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Abstract
The anti-melanoma activity  (pGI50) values of 71 compounds from the National Cancer Institute (NCI) data bank on LOX 
IMVI cell line were modeled to illustrate the Quantitative structure–activity relationship (QSAR) of the compounds. The 
genetic function algorithm (GFA) has been used to select the most relevant descriptors so as to improve the performance of 
the QSAR model. The statistical significance of the model was verified based on the values of validation parameters such as 
R2
train

 (0.867), R2
adj

 (0.848), Q2
cv

 (0.809) and R2
test

 (0.749) needed to evaluate the robustness and strength of the model. The 
result of the internal and external validation of the model indicates that the model is good and could be used to predict  pGI50 
of anti-melanoma compounds on LOX IMVI cell line for which no experimental data are available. Compound 41 was 
selected using in-silico screening method as a template due to its good  pGI50 (9.793) and was utilized to design new potent 
compounds, thereby enhancing the activity of the parent structure. Ten (10) new potent compounds were deigned and pre-
dicted using the proposed model. The predicted  pGI50 of the majority of the designed analogous were more than the lead 
compound 41 used for the design and among which compound N5 showed the best activity  (pGI50=13.186). Thus, this study 
provides a valuable approach and new direction to novel drug discovery.
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1 Introduction

Melanoma is one of the tumors developed from melanocytes 
and among the most deadly cancers among young adults 
(Lee et al. 2015). It has a high capability of invasion and 
quick metastasis to other organs which are caused by abnor-
malities in the cells; this may be as a result of genes (inher-
ited) or due to exposure of the body to radiation, chemicals, 
or even infectious agents (Liotta et al. 1991; Mignatti and 
Rifkin 1993). Patients with sophisticated melanoma have a 
median survival time of less than 1 year, and the guessed 
five-year survival rate is less than fifteen percent (15%) 
(Anderson et al. 1995; Barth et al. 1995). With the rapid 
increase of melanoma in the United States (US) and other 

developed countries, there is an urgent need to identify more 
effective drugs (Gray-Schopfer et al. 2007; Lee et al. 2015). 
Several novel drugs were approved by the US Food and 
Drug Administration (FDA) such as benzylideneoxindoles, 
ZM336372, sorafenib, isoquinolones, triarylimidazoles, 
PLX4032, and XL281 for treatment of melanoma (Wu and 
Ambudkar 2014). Unfortunately, treatment with the use of 
such drugs can result in the development of drug resistance 
and the metastases develop again increasing about 6 months 
the life expectancy of the patient (Saini et al. 2013; Zubrilov 
et al. 2015). Therefore, identification and prediction of anti-
melanoma activity of novel drugs are of great importance for 
cancer (Melanoma) research (Roskoski 2012).

Optimal anti-cancer drugs would exterminate cancer cells 
without damaging normal tissues (Al-Suwaidan et al. 2016; 
Choi et al. 2011; Naik and Pardasani 2018). Regrettably, cur-
rently no available drugs meet this condition, and clinical 
use of drugs involves a weighing of benefits against toxic-
ity in a search of favorable therapeutic index (Chabner 1990; 
Makrariya and Pardasani 2019). Thus, these limitations have 
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made it necessary to search for novel anti-cancer drugs with 
diverse chemical structure as potential anti-cancer agents (Al-
Suwaidan et al. 2016). Nevertheless, in the field of medicinal 
chemistry, activity prediction of new compounds is a primary 
goal for the drug design process (Vaidya et al. 2014). The 
chemical and molecular computing models are used in design-
ing new drugs which helped in reducing the time and cost 
involved in designing more potent drugs. Among several com-
putational methods used, quantitative structure–activity rela-
tionship (QSAR) has a remarkable role in designing a drug.

QSAR is an attempt to correlate structural descriptors of 
compounds quantitatively with biological activities. The 
molecular descriptors include parameters that account for 
conformational, constitutional, thermodynamic, steric effects 
and electronic properties of a molecule. Others like fragment 
constant, hydrophobicity, topology, hydrogen bond accep-
tor, and hydrogen bond-donor are also determined recently 
by computational methods (Arthur et al. 2016; Young 2004). 
QSAR models are mathematical equations which relate the 
chemical structure of compounds to their biological activity. 
Therefore, it is necessary to develop a model that could be used 
for the identification of new potent compounds and prediction 
of their anti-cancer activity before the synthesis. This will help 
to reduce the cost and time involved in drug discovery. This 
study was aimed to develop QSAR model based on the com-
pounds collected from NCI data bank which can be used to 
predict the anti-melanoma activity of known and new potent 
compounds on LOX IMVI cell line. Additionally, an in silico 
screening technique is applied to the proposed QSAR model to 
predict the structure of new potent anti-melanoma compounds.

