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Abstract
Drug–drug interaction (DDI) prediction prepares substantial information for drug discovery. As the exact prediction of DDIs 
can reduce human health risk, the development of an accurate method to solve this problem is quite significant. Despite 
numerous studies in the field, a considerable number of DDIs are not yet identified. In the current study, we used Integrated 
Similarity-constrained matrix factorization (ISCMF) to predict DDIs. Eight similarities were calculated based on the drug 
substructure, targets, side effects, off-label side effects, pathways, transporters, enzymes, and indication data as well as Gauss-
ian interaction profile for the drug pairs. Subsequently, a non-linear similarity fusion method was used to integrate multiple 
similarities and make them more informative. Finally, we employed ISCMF, which projects drugs in the interaction space 
into a low-rank space to obtain new insights into DDIs. However, all parts of ISCMF have been proposed in previous studies, 
but our novelty is applying them in DDI prediction context and combining them. We compared ISCMF with several state-of-
the-art methods. The results show that It achieved more appropriate results in five-fold cross-validation. It improves AUPR, 
and F-measure to 10% and 18%, respectively. For further validation, we performed case studies on numerous interactions 
predicted by ISCMF with high probability, most of which were validated by reliable databases. Our results provide support 
for the notion that ISCMF might be used unequivocally as a powerful method for predicting the unknown DDIs. The data 
and implementation of ISCMF are available at https​://githu​b.com/nroha​ni/ISCMF​.
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1  Introduction

Predicting drug–drug interactions (DDIs) as one of the 
most vital issues in drug discovery has attracted huge atten-
tion (Magnus et al. 2002; Bjornsson et al. 2003; Percha 

and Altman 2013). Interaction between drugs can cause 
unpredictable side effects that, in some cases are severe and 
harmful for patients (Lazarou et al. 1998; Prueksaritanont 
et al. 2013; Kusuhara 2014). In recent years, a specific trend 
in mathematics has been developed for the prediction of 
DDIs using computations (Magnus et al. 2002; Bjornsson 
et al. 2003; Percha and Altman 2013; Rohani and Eslah-
chi 2019). Assessment of any hypothesis, even on a small 
set of unknown DDIs, requires time-consuming, expensive 
experiments (Hanton 2007), but an accurate machine learn-
ing techniques can be helpful and reduce the costs.

DDI inference is performed based on various types of 
information that are available such as similarity matrices. 
Vilar et al. (2012) have devised a neighbor recommender 
algorithm that exploits the substructure similarity of drugs. 
Afterward, Zhang et al. have proposed an integrative label 
propagation method via a random walk on the labeled 
weighted similarity network Zhang et al. (2015). These 
methods are hampered by exploiting only one or a few types 
of drug information. Each type of drug data might be useful 
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to disclose the patterns of interactions. Accordingly, Zhang 
et al. (2017) have proposed an ensemble method, which uses 
a mixture of basic biological and network-based similarities. 
It applies the neighbor recommender, label propagation, and 
matrix perturbation methods. At last, two ensemble rules for 
integrating methods are adopted to aggregate these models. 
While ensemble methods present excellent performance, 
acquiring higher prediction accuracy is still hugely required.

In the current work, we propose “ISCMF”, an integrated 
similarity-constrained matrix factorization, for DDI predic-
tion. Recently, matrix factorization provides a simple but 
powerful mathematical basis for modeling various systems 
in real-life situations (Koren et al. 2009), and also in bioin-
formatics problems (Stražar et al. 2016; Zhang et al. 2017). 
Matrix factorization can learn latent features from the topo-
logical structure of a graph. These latent features have been 
shown to result in better performance, especially when we 
combine these latent features with explicit features for nodes 
or edges (Menon and Elkan 2011). Our study was inspired by 
a similarity constrained matrix factorization for drug-disease 
interaction prediction proposed by Zhang et al. (2018). This 
model combines three types of data, including latent features, 
explicit features for drugs, and DDI data. These three types of 
data provide a valuable source of inference. Furthermore, for 
the explicit features of drugs, we use various explicit features 
for drugs and compute various drug–drug similarities to have 
a more informative perspective. ISCMF uses several types of 
drug similarities and integrates them by Similarity network 
fusion (SNF) method Wang et al. (2014). ISCMF finds latent 
features based on integrated similarity and known DDIs.

