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Abstract
A brain–computer interface (BCI) can be used for people with severe physical disabilities such as ALS, or amyotrophic lateral 
sclerosis. BCI can allow these individuals to communicate again by creating a new communication channel directly from 
the brain to an output device. BCI technology can allow paralyzed people to share their intent with others, and thereby dem-
onstrate that direct communication from the brain to the external world is possible, and that it might serve useful functions. 
In this paper, we propose a system to exploit the P300 signal in the brain, a positive deflection in event-related potentials. 
The P300 signal can be incorporated into a spelling device. BCI systems include machine learning algorithms (MLA). Their 
performance depends on the feature extraction and classification techniques employed. This work discusses the performance 
of different machine learning algorithms. First, a preprocessing step is introduced to the subjects to extract the important 
features before applying the machine learning algorithms. The presented algorithms are linear discriminant analysis (LDA 
I and LDA II), support vector machine (SVM I, SVM II, SVM III, and SVM IV), linear regression (LREG), and Bayesian 
linear discriminant analysis (BLDA). It is found that BLDA and SVMIV classifiers yield the highest performance for both 
subjects considered in our study.

Keywords Brain Computer Interface (BCI) · P300 signal · Machine learning algorithms (MLA) · Linear discriminant 
analysis (LDA) · Support vector machine (SVM) · Linear regression (LREG) · Bayesian linear discriminant analysis 
(BLDA)

1 Introduction

Amyotrophic lateral sclerosis or ALS is a progressive neu-
rodegenerative disease that affects nerve cells in the brain 
and the spinal cord, which often leads to complete paralysis 
(www.alsa.org/news/media /quick -facts .html, 2012).

ALS usually strikes people between the ages of 40 and 
70. The incidence of ALS is two per 100,000 people, and it 
is estimated that about 30,000 people in the United States 
are living with ALS (www.alsa.org/news/media /quick -facts 
.html, 2012). As the disease progresses many assistive com-
munication devices that have been once a necessity, may 
become ineffective (McCane et al. 2015).

Brain Computer Interface (BCI) is one of the best 
research fields that have been developed in the last decades 
to get a new way of communication for those people (Fouad 
and Hadidi 2014).

BCI research is based mainly on acquiring signals from 
the brain and obtaining discriminative information from 
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them, which could help in classifying these signals to vari-
ous applications (Azar et al. 2014).

This interface creates a direct communication between 
the brain and the object which is to be controlled by the 
brain. In case of the P300 speller, the basic purpose of the 
BCI system is to map the P300 signals into the right charac-
ter to spell. Therefore, it detects P300 signals and converts 
these neurophysiologic signals into basic actions (Wolpaw 
et al. 2003). These actions are then displayed on a computer 
screen.

An event-related potential (ERP) is a signal observed on 
the scalp of the subject that occurs when an event such as a 
visual stimulus happens in a short period (Wu 2014). The 
ERP for each trial is hypothesized to be synchronous with 
the event and similar between trials (Wu 2014).

The P300-based speller was originally introduced by Far-
well and Donchin in 1988 (Lu et al. 2013). Subjects using 
the P300 speller select characters from a matrix presented 
on a computer screen. Then, the system proceeds to analyze 
and classify the resulting EEG signals (Lu et al. 2013). The 
flashing of a character being focused on elicits an event-
related potential (ERP) that distinguishes between target and 
non-target characters (Lu et al. 2013). A “target” refers to 
the character being focused on.

The P300 response is a positive deflection in the EEG 
over the parietal cortex that appears around 300 ms after a 
stimulus as shown in Fig. 1 (Lu et al. 2013). Groups of char-
acters are successively and repeatedly flashed, but only the 
group that contains the target character will elicit a response 
(Mattout et al. 2014).

In the implementation of a P300 BCI, characters are 
grouped for flashing as rows and columns (Townsend et al. 
2010). This orientation is referred to the row–column par-
adigm (RCP) (Townsend et al. 2010). The computer can 
identify the target character as the intersection of the row 
and column that induced the largest P300 (Townsend et al. 
2010).

