaps) GNA Undefined
Tempo++ 2019 Own score with penalty Iterative (k swaps) GNA Undefined
Twadn 2020 E-value, bit-score Evolutionary search 

(sequence similarity 
search)

LNA BLASTP

Table 2  DynaMAGNA++, DynaWAVE, Got-WAVE, and Twadn for 
biological synthetic networks with respect to AUROC; range [0, 1], 
the best score is the higher

Tempo and Tempo++ are not available for test (source code and/or 
executable are missing); consequently, the calculation of the score 
was not possible, Fig. 7 shows a graphical representation of reported 
data

Name AUROC

DynaMagna++ 0.51
DynaWAVE 0.59
GoT-WAVE 0.78
Tempo Tool not available for test
Tempo++ Tool not available for test
Twadn 0.72

Fig. 7  Network discrimination performance of DynaMAGNA++, 
DynaWAVE, Got-WAVE, and Twadn for biological synthetic net-
works with respect to AUROC; range [0, 1], the best score is the 
higher. Tempo and Tempo++ are not available for test; consequently, 
the calculation of the score was not possible. Data are reported in 
Table 2



Network Modeling Analysis in Health Informatics and Bioinformatics (2022) 11:38 

1 3

Page 11 of 16 38

4.2  Motif discovery in dynamic networks

Dynamic networks evolve over time, changing both their 
nodes and edges configuration. For instance, insertions 
and deletions change the network’s topology, impacting 
motif discovery negatively. Usually, dynamic motif dis-
covery algorithms are optimized to handle two main cases: 
(i) changes in attributes of nodes/edges, or (ii) changes in 
topology. Let G a dynamic network consisting of a series 
of static networks G = [G1,G2,… ,Gt] , where Gi = (V ,Ei) 
( 0 ≤ i ≤ t with t the total number of time points) represents 
the i-th snapshot. We assume that all snapshots within the 
dynamic network maintain a fix number of nodes (V) during 
its evolution, while topology may change through insertions 
and/or deletions. We denote g = (v, e) as a topological sub-
graph of Gi , if v ⊆ Vi and e ⊆ Ei ). Furthermore, we denote 
g as a frequent dynamic subgraph if it appears more than 
a predefined number of times in the sequence G. Dynamic 
subgraphs may start and end at the same time points in the 
sequence (synchronous), or start/end at different time points 
within the series (asynchronous).

Motifs in temporal networks (i.e., temporal motifs) are 
an ordered sequence of timestamped edges conforming both 
to a specified pattern and to a specified duration of time in 
which the events must occur; Fig. 8 shows a non-exhaustive 
example of motifs in a dynamic network by using time-
stamped edges.

In literature, a large number of algorithms have been 
implemented simply counting motifs in undirected static 
graphs using an iterative approach. We report the tools 
related to motif discovery in dynamic networks by focusing 
attention on the approach used to perform the analysis, as 
well as on the type of data and graph supported.

COMmunication Motifs in InTeraction networks 
(COMMIT) (Gurukar et al. 2015) maps the graph in input 
(i.e., G) identifying all the temporally connected compo-
nents in its sequence space representation (i.e., S) for fre-
quent subsequence mining. It delegates its activities to three 
main modules, each one with a specific function: (i) “SEQ-
GROW”, (ii) “ExtensionMiner”, and (iii) “MotifMine”. 

SEQGROW employs the sequence growth approach by 
extending S with a set of edges. Initially, all edges within an 
interval of time ΔT  in S are considered. Subsequently, SEQ-
GROW calls ExtensionMiner to obtain only the closed edge 
labels E over a defined threshold and identifies the regions 
embedding communication motifs. The last step in COM-
MIT is performed by MotifMine that maps the frequent 
subsequences, obtained previously, into the original graph 
space. This modular approach ensures a high scalability.

Dynamic Motif Integration Toolkit (DynaMIT) (Dassi 
and Quattrone 2016) is a toolkit available as a package on 
Python Package Index (PIP, pypi. python. org). Formally, it 
provides a set of strategies based on existing python pack-
ages (e.g., matplotlib, scikit-learn, scipy, numpy) imple-
menting custom components developed from scratch. It is 
based on three main steps supporting alignment, Jaccard 
similarity calculation, biclustering, co-occurrence evalua-
tion; its steps are reported as follows: (i) motif discovery 
(i.e., alignment, Jaccard similarity calculation), (ii) motif 
clustering (i.e., biclustering, co-occurrence evaluation), and 
(iii) graphical representation of the result. Motif discovery 
is performed using several existing tools in accordance with 
the type of motif of interest, such as: DNA sequence motifs, 
RNA/miRNA sequence motifs, RNA secondary structure 
motifs, or generic regions of the input network. The pair-
wise alignment of each motif pair is used to provide scores 
for clustering component. Furthermore, DynaMIT offers 
to users the possibility of implementing custom additional 
components, integrating these within an existing function. 
This feature has been made available by introducing a set of 
abstract Python classes.