The evaluations done by cross-validation and case-stud-
ies fully demonstrate the ISCMF efficiency in biomedical 
researches. Our findings suggest that integrating different 
features can provide a more comprehensive view to predict 
unknown DDIs, and hence, more satisfactory results will 
be achieved.

2 � Materials and method

2.1 � Databases

Various databases exist which supply some information 
about drugs such as:

–	 TWOSIDES (Tatonetti et al. 2012): contains DDIs from 
unsafe co-prescriptions.

–	 KEGG (Kanehisa et al. 2009): provides the protein path-
ways of the drug targets.

–	 SIDER (Kuhn et al. 2010): includes information about 
side effects, adverse drug reactions and the indication of 
drugs.

–	 OFFSIDES (Tatonetti et al. 2012): contains the side 
effect information about the drugs which are not still 
accepted (off-label side effects).

–	 PubChem (Wang et al. 2009; Li et al. 2010): provides 
chemical information about drug structures.

–	 DrugBank (Wishart et al. 2006; Knox et al. 2010; Law et al. 
2013; Wishart et al. 2007): includes comprehensive informa-
tion about drug enzymes, drug transporters, and drug targets.

To evaluate the robustness of ISCMF, we adopted the bench-
mark of Zhang et al. (2017), which includes 584 drugs and 
48,584 DDIs (about 0.14 % of pairs). Thus, a large ratio 
of drug pairs is unlabeled. Besides DDI data, eight types 
of drug similarities were obtained from benchmark are 
calculated based on different drug features, including drug 
substructure, targets, side effects, off-label side effects, path-
ways, transporters, enzymes, and indication data from men-
tioned databases. More information about drug features and 
similarities is available in Supplementary File 1.

2.1.1 � Gaussian interaction profile

In addition to eight similarities based on various drug data 
types, Gaussian interaction profile (GIP) of drug pairs was 
also regarded as an additional similarity, defined by van 
Laarhoven et al. (2011). Let Dn×n = [dij] be the interaction 
matrix of drugs based on known DDIs; that dij = 1 indi-
cates interaction between drugs i and j, while dij = 0 denotes 
unknown interaction. GIP, for drugs i and j is :

where di is the ith row of D and �d controls the bandwidth. 
We set

To make GIP values independent of the size of the data-
set, we normalized them via dividing to the average number 
of interactions per drug. Here, we set 𝛾d = 1 according to 
Olayan et al. (2017).

2.2 � Method overview

1.	 Calculating drug similarities and GIP for each drug pair.
2.	 Selecting the most informative and less redundant subset 

of similarities.
3.	 Integrating the selected similarities and obtaining an 

integrated similarity that represents all information in 
one matrix.

(1)GIPd(I, j) = exp(−�d(di − dj)
2),

(2)𝛾d = 𝛾d∕

(
1

n

n∑

i=1

|di|2
)
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4.	 Applying matrix factorization on DDI matrix and esti-
mating the latent matrices constrained by integrated 
similarities

5.	 Predicting DDI probabilities by multiplying the latent 
matrices

These steps are depicted in Fig. 1.

2.3 � Similarity selection

In ISCMF, eight similarity matrices for drugs based on 
various data types, as well as GIP similarity matrix is 
considered. Hence, integrating these similarities and con-
structing a single integrated similarity matrix is substan-
tial. Because these various types of similarities contain 
different types of data, noise, and random data, as well as 
some overlap and redundancy between different similar-
ity matrices, before integrating the matrices, a similarity 
selection step must be done. Due to the mentioned reasons, 
an appropriate selection procedure must be done before 
integration.

Olayan et al. (2017) introduced an efficient heuristic 
similarity selection method that selects the most informa-
tive and less redundant subset of similarity matrices. In 
ISCMF, we utilize this approach which contains the fol-
lowing steps: 

1.	 Calculating entropy of each matrix.
2.	 Calculating the pairwise distance measure between 

matrices.
3.	 Final selection based on low entropy and redundancy.

2.3.1 � Calculating entropy

The carried information by each matrix can be measured 
by entropy. The entropy of each matrix is defined as the 
average entropy of its rows. Assuming M = [mij] is a simi-
larity matrix, Ei(M) is the entropy of ith row of the matrix 
which is computed as follows:

where

Then, the similarity matrices with entropy greater than c1 
are eliminated. We have tested numerous values for c1 in 
(0, 1) and the performance of model suggests that c1 = 0.6 is 
more suitable. After applying this step, all similarity matri-
ces were selected except the substructure-based similarity, 
because its entropy is higher than 0.6.