Reviews of BCI systems in general have been given 
in Nicolas Alonso and Gomez-Gil (2012), Wolpaw et al. 
(2002) among others. Waldert et  al. concentrated on 
extracting directional information only (Waldert et al. 
2009). McFarland et al. provide an overview over the fea-
ture extraction and translation methods for classification-
based systems (McFarland et al. 2006). Teplan concen-
trates on measurement in EEG-based systems (Teplan 
2002) and Lotte et al. on classification (Lotte et al. 2007). 
After that, Nicolas Alonso and Gomez-Gil (2012) han-
dled many kinds of BCI applications range over adapted 
web browsers, word processors, brain control of a wheel-
chair or neuro-prostheses, games, and more. Furthermore, 
Moore (2003) identified and classified the following four 
main challenges of BCI systems in real world use:

1. The information transfer rate of such systems is far too 
low.

2. The error rate during input is very high due to highly 
variable brain signals.

3. Autonomy is not really given since sensors usually need 
to be applied by someone else.

4. The cognitive load, under distractions of the brain gener-
ates different and noisier signals. BCI systems need to 
work even under such a distracting environment.

Ferrez and Millan (2008) used error-related potentials 
within the EEG recording shortly after an action to apply 
reinforcement learning. That was an attempt towards a 
more adaptive BCI. Vidaurre et al. also strove to solve the 
so-called “BCI Illiteracy” problem, that there is a signifi-
cant portion of people (about 15–20%), who are unable to 
control a BCI system. Therefore, they also tried to make 
BCIs more adaptive such that they do not solely rely on 
off-line calibration when using supervised learning (Vid-
aurre et al. 2011).

Regarding filtering methods, Blankertz et al. relied on 
common spatial patterns (CSP) as proposed by Ramoser 
et al. (2000). They extended the common spatial patterns 
approach to consider typical variations of a subject’s EEG 
signals between trials (Blankertz et al. 2007).

Carlson and Millán also used BCI to control a wheelchair 
with “left” and “right” commands and additionally equipped 
the wheelchair with obstacle avoidance to ensure safe use 
(Carlson and Millán 2013). They employed motor imagery 
as input using Laplacian filtering and power spectral density. 
Also, there is a thesis from Rebsamen (2009) that covers a 
wheelchair control through BCI using P300-based destina-
tion selection. Mandel et al. created a wheelchair control 
depending on EEG. They stressed that due to slight inac-
curacy of the control method it is important to have the 
wheelchair equipped with a safety mechanism that avoids 
collisions. Also, they mentioned that they had one subject Fig. 1  P300 signal (Cecotti and Graser 2011)
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who was not able to use their control, so he fell under the 
so-called BCI illiteracy (Mandel et al. 2009).

However, in the current era, the achievements are very 
impressive (Tsui et al. 2011; Geng et al. 2007), but there is 
still much research to be conducted and many studies to be 
performed in the whole world of brain computer interface 
(Fouad and Lalib 2017).

2  Materials

The data that support the findings of this study are openly 
available in BCI competition III challenge 2004 was pro-
vided by the Wadsworth BCI dataset (P300 evoked poten-
tial) at (https ://bbci.de/compe titio n/iii/) (Wolpaw et  al. 
2004). The data were acquired using BCI2000s P3 speller 
paradigm described by Donchin et al. (2000) and originally 
by Farwell and Donchin (1988).

In this work, Matlab version 9.2.0.556344 (R2017a) and 
its Signal Processing Toolbox which supports an extensive 
range of signal processing operations is used for data anal-
ysis and technical computing, as it is a high-performance 
and powerful language. This work is implemented using a 
personal computer with a processor: Intel (R) Core (TM) 
i7-2.6 GHz.