Kovanen et al. (2011) presented a framework for iden-
tification of temporal motifs (reported as appearing as 
“Kovanen”). Assuming G(V, E) an undirected graph where 
the nodes (vertices) corresponds to events, and E the related 

Table 3  Additional information related to the discussed tools for 
alignment of dynamic networks

Name Interface Language Availability Documen-
tation

Dyna-
Magna++

GUI, CLI C++ Open source Yes

DynaWAVE CLI Julia Open source Yes
GoT-WAVE CLI Julia Open source Yes
Tempo Undefined Undefined Undefined No
Tempo++ Undefined Undefined Undefined No
Twadn CLI C++ Open source No

Fig. 8  A non-exhaustive example of motifs in a dynamic network by 
using time-stamped edges. The instances of the temporal motifs are 
shown in blue, while in red is shown a non-example of instance of the 
motif, as it does not satisfy the time requirements/constraints to be 
considered as such. The box, on the left, highlights the motif consist-
ing of four nodes (vertex) and four events (temporal edges)

http://pypi.python.org
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event set, the process for motif discovery is performed by 
“Kovanen” as follows: (i) find all maximal connected sub-
graphs in G (i.e., G∗

max
= (V∗,E∗

max
) ); (ii) find all valid edge 

subsets E∗ ( E∗ ⊆ E∗
max

 ); (iii) identify motifs corresponding to 
the set of valid subgraphs G∗ = (V∗,E∗) . This method finds 
a maximal subgraph iterating (forward, and backward) over 
the Δt-adjacent events, thus it applies a recursive approach 
with a worst-case complexity equal to |E|.

Mukherjee et al. (2018) developed a method for counting 
motifs in a dynamic biological network (reported as appear-
ing as “Mukherjee”). It focuses on biological dynamic net-
works that may be modeled as an undirected graph, even 
if authors report that this method could be applied also to 
directed graphs as well. It computes the initial counting by 
applying a static approach on the network at the time t0 . Sub-
sequently, the other time points are iteratively investigated 
to update the initial counting. This solution considers each 
time point as a static network.

SNAP (Paranjape et al. 2017) provides a method for 
counting motifs in temporal networks, providing also a 
formalism for temporal network motifs through a series of 
timestamped edges, or temporal edges.

Table 4 reports the key points for the discussed tools by 
focusing attention on typology, strategy, and availability.

5  Discussion

In biology, several open challenges focused their attention on 
computational approaches for detecting protein complexes 
from protein interaction networks (i.e., motif discovery). 
Extending common issues for static network analysis to 

dynamic networks, the basic concept remains essentially 
the same. However, a dynamic network introduces further 
complexities related to static networks, both for alignment 
and motif discovery (Kim et al. 2021).

Figure 9 shows discussed tools in accordance with the 
following criteria: static networks or dynamic networks 
(i.e., network), and the strategy implemented to solve the 
related problem (e.g., alignment, motif discovery). It shows 
also the relationship between the objective function and its 
counterpart for static networks, in order to highlight if the 
tool is the extension of a solution initially developed for 
a static context. For instance, the figure shows for Dyna-
MAGNA++ the following information: (i) it performs the 
NA of dynamic networks, (ii) by applying an evolutionary 
strategy (iii) based on the DS3 as objective function for simi-
larity score calculation. Deepening the relationships, (iv) 
DS3 is an extension of S3 that (v) is an objective function 
applied by MAGNA++ on static networks. Furthermore, 
(vi) MAGNA++ shares with MAGNA one or more features, 
e.g., one is the evolution of the other or a version with differ-
ent applications. Detailed information about the mentioned 
software tools is available in the previous sections.

Similarly, COMMIT is able to perform (i) motif dis-
covery in (ii) dynamic networks (iii) based on an iterative 
strategy. Regarding the software tools for motif discovery 
in dynamic networks, we have also taken into account the 
type of motifs supported as input. We identified two main 
types of motifs: generic, and typed. The former concerns all 
networks within which the nodes are not related to a spe-
cific function or biological category. The latter is related to 
the networks within which the nodes are representative of a 
specific object. Note that DynaMIT is the only that adopts 
a variable strategy based on the type of data, such as: DNA 
sequences, RNA sequences, miRNA sequences, and RNA 
secondary structure motifs. The other ones apply a single 
strategy, indifferently. Figure 9 includes this information by 
indicating the strategy as “variable”, when it is supported. 
Table 5 better summarizes the strategies implemented by the 
proposed software tools for dynamic networks.