2.3.2 � Calculating the pairwise distance

To remove redundancy, we need to compute the similarity 
of two matrices M and K which is calculated by

where D(M, N) is the Euclidean distance between M and K 
matrices. Let mij and kij be the entries of M and K matrices, 
respectively. Accordingly, D(M, K) is measured by:

(3)Ei(M) = −
∑

j

pij log pij,

(4)pij =
mij∑
j mij

.

(5)Sim(M,K) =
1

1 + D(M,K)
,

Fig. 1   The scheme of ISCMF 
work-flow. a: Selecting the 
k best subset of m similarity 
matrices and applying SNF, 
a fusion method, to integrate 
all selected similarities in one 
matrix. b: Matrix factoriza-
tion is applied to decompose 
the known DDI matrix into the 
latent matrices constrained to 
integrated similarities. c: New 
interaction probabilities are 
obtained by multiplying latent 
matrices
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2.3.3 � Final selection

Suppose there exist n similarity matrices M1, M2, ⋯ , Mn . 
First, matrices are sorted ascending based on their entropies. 
Subsequently, the selected subset of the matrices is obtained 
by an iterative procedure that selects the first matrix in the 
sorted list in each iteration and eliminating all other matri-
ces that their similarity with the selected matrix is higher 
that c2 , before moving to the next iteration. This procedure 
iterates until the sorted list becomes empty. The value of 
threshold c2 is considered in (0, 1) and the performance of 
model has been evaluated. The best results were obtained 
when c2 = 0.6.

Ultimately, a subset of similarity matrices with high 
information and low redundancy can be obtained by this 
procedure. After applying this step, all the remained similar-
ity matrices were selected.

2.4 � Similarity fusion

Wang et al. (2014) proposed the similarity network fusion 
method to integrate multiple matrices, using an iterative 
non-linear network-based approach and KNN.

After selecting a reasonable subset of similarity matrices, 
SNF method is applied to integrate the selected matrices into 
a single fused similarity that carries an appropriate represen-
tation of all information.

2.5 � ISCMF

Zhang et al. (2018) have proposed a similarity constrained 
matrix factorization method. We make use of this method 
on the integrated similarity of drugs that calculated by SNF. 
Let Dn×n = [dij] be the interaction matrix of drugs based on 
known DDIs; which dij = 1 the known interaction between 
drugs i and j and dij = 0 denotes unknown interaction; there-
fore, we use matrix factorization method and decompose 
matrix Dn×n into matrices An×l and Bl×n . This can be viewed 
as mapping data from a high dimensional space to a lower 
space. Recent studies indicate that mapping data to a lower 
space with suitable constraints can maintain their topologi-
cal data and yield better features. Here, we aim to map D 
into latent space by decomposing it into A and B, such that 
their elements are not very large and their multiplication is 
almost equal to the original matrix. In other words, we can 
formulate our loss function as:

(6)D(M,N) =

√∑

i

∑

j

(
mij − kij

)2

where ||.||F is the Frobenius norm, � ≥ 0 is the regulariza-
tion coefficient, ai is the ith row of A and bj is the jth column 
of B. Therewith, the goal is to find A and B such that the 
loss function is minimized. It should be noted that ||A||2

F
 

and ||B||2
F
 terms are added as the regularization terms to the 

loss function that prevents A and B elements from growing 
exceptionally. In this way, it controls model variance and 
avoids over-fitting. Thus, one can project the drug space 
into a latent space that is expected to provide insights into 
DDIs. Hence, it is required that the similarity of drugs in 
the latent space to be the representative of their similarities 
in the original space. Formally, the aim is to minimize two 
subsequent following similarity losses:

where sij is the integrated similarity of drugs. Particularly, 
LA and LB impose sij penalty; so that the values of ai , aj must 
be selected close to each other for the drug pairs with high 
similarity. Similarly, the values of bi and bj should have low 
difference for similar drugs. These constraints guarantee the 
mapping conserve the topological distance between samples. 
Taking all these costs into consideration, the overall loss 
function is

where � ≥ 0 is the similarity coefficient. In this way, we 
can map D into A and B with lower dimensions. After train-
ing the model, each row of A and each column of B can be 
considered as features of drugs in new latent space. These 
features are extracted from a combination of known drug 
interactions and similarities. Thus, they can get us better 
insights about unknown DDIs.