2.1  Paradigm

The user was presented with a 6 by 6 matrix of characters 
as shown in Fig. 2. The user’s task was to focus attention 
on characters in a word that was prescribed by the investi-
gator (i.e., one character at a time). All rows and columns 
of this matrix were successively and randomly intensified. 
Two out of 12 intensifications of rows or columns contained 
the desired character. The responses evoked by these infre-
quent stimuli (i.e., the 2 out of 12 stimuli that did contain 
the desired character) are different from those evoked by the 
stimuli that did not contain the desired character and they 
are similar to the P300 responses. This P300-based paradigm 

can be considered as a "Virtual Keyboard on a BCI system’s 
computer screen".

2.2  Data collection

The collected signals have the following specifications:

• The signals are bandpass filtered in the 0.1–60 Hz range 
and digitized at 240 Hz from two subjects: subject A and 
subject B in five sessions each.

• The training set for both subjects consists of 85 charac-
ters.

• The test set for both subjects consists of 100 characters.
• For each character, sets of 12 intensifications as shown in 

Fig. 3 (Donchin et al. 2000) were repeated 15 times and 
thus there were 12 × 15 (180) total intensifications.

• The EEG signals have been acquired using 64-channels.
• A more detailed description of the dataset can be found 

in the BCI competition online web site (Donchin et al. 
2000).

3  Methods

3.1  Data preprocessing

Preprocessing was used to remove the noise and enhance the 
EEG signals. It was known that the acquired signals were 
bandpass filtered in the range [0.1, 60] Hz and digitized at 
240 Hz.

3.1.1  Trials and filtration

As noticed, before, there are 12 post-intensification seg-
ments which are repeated 15 times (12 × 15) as one signal 
for each character over 64 channels. The target is to extract 
each post-intensification segment from the provided signals 
in both training and test sets. It was known that P300 ERP 

Fig. 2  P300 Speller Paradigm (Donchin et al. 2000) Fig. 3  Matrix rows and columns (Donchin et al. 2000)

https://bbci.de/competition/iii/
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appears after 300–500 ms from the onset of the stimulus, so 
the data samples are extracted 650 ms from the beginning 
of each intensification. This is long enough to obtain the 
required time features.

Filtering is an important step in noise reduction. Extra 
filtering using an eighth-order bandpass filter was applied 
to the training (180 × 85 characters) and test (180 × 100) 
post-intensification segments at different cutoff frequen-
cies, which were selected, because the cognitive activity 
very rarely occurs outside of the range 300–500 ms (Alli-
son 2003).

3.1.2  Decimation

Decimation reduces the original sampling rate of a sequence 
to a lower rate. It lowpass filters the input to guard against 
aliasing and down-samples the result (Matlab 2017). The 
filtered segments are decimated according to the high cut-off 
frequencies. As an example,

• The sampling frequency is 240 Hz.
• The selected window is 650 ms.
• Then, the post-intensification segments’ length is 

240 × 0.65 = 156 samples.
• If the high cut-off frequency is 30 Hz, then, the deci-

mated factor will be 240/30 = 8.
• Therefore, the post-intensification segments’ length is 

decimated to 156/8 ≈ 20 samples.
• Then ,  t he  f i l t e r ed  t r a in ing  r e sponse  i s 

((180 × 85) × 20 × 64), and the Filtered Test Response is 
((180 × 100) × 20 × 64).

3.2  Feature vector

The Feature vector is constructed from the concatenation 
of the measurements of 64 channels of all post-intensifica-
tion segments. As was mentioned before, the training set of 
both subjects ‘A’ and ‘B’ consists of 85 characters; total of 
180 × 85 (15,300) post-intensification segments, while the 
test set of both subjects consists of 100 characters; 180 × 100 
(18,000) post-intensification segments.

3.3  Normalization

"Z-Score Normalization" is commonly used in machine 
learning where the data include multiple dimensions can 
be handled. Feature standardization makes the values of 
each feature in the data have zero-mean (when subtract-
ing the mean in the numerator) and unit-variance. The 
general method of calculation is to determine the distribu-
tion mean and standard deviation for each feature. Next, 
the mean is subtracted from each feature. Then, the values 

(mean is already subtracted) of each feature are divided by 
its standard deviation.

where x′ is the original feature vector, x average (x) is the 
mean of that feature vector, and σ is its standard deviation.