It is clear how the iterative strategy is applied by ∼ 83% 
(5/6) of the proposed tools for motif discovery. As men-
tioned, DynaMIT is the only one that applies a variable 
strategy in that it implements several existing motif search-
ers. This approach allows to better analyze biological net-
works. However, it needs of a large number of components 
that should be implemented de novo, or integrating existing 
tools. From a purely algorithmic point of view, it is inadvis-
able in this implementation, as the possible type of motif can 
be much more extensive than reported. In fact, a general-
purpose strategy is the most used.

A more uniform distribution is evident among the tools 
for network alignment. Therefore, we focused attention on 
the approach applied to align the pair of dynamic networks 

Table 4  Motif discovery algorithms supporting dynamic networks

aThe symbol “*” refers to motifs in a generic dynamic network: the 
information on the type of node (e.g., proteins, genes, people for 
social network) is not evaluated to calculate similarity score
b It is NP-complete when identically overlapping instances occur
cThe tool uses a set of pre-implemented motif searcher components in 
reference to the type of motif of interest, thus the approach depends 
on which one is performed

Name Typologya Strategy Availability

COMMIT * Iterativeb Undefined
DynaMIT * Variablec Open source

DNA sequence motifs
RNA sequence motifs
miRNA sequence motifs
RNA secondary structure 

motifs
Kovanen * Iterative Undefined
Mukherjee * Iterative Undefined
SNAP * Iterative Open source
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(refer to Table 1): ∼ 83% (5/6) of the proposed tools are 
based on G(P)NA, contrary to Twadn that applies a method 
for LNA. It evidenced how G(P)NA is preferred on generic 
networks, while LNA is more indicated for networks in 
which exists a similarity matrix based on defined proper-
ties shared between all nodes (e.g., biological similarity 

for biological networks). However, G(P)NA supports also 
this feature, while the opposite is not true. According to 
a test conducted on biological synthetic networks between 
DynaMAGNA++, DynaWAVE, GoT-WAVE, Twadn, it 
seems that Twadn (based on LNA) overperformed ∼ 66% of 
the G(P)NA tools, except for GoT-WAVE. The latter is the 
only using the Graphlet-orbit Transitions (GoT) as measure 
for NC. According to Meng et al. (2016), G(P)NA outper-
forms LNA both topologically and biologically when only 
the topological information is available. Otherwise, LNA 
is superior to G(P)NA in biological quality when sequence 
information is taken into account. LNA is performed by 
Twadn, which showed a better network discrimination per-
formance on biological synthetic networks, compared to 
DynaMAGNA++ and DynaWAVE. However, Twadn is 
limited to dynamic PPI networks, while the other software 
tools may be applied to all networks.

Investigating the tools for NA in dynamic networks, it 
emerged that some categories of problems may be trans-
ferred from static to dynamic networks by extending an 
alignment method for static networks in the dynamic con-
text, or by calling the latter on each time point, iteratively. 
As reported, DynaMAGNA++ is based on MAGNA++, 
and DynaWAVE is based on WAVE, as well as GoT-WAVE. 
MAGNA++ and WAVE are two well-known tools for the 
alignment of static networks (see Sect. 3).

On the other hand, motif discovery in dynamic networks 
bases its strategy on techniques designed for static networks 
only partially. For instance, in COMMIT only the module 

Fig. 9  The figure relates the type of networks in input (static, or 
dynamic) with the strategy implemented by each discussed tool, 
both for NA and motif discovery. To give an example, for Dyna-
MAGNA++ the following information is deductible: (i) an evolution-
ary strategy (ii) based on the DS3 as objective function for similarity 

score calculation, (iii) performed on dynamic networks for (iv) align-
ment. Similarly, the figure reports for COMMIT: (i) a motif discovery 
tool for (ii) dynamic networks (iv) based on an iterative strategy. Note 
that a software tool could adapt its strategy according to the input 
(i.e., “variable”)

Table 5  Summary of the strategies applied by each software tool for 
network alignment or motif discovery in dynamic networks

a A software tool based on a variable method adapts its strategy 
according to the input; to give an example, DynaMIT implements 
a specific strategy for each of the following types of motifs: DNA 
sequence motifs, RNA sequence motifs, miRNA sequence motifs, and 
RNA secondary structure motifs