2.6 � Training the model

Newton’s method can be adopted for optimizing the latent 
matrices A and B. The Newton’s method is an iterative opti-
mization method that updates the parameter estimation in 
each turn until the convergence. It first initializes the param-
eters randomly and then obeys the following updating rules 
to optimize the parameter estimation.

(7)
LA,B =

1

2
||D − AB||2

F
+

�

2
(||A||2

F
+ ||B||2

F
)

=
1

2
Σij(dij − aibj)

2 +
�

2
(Σi||ai||22 + Σj||b − j||2

2
),

(8)LA =
1

2
Σijsij||ai − aj||22, LB =

1

2
Σijsij||bi − bj||22,

(9)
L =

1

2
Σij(dij − aibj)

2 +
�

2

(
Σi||ai||22 + Σj||b − j||2

2

)

+
�

2

(
Σijsij||ai − aj||22 + Σijsij||bi − bj||22

)
,

(10)ai ← ai − ∇ai
L(∇2

ai
L)−1
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To manipulate Newton’s method, the first and second deriva-
tives of loss function must be computed. The first derivatives 
of loss function in formula 9 with respect to ai and bi are

In addition, the second derivatives of loss function with 
respect to ai and bi are

Substituting Eqs. 12, 13, 14, 15 into Eqs. 10, 11, the updat-
ing rules of Newton’s method can be rewritten as follows.

Notably, the second derivatives are positive definite; thus, 
the convergence of Newton’s method is guaranteed because 
the loss function will be decreased after each iteration.

When the learning phase accomplished, the estimated 
matrices A and B can be used to predict DDIs according 
to the following equation.

It is evident that the elements of Dnew is the probability of 
interaction of drug pairs. It should be noted that the mul-
tiplication of A and B do not yield the original matrix D, 
since the loss function has multiple regularization and simi-
larity constraint terms. Thus, it can be conceived that the 
new interactions are somehow the combination of known 
interactions and similarity matrices.

(11)bj ← bj − ∇bj
L(∇2

bj
L)−1

(12)
∇ai

L = Σj(aibj − dij)bj + �ai

+ �{Σjsij(ai − aj) − Σjsji(aj − ai)}

(13)
∇bj

L = Σi(bja
T
i
− dij)bj + �bj

+ �{Σisji(bj − bi) − Σisij(bi − bj)}

(14)
∇2

ai
L =Σjbjbj + �I + �{Σjsij − Σjsji}

=BTB + �I + �{Σjsij − Σjsji}

(15)
∇2

bj
L =Σia

T
j
aj + �I + �{Σisji − Σisij}

=ATA + �I + �{Σjsji − Σisij}

(16)
ai ← {Σjdijbj + �Σj(sij + sji)aj}{B

TB + �I

+ �{Σjsij − Σjsji}I}
−1

(17)
bj ← {Σidijai + �Σi(sji + sij)bi}{A

TA + �I

+ �{Σisji − Σisij}I}
−1

(18)Dnew = AB

3 � Results

In this study, we classified drug pairs into two classes, 
namely interacting and non-interacting pairs. Therefore, we 
exploited commonly used metrics in classification, including 
precision, recall, F-measure, AUPR, and AUC. Precision 
and recall have a trade-off; thus, increasing one may lead to 
a reduction in the other. Therefore, utilizing F-measure, the 
geometric mean of them is more reasonable.

Since the values of precision, recall, and F-measure are 
dependent on the value of the threshold, we also evaluated 
methods via AUC, which is the area under ROC curve, and 
AUPR, which is the area under the precision-recall curve. 
These criteria are independent of the threshold value. In 
cases that the negative and positive samples are imbalanced, 
AUPR is the fairer criterion for evaluation.

We considered all combinations of � ∈ {1, 2,… , 9} , 
� ∈ {1, 2,… , 9} , k ∈ {0.2, 0.3, … , 0.8} and k ∈ {20%, 30%,

40%, 50%, 60%, 70%, 80% of original dimension} and eval-
uated them by fivefold-cross-validation. The best results 
were obtained when � = 1, � = 1 , and k = 60% . The follow-
ing assessments of method performances were conducted by 
20 runs of five-fold cross-validation on known DDI to ensure 
low-variance and unbiased evaluations.