The training feature vector is normalized to zero mean 
and unit variance. Then, the test feature vector is normalized 
depending on the normalization parameters acquired from 
the normalization of the training feature vector.

3.4  Classification

3.4.1  Linear discriminant analysis

Linear classifiers are discriminant algorithms that use lin-
ear functions to separate between different classes. They are 
likely the most known algorithms for BCI applications.

The aim of LDA is to use hyper-planes to separate the 
data representing the different classes (Duda et al. 2001; 
Fukunaga 1990). For a two-class problem, the class of a 
feature vector depends on which side of the hyper-plane the 
vector is.

LDA assumes a normal distribution of the data, with 
equal covariance matrices for both classes. The separat-
ing hyper-plane is obtained by seeking the projection that 
maximizes the distance between the two class means and 
minimizes the interclass variance (Fukunaga 1990).

This technique has a very low computational require-
ment which makes it suitable for BCI systems. Moreover, 
this classifier is simple to use and generally provides good 
results.

Two procedures of applying an LDA classifier were 
applied.

3.4.1.1 LDA method I (LDA I) In the first procedure which is 
referred to as “LDA method I”, a test label of ‘1’ which was 
assigned to a target or ‘− 1’ to a non-target from each row or 
column were averaged over sequences as shown in Fig. 4. It 
is considered that the most probable row and column is the 
one that maximizes the score.

3.4.1.2 LDA method II (LDA II) In the second procedure 
which is referred to as "LDA method II" test scores from 
each row or column were averaged over sequences as shown 
in Fig. 5. It is considered that the most probable row and 
column is the one that maximizes the score.

3.4.2  Support vector machine

A support vector machine uses a discriminant hyperplane 
to distinguish classes (Burges 1998; Bennett and Campbell 

x
�
=

x − x

�

,
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2000). However, concerning SVM, the selected hyperplane 
is the one that maximizes the margins, i.e., the distance 
from the nearest training points. Maximizing the margins 
is known to increase the generalization capabilities (Burges 
1998; Bennett and Campbell 2000). This classifier uses a 
regularization parameter C that enables accommodation to 
outliers and allows errors on the training set.

Support vector machines enable classification using linear 
decision boundaries and are known as linear SVMs. These 

classifiers have been applied, always with success, to a rela-
tively large number of synchronous BCI problems (Blank-
ertz et al. 2002; Garrett et al. 2003; Rakotomamonjy et al. 
2005; Rakotomamonjy and Guigue 2008).

SVMs have several advantages. Actually, thanks to the 
margin maximization and the regularization term, SVM are 
known to have good generalization properties (Bennett and 
Campbell 2000; Jain et al. 2000) to be insensitive to over-
training (Jain et al. 2000) and to the curse of dimensionality 
(Burges 1998; Bennett and Campbell 2000).

SVMs have been used in BCI research since it is a 
powerful procedure for pattern recognition, especially for 
high-dimensional problems (Rakotomamonjy and Guigue 
2008). Two approaches for the application of support vector 
machine classifier are presented.

3.4.2.1 SVM method I and II In the first approach, two pro-
cedures are introduced and mentioned as "method I" and 
"method II". After preprocessing the post-intensification 
segments of the training feature vector which belong to the 
same row or column are averaged, which indicates that for 
each character there are only 12 post-intensification seg-
ments instead of 180 segments. Therefore, the training 
feature vector and the training label vector will be of size 
(12 × 85) instead of (180 × 85) and will be fed to the support 
vector machine classifier as shown in Fig. 6.

In the procedure named "method I" test labels (1 or − 1) 
from each row or column were averaged over sequences. 
While in the other procedure named "method II" test scores 
from each row or column were averaged over sequences. For 
the two approaches, it is considered that the most probable 
row and column is the one that maximizes the score.