2  Materials and methods

2.1  Software and computer specifications

All the molecular modeling studies were carried out on a Dell 
Intel(R)Core(TM)i7-5500U CPU, 16.00 GB RAM @ 2.400 GHz 
2.400 GHz processor, 64-bit Operating system, a 64× based pro-
cessor on Windows 8.1 Pro. Spartan 14 (Hehre and Huang 1995) 
was employed to perform density functional theory calculations, 
Material studios 8.0 was used to develop the model and Micro-
soft office Excel 2013 was utilized for statistical analysis.

2.2  Data set

In this research, a data set of 71 anti-melanoma com-
pounds and their  pGI50 activities on LOX IMVI human 
melanoma cell line were collected from the drug discovery 
and development section of the National Cancer Institute 
(NCI) (https ://wiki.nci.nih.gov/displ ay/NCIDT Pdata /NCI-
60+Growth+Inhibition+Data). Their NSC number and anti-
melanoma activity results as  pGI50, which is the negative 

log (−LogGI50) of the concentration for 50% of cancer cell 
proliferation, are depicted in Table 2.

2.3  Computation of descriptors

The 2D structure of each of the compounds was converted 
into the 3D structure using Spartan 14. The structures 
were cleaned by minimizing and checking using a molec-
ular mechanic force field (MM+) option on Spartan 14, 
so as to remove all strain from the structure of the mol-
ecule. Additionally, this will guarantee a well-defined and 
stable conformer relationship within the compounds in 
the study (Viswanadhan et al. 1989). Geometry optimi-
zation was set at the ground state utilizing the density 
functional theory (DFT) at the Becke88 three-parameter 
hybrid exchange potentials with Lee–Yang–Parr cor-
relation potential (B3LYP) level of theory and for the 
basis set 6-311G (d) was selected. The fully optimized 
3D structure in SD file was then imported into PaDEL 
descriptor software to compute both thermodynamic, 
topological, autocorrelation constitutional, electronic, 
and geometric descriptors (Amin and Gayen 2016) for 
further studies (Yap 2011).

2.4  Dataset division into modeling and prediction 
sets

The data set was divided into two sets, the modeling and 
prediction set. The modeling set is used in developing the 
model; it contains seventy percent (70%) of the entire data 
set. While the test set which constitutes the remaining thirty 
percent (30%) of the whole data set was not used in the con-
struction of the model but to ascertain the predictive ability 
of the model (Tropsha et al. 2003). This partitioning ensures 
that a similar principle can be employed for the activity pre-
diction of the test set. Kennard–Stone Algorithm was applied 
for dividing dataset into a modeling and test set (Kennard 
and Stone 1969; Rajer-Kanduč et al. 2003).

2.5  Model development

In QSAR studies, the identification and selection of descrip-
tors which provide maximum information in activity variations 
and have minimum co-linearity are important. Therefore, a 
genetic function algorithm (GFA) (Leardi 1996) improves the 
model accuracy in the selection of proper descriptors. Multi-
ple Linear Regression (MLR) was used on the modeling set 
to show the relationship between the dependent variable Y 
 (pGI50) and independent variable X (molecular descriptors). 
In regression analysis, the contingent mean of the dependent 
variable  (pGI50) Y relies on (descriptors) X.

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI
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2.6  QSAR model validation

In the validation of a QSAR model, the stability and predic-
tive ability of the model is one of the key steps in QSAR 
modeling. Various statistical parameters have been utilized 
for the validation of the suitability of the built model for 
the prediction of the anti-cancer activity of the studied 
compounds (Asadollahi et al. 2011) this includes correla-
tion coefficient (R2) which describes the fraction of the total 
variation attributed to the model. The closer the value of R2 
is to 1.0, the better the regression and equation explain the Y 
variable. R2 is the most commonly used internal validation 
indicator and is expressed as in Eq. (1):

where Yexp, Ypred, and Ymtraining are the experimental property, 
the predicted property and the mean experimental activity 
of the compounds in the training set, respectively. The mini-
mum recommended value for this parameter is shown in 
Table 1 (Wu et al. 2015).

Adjusted R2 ( R2
adj

 ): R2 value varies directly with the 
increase in the number of descriptors; thus, R2 cannot be a 
useful measure for the goodness of model fit. Therefore, R2 
is adjusted for the number of explanatory variables in the 
model. The adjusted R2 is defined as in Eq. (2):

where P = number of independent variables in the model and 
N = sample size (Abdulfatai et al. 2017). The minimum rec-
ommended value for this parameter is presented in Table 1.