3.1 � Performance of ISCMF on different similarity 
types

ISCMF utilizes an integrated similarity matrix, while the 
similarity matrix of the learning phase can be substituted 
by any similarity matrices. Consequently, the beneficial role 
of similarity selection and integration procedures in ISCMF 
performance can be evaluated by using various types of data 
in ISCMF.

As shown in Table 1, using integrated data yielded greater 
AUPR and F-measure, indicating that the similarity selection 
and fusion make a great impact on improving performance.

3.2 � Comparison with the state‑of‑the‑art methods

To date, numerous computational methods have been pro-
posed for unknown DDI prediction, such as neighbor recom-
mender, label propagation, matrix perturbation, etc. Table 2 
represents the evaluated criteria of these methods. One can 
realize the ISCMF’s superiority due to its high AUPR and 
F-measure that are almost unbiased criteria. Noteworthy, 
the higher AUC and accuracy of other methods stem from 
high true negatives. Moreover, a huge number of samples 
are negative. Therefore, a simple method yielding negative 
output in all cases can obtain high accuracy and AUC. Thus, 
AUC and accuracy are not fair metrics, and their high values 
are not statistically significant. However, ISCMF can obtain 
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satisfactory AUC and accuracy. Furthermore, it is usually 
difficult to obtain high values of precision and recall simul-
taneously. It is highly surprising that ISCMF can do that. In 
line with this, our results provide support for the efficiency 
and performance of ISCMF.

The drugs can induce or inhibit cytochrome P450 
enzymes, which may lead to the interaction of drugs with 
adverse reactions and dangerous issues such as failure in 
medication CYP2C9 and CYP2D6 (2007). To investigate 
the role of CYP P450 enzymes in drug–drug interaction, we 
analyzed the performance of ISCMF on another benchmark 
containing both CYP (the Cytochrome P450 involved DDIs) 
and NCYP (the DDIs without involving cytochrome P450) 
interactions Gottlieb et al. (2012). A report of ISCMF results 

for each of these interactions is presented in Supplementary 
File 2.

3.3 � Effect of using integration on the performance 
of methods

To demonstrate the importance of integration procedure in 
improving methods, we executed the methods mentioned 
above once with each similarity matrices and once with 
the integrated matrix. Figure 2 depicts the obtained AUPR 
values. Accordingly, AUPR of label propagation method 
significantly improves when utilizing integrated similari-
ties. Furthermore, the integrated similarity-based enhance 
AUPR of neighbor recommender method in comparison to 

Table 2   Comparison with the state-of-the-art methods

The best value of each criterion is shown in bold

Method Similarity type AUPR AUC​ F-measure Recall Precision Accuracy

ISCMF Integrated 0.864 0.899 0.885  0.851 0.988 0.851
Classifier ensemble method All 0.807 0.957 0.836 0.670 0.785 0.955
Weighted average ensemble method All 0.795 0.951 0.712 0.659 0.775 0.953
Neighbor recommender Substructures 0.795 0.936 0.683 0.617 0.765 0.95

Targets 0.365 0.820 0.418 0.548 0.338 0.867
Transporters 0.329 0.714 0.331 0.664 0.691 0.944
Enzymes 0.377 0.756 0.399 0.346 0.471 0.909
Pathways 0.571 0.812 0.550 0.474 0.657 0.932
Indications 0.599 0.912 0.572 0.591 0.555 0.923
Side effects 0.754 0.936 0.678 0.618 0.750 0.949
Off-side effects 0.768 0.940 0.691 0.629 0.765 0.951

Label propagation Substructures 0.758 0.936 0.681 0.616 0.763 0.950
Targets 0.559 0.825 0.544 0.501 0.596 0.927
Transporters 0.363 0.713 0.329 0.381 0.297 0.864
Enzymes 0.470 0.760 0.451 0.344 0.657 0.927
Pathways 0.594 0.811 0.527 0.479 0.709 0.937
Indications 0.777 0.941 0.699 0.641 0.768 0.952
Side effects 0.760 0.936 0.685 0.621 0.764 0.950
Off-side effects 0.763 0.937 0.688 0.627 0.761 0.950