3.4.2.2 SVM method III and  IV In the second approach 
which is a multiple-classifier combination approach, two 
procedures are presented and mentioned as "SVM method 
III" and "SVM method IV" (Fig.  7). After preprocessing, 
the training feature vector (180 × 85) and the training label 
vector are gathered into 17 equal partitions. Each partition 
consists of five consecutive characters (180 × 5) as shown in 
Fig. 7 and is fed to a linear support vector machine classifier. 

Fig. 4  LDA method I classifier

Fig. 5  LDA method II classifier

Fig. 6  SVM classifier. a SVM 
method I. b SVM method II
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Therefore, a multiple classifier system was designed from 
the combination of the 17 SVM classifiers outputs.

In the procedure named "method III" test labels (1 or − 1) 
from each row or column were averaged over sequences. 
While in the other procedure named "method IV" test scores 
from each row or column were averaged over sequences. For 
the two approaches, it is considered that the most probable 
row and column is the one that maximizes the score.

In the previous mentioned approaches, the selected value 
of the hyper-parameters (regularization parameters) through 
cross-validation of a subset of the training dataset as a vali-
dation set are shown in Table 1.

3.4.3  Linear regression

Linear regression algorithms (LREG) mostly differ depend-
ing on the number of independent variables and the type 
of relationship between the independent and dependent 
variables.

Linear regression is a linear model, e.g. a model that 
assumes a linear relationship between the input variables (x) 

and the single output variable (y). More specifically, y can be 
calculated from a linear combination of the input variables 
(x) (https ://towar dsdat ascie nce.com/intro ducti on-to-machi 
ne-learn ing-algor ithms -linea rregr essio n-14c4e 32588 2a).

In the present work, a linear regression algorithm is 
implemented as a classifier that can be implemented in a 
BCI system as shown in Fig. 8.

3.4.4  Bayesian classifier

Bayesian linear discriminant analysis (BLDA) is a simple 
and efficient method for classification. This technique was 
presented by Hoffmann et al. (2004) as follows:

• Based on the training labels, the regression targets are 
calculated.

• An iterative estimation of the parameters alpha and beta 
was calculated.

• To predict each character (belongs to a certain row or 
column) related to which class, the mean of the predic-

Fig. 7  SVM method III and IV

https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linearregression-14c4e325882a
https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linearregression-14c4e325882a
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tive distribution was calculated for each character which 
was considered as the score for the row or column.

Based on our proposed Bayesian classifier, the number of 
iterations and the estimated parameters are shown in Table 2.

3.5  Character prediction

The scores predicted from the previously applied classifiers 
are averaged over the 15 sequences, yielding 12 scores for 
each character. The target character is determined by finding 
the row and column with the highest score.

4  Results and discussion

Depending on the percentage of the correctly predicted char-
acters in the test sets, the performance is evaluated. Based 
on the evaluation criteria, Tables 3, and 5 show subject ‘A’ 
and ‘B’ performances among different frequencies which 
yield the best results for each classifier during 5th and 15th 
sequences. The time taken to predict a character in subject 
‘A’ does not exceed 24.0786 s as shown in Table 4, while 
the time taken to predict a character in subjects ‘B’ does 
not exceed 55.2476938 s as shown in Table 6. The run 
times need to be improved to be more suitable for online 
applications.

Table 1  SVM hyper-parameters values

Standardize Kernel scale Kernel function Number of sequences Subject SVM Method

True 27.1 Linear 15th sequences Subject A Method I
True 20 Linear 5th sequences
True 16.4 Linear 15th sequences Subject B
True 2.1 Linear 5th sequences
True 27.1 Linear 15th sequences Subject A Method II
True 20 Linear 5th sequences
True 16.4 Linear 15th sequences Subject B
True 2.1 Linear 5th sequences
True (7) for all 17 models Linear 15th sequences Subject A Method III
True 4, 4, 6, 7.2, 10, 4, 1, 7.7, 5.6, 15, 8, 4, 1, 7.4, 7.2, 16, 4 Linear 5th sequences
True 1.1, 2, 1.9, 2, 3.1, 2.1, 1.1, 1.7, 1.6, 1, 1.6, 1.9, 2.6, 1.8, 1.1, 