Cross-validation coefficient parameter ( Q2
CV

 ) is the 
most commonly used internal validation indicator and is 
expressed as in Eq. (3):

(1)R2 = 1 −

∑
�

Yexp − Ypred
�2

∑
�

YYexp − Ymtraining

�2
,

(2)

R2
adj

= 1 −
(

1 − R2
) N − 1

N − P − 1
=

(N − 1)R2 − P

N − P + 1
,

(3)Q2
CV

= 1 −

∑

(Ypred − Yexp)
2

∑

(Yexp − Ymtraining)
2
,

where Yexp is the experimental activity, Ypred is the predicted 
activity, and Ymntraining is the mean of the experimental activ-
ity of the validation set (Tropsha et al. 2003). However, it 
should be noted that a high Q2

CV
 does not necessarily mean 

high predictability of the built model (Asadollahi et al. 
2011). In other words, the high value of Q2

CV
 is a necessary 

condition, but not sufficient for a developed model to have 
high predictability.

To assess the predictive ability and to check the statistical 
significance of the developed model, the proposed model 
was applied to predict the pGI50 values of an external (test) 
set compounds that were not used in building the model. The 
predictive powers of the proposed regression model on the 
training set were evaluated by predicted values of the pre-
diction (test) set. Therefore, validation through an external 
prediction set ( R2

test
 ) is a very important parameter that is 

used to test the external predictive ability of a QSAR model. 
The R2

test
 value is calculated by Eq. (4):

where Yexp is the experimental activity, Ypred is the predicted 
activity, and Ymntraining is the mean of the experimental activ-
ity of the training set (Tropsha et al. 2003).

2.7  Y‑randomization test

To assess the robustness of the built model, the Y-randomi-
zation test was applied to the training set data as suggested 
by Tropsha et al. (2003). The dependent variable vector 
(activity data) was randomly shuffled and a new QSAR 
model was developed using the original independent varia-
ble matrix. For the built QSAR model to be robust and reli-
able, the model is expected to have low R2 and Q2 values for 
several trials. The coefficient of determination cR2

p
 for Y-ran-

domization is another parameter calculated which should be 
greater than 0.5 for passing this test as in Eq. (5):

cR2
p
 is coefficient of determination for Y-randomization, R is 

the coefficient of determination for Y-randomization and Rr 
is average ‘R’ of random models.

3  Results and discussion

On the basis of Kennard–Stones algorithm, 49 compounds 
out of 71 were selected as the modeling (training) set and 
the remaining 22 were selected as the prediction (test) set. 
GFA regression was used on the modeling data set to select 

(4)R2
test

= 1 −

∑

(Ypred − Yexp)
2

∑

(Yexp − Ymntraining)
2
,

(5)cR2
p
= R ×

[

R2 − R2
r

]2

Table 1  Minimum recommended values of validated parameters for 
generally acceptable QSAR

Symbol Name Value

R2 Coefficient of determination ≥ 0.6
Q2

cv
Cross-validation coefficient < 0.5

R2
test

The coefficient of determination for external test set ≥ 0.6
R2 − Q2 Difference between R2 and Q2 ≤ 0.3
Ntest Minimum number of an external test set ≥ 5
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the significant descriptors and it was found that among 
1875 calculated descriptors, the SpMin-Bhv, SpMax4-Bhe, 
SpMin5-Bhi, SpMin3-Bhs, piPC1, and GGI4 build the best 
model and a new GFA-MLR QSAR regression equation was 
developed based on modeling set.

3.1  QSAR model for predicting  pGI50 on LOX IMVI 
cell line

where N is the number of compounds in the training and test 
sets, R2

train
 is the squared correlation coefficient, R2

adjusted
 is 

the adjusted R-squared, Q2
cv

 is the cross-validation coeffi-
cients of the training set and R2

test
 is the squared correlation 

coefficient of the prediction (test) set.

3.2  QSAR model validation

In a further study, the built QSAR model from the mod-
eling data set was used to evaluate its predictive ability by 
predicting the  pGI50 values in the prediction set (test set). 
The results are given in Table 2. The predicted  pGI50 val-
ues for the training and test sets were plotted against the 
experimental  pGI50 as shown in Fig. 1. The predicted  pGI50 
results obtained for both the modeling set and prediction set 
(Table 2) are in good agreement with the experimental  pGI50 
obtained from NCI. The residual values obtained between 
predicted and experimental  pGI50 were very low.