Matrix perturbation 1 0.782 0.948 0.707 0.666 0.755 0.952

Table 1   Performance of ISCMF 
on different similarity types

The best value of each criterion is shown in bold

Method Similarity type AUPR AUC​ F-measure Recall Precision Accuracy

ISCMF Integrated 0.864 0.899 0.885 0.851 0.988 0.851
ISCMF Substructures 0.795 0.958 0.723 0.681 0.772 0.954

Targets 0.776 0.955 0.709 0.683 0.738 0.709
Transporters 0.739 0.945 0.677 0.664 0.944 0.677
Enzymes 0.754 0.948 0.688 0.666 0.947 0.688
Pathways 0.768 0.951 0.697 0.670 0.949 0.697
Indications 0.795 0.960 0.727 0.687 0.955 0.727
Side effects 0.796 0.958 0.724 0.680 0.954 0.724
Off-side effects 0.795 0.958 0.724 0.680 0.954 0.724
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five models. On the other hand, the performance of neighbor 
recommender does not improve compared to the substruc-
ture, side effect, and off-side effect models. This may be due 
to the fact that neighbor recommender applies a simple lin-
ear method, and when using an integrated similarity matrix, 
the nonlinearity of feature may not be helpful.

3.4 � Case studies

To further investigate ISCMF efficiency, we inquired into 
our top false positives (FPs) with the highest interaction 
probabilities into DrugBank and other reliable sources and 
literature. DrugBank is one of the most authentic databases 
for drug interactions. As both a bioinformatics and a chem-
informatics resource, DrugBank collects different types of 
information about drugs. Because of its broad scope and 
comprehensive referencing, DrugBank is more akin to a 
drug encyclopedia than a drug database (Knox et al. 2010). 
Amazingly, inspecting the top 50 FPs in DrugBank con-
firmed the efficiency of ISCMF. There are great pieces of 

evidence to confirm the newly predicted DDIs, some of 
which are listed in Supplementary File 3. The top ten pre-
dicted DDIs are presented in Table 3, from which seven 
interactions now exist in the DrugBank database, but they 
were labeled zero in our training samples.

4 � Conclusion

In the current study, we proposed ISCMF, Integrated Simi-
larity-Constrained Matrix Factorization, the method to pre-
dict unknown DDIs. To validate the robustness of ISCMF, 
we compared it to several state-of-the-art methods with five-
fold cross-validation. Our results suggest the superiority of 
ISCMF over previous methods. The better performance is 
due to several reasons. First, ISCMF considers an integrated 
similarity matrix which carries more informative features. 
Second, it makes use of the matrix factorization method, 
which is very applicable to bioinformatics problems. Moreo-
ver, the appropriate regularization and similarity constraints 
assist in providing great insights into DDIs. Case studies 
provided more pieces of evidence to validate our model. 
Interestingly, a great number of predicted DDIs were vali-
dated by DrugBank database. Many more false positives 
are expected to be verified by reliable resources in the near 
future. Consequently, the proposed method is promising for 
DDI prediction and biomedical researches.

We aim to do some works in the future. First, we intend to 
take advantage of network-based similarities together with 
biological similarities. It may change the results signifi-
cantly. Furthermore, we want to investigate the rule of using 
various similarity integration approaches to the performance 
of DDI prediction methods.

Acknowledgements  All authors thank Fatemeh Ahmadi Moughari for 
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Fig. 2   Comparison between 
the AUPR values of methods 
in case of using a single type of 
similarity and using integrated 
similarity

Table 3   Top ten predicted interactions (confirmed interactions by 
DrugBank database is shown in bold)

Rank ID1 ID2 Drug name 1 Drug name 2

1 DB00882 DB00335 Clomifene Atenolol
2 DB00850 DB00401 Perphenazine Nisoldipine
3 DB00526 DB01167 Oxaliplatin Itraconazole
4 DB00136 DB00656 Calcitriol Trazodone
5 DB00489 DB00603 Sotalol Medroxypro-

gesterone 
acetate

6 DB00802 DB01039 Alfentanil Fenofibrate
7 DB00489 DB00225 Sotalol Gadodiamide
8 DB00514 DB01117 Dextromethorphan Atovaquone
9 DB00818 DB01083 Propofol Orlistat
10 DB00698 DB00983 Nitrofurantoin Formoterol
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