2, 1.7
Linear 15th sequences Subject B

True 1, 3.1, 1.7, 2, 7.2, 3, 2.2, 2, 1, 5.4, 2.3, 2, 1, 3.1, 1, 1, 4 Linear 5th sequences
True (7) for all 17 models Linear 15th sequences Subject A Method IV
True 4, 4, 6, 7.2, 10, 4, 1, 7.7, 5.6, 15, 8, 4, 1, 7.4, 7.2, 16, 4 Linear 5th sequences
True 1.1, 2, 1.9, 2, 3.1, 2.1, 1.1, 1.7, 1.6, 1, 1.6, 1.9, 2.6, 1.8, 1.1, 

2, 1.7
Linear 15th sequences Subject B

True 4, 4, 6, 7.2, 10, 4, 1, 7.7, 5.6, 15, 8, 4, 1, 7.4, 7.2, 16, 4 Linear 5th sequences

Fig. 8  LREG classifiers

Table 2  Number of iterations 
and estimated parameters of 
Bayesian classifier

Subject A Subject B

15th sequences 5th sequences 15th sequences 5th sequences

No. of iterations 16 35 10 15
AlphaFinal Iteration 0.244547 0.386812 0.027999 0.053704
BetaFinal Iteration 0.167973 0.160048 0.184965 0.180069
Log evidence − 36,058.316913 − 12,188.393533 − 35,198.809550 − 11,953.269824
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Figure 9a and b shows that the highest performances 
obtained when applying the proposed classifiers during the 
15th sequence for subjects ‘A’ and ‘B’.

Table  7 presents the performance results achieved 
by the test sets for subjects ‘A’ and ‘B’ during 15th and 
5th sequences. LDA II method outperformed LDA I, as 
it achieved 95.5% and 61% for 15th and 5th sequences, 
respectively. SVM IV method outperformed the other sup-
port vector machine methods; SVM I, SVM II, and SVM III 
as it achieved 98% and 54.5% for 15th and 5th sequences, 
respectively.

By comparing the performance results of the mentioned 
classifiers, it is obvious that SVM IV and BLDA methods 
give the highest results for 15th sequence, as they achieved 
98%. While the LREG and BLDA methods gave the highest 
results for 5th sequence as they achieved 66.5% and 66%, 
respectively. Therefore, the BLDA method yields the high-
est performance for both sequences and outperformed all 
the classifiers.

As previously discussed, to predict a target character, it 
is important to determine the row and column this character 

belongs to. Thus, it is difficult to determine the four possi-
ble observations, where positive means target and negative 
means non-target:

• True positives (TP): observation is positive and is pre-
dicted to be positive.

• True negatives (TN): observation is negative and is pre-
dicted to be negative.

• False positives (FP): observation is negative but is pre-
dicted positive.

• False negatives (FN): observation is positive but is pre-
dicted negative.

Hence, it is impossible to compute more evaluation meas-
urements: accuracy, sensitivity, specificity, and precision. 
Instead of predicting a specific character, its corresponding 
row and column were distinguished.

The actual and predicted testing data were averaged over 
the 15 sequences, resulting in an averaged data of 1200 
observations (12 R/C × 100 character) for each.