Evolutionary Greedy Iterative Variablea

Network alignment
DynaMAGNA++ X
DynaWAVE X
GoT-WAVE X
Tempo X
Tempo++ X
Twadn X
Motif discovery
COMMIT X
DynaMIT X
Kovanen X
Mukherjee X
SNAP X
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related to mapping frequent subsequences could support also 
a static network, other modules would need a high degree 
of re-implementation related to the interaction between time 
points that cannot be neglected. Therefore, this discrepancy 
could be due to the fact that a re-implementation ex novo 
has a decidedly lower development time cost as any existing 
tool should be excessively updated to work with dynamic 
networks given the need to relate the various snapshots. 
However, the methodologies for motif discovery are afflicted 
from another issue related to the asynchronous sequences. It 
occurs when dynamic subgraphs start and/or end at differ-
ent time points within the series. Tools for motif discovery 
in dynamic networks, presented previously, focused atten-
tion on topological changes through insertions and deletions 
of nodes and edges. In literature, a large number of algo-
rithms have been implemented simply to counting motifs 
in undirected static graphs by using an iterative approach. 
This approach may be used also for large networks, even if 
it is computationally expensive (it is a typical NP-complete 
problem).

Whether we are talking about the NA or motif discovery 
applied to dynamic networks, it is evident how the main 
challenges may be associated with computational resources 
required to perform the analysis. As discussed, the analysis 
of graph/subgraph (network/subnetwork) isomorphism is 
quite computationally expensive, as well as the similarity 
score evaluations during NA.

6  Conclusions and future directions

As was shown by investigating the issues related to NA in 
dynamic networks, some categories of problems may be 
transferred from static to dynamic networks by extending an 
alignment method for static networks in the dynamic context. 
Most of the software tools reported in this paper are based 
on existing methodologies for NA between static networks. 
On the other hand, motif discovery does not follow this 
approach. From what was presented, motif discovery bases 
its strategy on techniques designed for static networks only 
partially. We suppose that this discrepancy is mainly due to 
the fact that a re-implementation ex novo has a decidedly 
lower development time cost, as any existing tool should be 
excessively updated to work with dynamic networks given 
the need to relate the various snapshots. Otherwise, a tool for 
NA of static networks may be called iteratively by producing 
an alignment for each pair of successive snapshots (e.g., the 
pair: ti and ti+1 ). Software tools for NA and motif discovery 
implement a computation based on iterative optimizations or 
greedy algorithms. This approach allows the re-use of code 
from the static to the dynamic context. However, it produces 
critical tasks that could lead to an NP-complete problem. As 
described, the latter may occur in the presence of identically 

overlapping instances. Finally, our investigation encountered 
a systematic convergence towards iterative strategies both for 
NA and motif discovery in dynamic networks, justified by 
the fact that a dynamic network is usually analyzed through 
the sub-analysis of its time points.

Future directions for networks analysis are moving toward 
the development of solutions based on deep learning and 
network embedding (Barros et al. 2021). Chiu and Zhan 
(2018) proposed a method to build a feature vector for a 
deep neural network based on weak estimators in addition 
to tradition similarity measures. It improves the model accu-
racy, as well as the related prediction accuracy, in order to 
estimate the changing probabilities in dynamic networks. 
Furthermore, authors explore another crucial task, consist-
ing of the issue of link prediction in dynamic networks. In 
literature, this issue is studied to solve several problems. For 
instance, it may happen that the topologies of dynamic net-
works are not available at specific time points. Chow et al. 
(2021) presented an alignment-based network construction 
algorithm to predict missing target networks, allowing the 
analysis of incomplete biological dynamic networks. Net-
works embedding applies graph embedding techniques to 
analyze complex biological networks that are quite com-
putationally expensive to solve by using common approach 
for network-based analysis (Mohan and Pramod 2021; Yu 
et al. 2020). To give an example, weg2vec (or Weighted 
Event Graph to Vector) (Torricelli et al. 2020) is a temporal 
network embedding method that is able to represent an entire 
temporal network in a reduced dimensional abstract space. 
It samples a higher-order static representation of a temporal 
network, coding also the complex patterns characterizing 
its structure and dynamics. It is based on an unsupervised 
representation learning technique, that identifies similarity 
between different events (i.e., nodes), by predicting both 
their activation and their influence on a similar set of nodes 
in a subsequent time point. The network embedding offers 
new opportunities to model higher-order network datasets, 
to perform efficiently data analysis and prediction (e.g., node 
classification, link prediction, node clustering), with con-
siderable advantages for future studies in the field of (static, 
dynamic) biological networks.
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