Table 3  Subject A—performances of the presented classifiers

Classifiers Subject A

High cut-off 
frequency

Accuracy

15th sequences 
(%)

5th 
sequences 
(%)

LDA I 30 Hz 83 35
LDA II 94 49
SVM I 40 Hz 81 32
SVM II 88 45
SVM III 30 Hz 94 39
SVM IV 99 49
LREG 20 Hz 95 55
BLDA 40 Hz 98 55

Table 4  Subject A—timing of 
the presented classifiers

Classifiers Subject A

15th Sequences 5th Sequences

Training
Time (s)/character

Testing
Time (s)/character

Training
Time (s)/character

Testing
Time (s)/character

LDA I 10.783565 11.670506 10.519284 10.630982
LDA II
SVM I 10.825558 12.550250 10.692489 11.755377
SVM II
SVM III 10.785005 13.293617 10.476025 11.239532
SVM IV
LREG 10.78356 11.147101 10.519284 10.862071
BLDA 10.783565 11.081267 11.689230

Table 5  Subject B—performances of the presented classifiers

Classifiers Subject B

High cut-off frequency Accuracy

15th 
sequences 
(%)

5th 
sequences 
(%)

LDA I 10 Hz 96 61
LDA II 97 73
SVM I 85 47
SVM II 92 58
SVM III 96 56
SVM IV 97 60
LREG 96 78
BLDA 98 77
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The confusion matrices for the eight presented classifi-
ers are shown in Tables 8 and 9 for both subjects A and B, 
respectively.

Tables  10 and 11 show the performance measure-
ments for the eight classifiers applied on subjects A and B, 
respectively.

Receiver operating characteristic (ROC) curve is a major 
visualization technique for presenting the performance of a 
classification model. It summarizes the trade-off between the 
true positive rate (TPR) and false positive rate (FPR) for a 

predictive model using different probability thresholds. ROC 
curves of the eight presented classifiers for both subjects A 
and B are clearly shown in Fig. 10.

It is clearly obvious from Tables 10 and 11 that all the 
performance measurements yield high results for all sug-
gested classifiers. By analyzing the ROC curves of both 
subjects shown in Fig. 10, it is found that the areas under 
the ROC curves (AUC) indicate high performances (more 
than 0.934) of the presented classifiers. This means that the 
suggested classifiers are promising models.

Table 6  Subject B-timing of the 
presented classifiers

Subject B

Classifiers 15th Sequences 5th Sequences

Training
Time (s)/character

Testing
Time (s)/character

Training
Time (s)/character

Testing
Time (s)/character

LDA I 25.333588 28.000378 23.525394 28.588103
LDA II
SVM I 25.333588 26.024595 26.705974 28.541719
SVM II
SVM III 24.656749 24.319893 24.768453 25.346064
SVM IV
LREG 25.333588 28.981693 23.525394 25.414990
BLDA 25.333588 28.121856 24.377657

Fig. 9  Performances of the 
presented classifiers
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Table 7  Performances of the 
presented classifiers

Classifiers 15th sequences Average (%) 5th sequences Average (%)

Subject A (%) Subject B (%) Subject A (%) Subject B (%)

LDA I 83 96 89.5 35 61 48
LDA II 94 97 95.5 49 73 61
SVM I 81 85 83 32 47 39.5
SVM II 88 92 90 45 58 51.5
SVM III 94 96 95 39 56 47.5
SVM IV 99 97 98 49 60 54.5
LREG 95 96 95.5 55 78 66.5
BLDA 98 98 98 55 77 66
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5  Comparative study

Different classification techniques were investigated for the 
same dataset to achieve high performances. This is obvious 
in Table 12.

By comparing some researchers’ classification perfor-
mances, it is clearly shown that the suggested BLDA and SVM 
IV methods gives better performances after 15th sequences 
than other researchers’ methods.

Table 8  Confusion matrices for all classifiers concerning subject A

Actual value

Positive (target) Negative (non-target)

LDA I
 Predicted value
  Positive (target) TP = 181 FP = 19
  Negative (non-target) FN = 19 TN = 981

LDA II
 Predicted value
  Positive (target) TP = 193 FP = 7
  Negative (non-target) FN = 7 TN = 993

SVM I
 Predicted value
  Positive (target) TP = 178 FP = 22
  Negative (non-target) FN = 22 TN = 978

SVM II
 Predicted value
  Positive (target) TP = 187 FP = 13
  Negative (non-target) FN = 13 TN = 987

SVM III
 Predicted value
  Positive (target) TP = 194 FP = 6
  Negative (non-target) FN = 6 TN = 994

SVM IV
 Predicted value
  Positive (target) TP = 199 FP = 1
  Negative (non-target) FN = 1 TN = 999

LREG
 Predicted value
  Positive (target) TP = 195 FP = 5
  Negative (non-target) FN = 5 TN = 995

BLDA
 Predicted value
  Positive (target) TP = 198 FP = 2
  Negative (non-target) FN = 2 TN = 998

Table 9  Confusion matrices for all classifiers concerning subject B

Actual value

Positive (target) Negative (non-target)

LDA I
 Predicted value
  Positive (target) TP = 195 FP = 5
  Negative (non-target) FN = 5 TN = 995

LDA II
 Predicted value
  Positive (target) TP = 197 FP = 3
  Negative (non-target) FN = 3 TN = 997

SVM I
 Predicted value
  Positive (target) TP = 184 FP = 16
  Negative (non-target) FN = 16 TN = 984

SVM II
 Predicted value
  Positive (target) TP = 190 FP = 10
  Negative (non-target) FN = 10 TN = 990

SVM III
 Predicted value
  Positive (target) TP = 196 FP = 4
  Negative (non-target) FN = 4 TN = 996

SVM IV
 Predicted value
  Positive (target) TP = 197 FP = 3
  Negative (non-target) FN = 3 TN = 997

LREG
 Predicted value
  Positive (target) TP = 195 FP = 5
  Negative (non-target) FN = 5 TN = 995

BLDA
 Predicted value
  Positive (target) TP = 198 FP = 2
  Negative (non-target) FN = 2 TN = 998

Table 10  Performance measurements for all classifiers concerning 
subject A

Classifiers Subject A

Accuracy 
(%)

Precision 
(%)

Sensitivity 
(%)

Specificity 
(%)

LDA I 96.834 90.5 90.5 90.5
LDA II 98.834 96.5 96.5 96.5
SVM I 96.334 89 89 89
SVM II 97.834 93.5 93.5 93.5
SVM III 99 97 97 97
SVM IV 99.834 99.5 99.5 99.5
LREG 99.167 97.5 97.5 97.5
BLDA 99.667 99 99 99
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6  Conclusion

A complete BCI system was presented. For subjects ’A’ and 
’B’ of competition III, the training and test sets were fil-
tered by an eighth-order bandpass filter with different cut-off 
frequencies (0.1–10), (0.1–20), (0.1–30), and (0.1–40). The 
two sets were decimated according to the filter high cut-off 
frequency. The feature vector of both sets was reconstructed 
and normalized.

Concerning the classification process, the performance 
obtained when applying all classifiers to the test sets during 
the 15th sequence is better than the 5th sequence. It was 
observed that the time taken to train or classifying a test 
character is about 2 s. Eight classification procedures were 
presented. By comparing the performances of the mentioned 
classifiers, it was observed that LDA II method performs 
better than LDA I. SVM IV method yields better results 
than the other proposed methods. Finally, BLDA achieved 
the highest results during the 15th sequence and the 5th 
sequence.

In the future, several classification algorithms could 
be tried to achieve higher accuracy with fewer number of 
sequences, taking into consideration decreasing the number 
of used electrodes and thus decreasing the taken time.

Table 11  Performance measurements for all classifiers concerning 
subject B

Classifiers Subject B

Accuracy 
(%)

Precision 
(%)

Sensitivity 
(%)

Specificity 
(%)

LDA I 99.167 97.5 97.5 97.5
LDA II 99.5 98.5 98.5 98.5
SVM I 97.334 92 92 92
SVM II 98.334 95 95 95
SVM III 99.334 98 98 98
SVM IV 99.5 98.5 98.5 98.5
LREG 99.167 97.5 97.5 97.5
BLDA 99.667 99 99 99

Fig. 10  ROC Curves of the presented classifiers. a Subject A. b Subject B
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