The result of the QSAR model is in conformity with the 
standard shown in Table 1 as seen from the built model. The 
closeness of coefficient of determination (R2) to its abso-
lute value of 1.0 is an indication that the model explained a 
very high percentage of the response variable (descriptor) 
variation, high enough for a robust QSAR model. Its 0.867 
value illustrates that 86.7% of the variation is residing in the 
residual meaning that the model is very good.

The high adjusted R2 ( R2
adj

 ) value as seen in the model and 
its closeness in value to the value of R2 imply that the model 
has excellent explanatory power to the descriptors in it. It 
also demonstrates the real influence of applied descriptors 

pGI50 = 3.938350117
(

SpMin6Bhv
)

− 3.500212746
(

SpMax4Bhe
)

− 2.734990552
(

SpMin5Bhi
)

− 2.424058833
(

SpMin3Bhs
)

+ 7.110589756 (piPC1)

− 0.421160719 (GGI4) − 4.34594

Ntrain = 49, R2
train

= 0.867, R2
adjusted

= 0.848,

Q2
cv

= 0.809, Ntest = 22 and R2
test

= 0.749,

on the  pGI50. Also, the high and closeness of Q2
cv

 to R2
train

 
revealed that the model was not over-fitted. The high R2

test
 as 

seen in the model is an indication that the model is capable 
of providing valid predictions for new compounds.

Additionally, to assess the robustness of the model, the 
Y-randomization test was applied. The dependent variable 
vector (inhibitory activity) was randomly shuffled and a new 
QSAR model was developed using the original independent 
variable matrix. As was expected, the new QSAR models 
(after several repetitions) have low R2 and Q2 values and also, 
the cR2

p
 value was greater than 0.5 as presented in Table 3. This 

test affirms that the proposed model is powerful and not 
inferred by chance.

3.3  Contribution and interpretation of descriptors 
in model

The six-variable QSAR model adequately represents the 
 pGI50 data, based on direct statistics as well as validation 
methods. Each of the variables is a descriptor of an aspect 
of molecular structure and will be discussed to indicate the 
specific structural information encoded. By interpreting the 
descriptors contained in the QSAR model, it is possible to gain 
some insights into factors, which are related to the anti-cancer 
activity. For this reason, an acceptable interpretation of the 
selected descriptors is provided. The brief descriptions of the 
descriptors are shown in Table 4. The relative importance and 
contribution of each descriptor in the model were determined 
by the calculation of the value of the mean effect (MF) (Jalali-
Heravi and Konuze 2002) for each descriptor using Eq. (6) and 
the MF values are presented in Table 4:

where  MFj represents the mean effect for the descriptor j, βj 
is the coefficient of the descriptor j, did is the value of the 
interested descriptors for each molecule and m is the number 
of descriptors in the model.

The MF value shows the relative importance of each 
descriptor compared to the other descriptors. The MF of the 
descriptors SpMin-Bhv, SpMax4-Bhe, SpMin5-Bhi, SpMin3-
Bhs, piPC1 and GGI4 are also shown in Table 4 and indicate 
that among the selected descriptors, the most important 
one is piPC1 (Conventional bond order ID number of order 
1 (ln(1 + x)) as it has the highest mean effect value and has 
the largest effect on the  pGI50 of the compound. On the basis 
of MF values, the associated descriptors are arranged in a 
sequence pertaining to their contribution towards overall  pGI50 
of the compounds, in the following increasing order of  pGI50 
of compounds.

(6)MFj =
�j
∑i=n

i=1
dij

∑m

j
�j
∑n

i
dij

,
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Table 2  NSC numbers, chemical names, experimental and predicted  pGI50 of the dataset with residuals

S/N NSC Name Experimental 
 pGI50

Predicted  pGI50 Residuals

1ta 267,469 Deoxydoxorubicin 7.531 7.147 0.384
2 269,148 MENOGARIL 6.293 7.251 − 0.958
3 268,242 N,N-Dibenzyldaunorubicin hydrochloride 8.000 8.176 − 0.176
4 126,771 Dichloroallyl lawsone 5.572 5.615 − 0.043
5 136,044 RHODOMYCIN A 7.681 6.988 0.693
6 140,377 Arnebin 1 6.583 6.045 0.538
7 196,524 epsilon-Rhodomycinone 5.626 6.620 − 0.994
8 212,509 4beta-Hydroxywithanolide 6.876 6.759 0.117
9t 215,139 Bikaverin 6.272 7.975 − 1.703
10 236,613 Plumbagin 5.742 5.666 0.076
11 252,844 SHIKALKIN 5.915 6.018 − 0.103
12t 257,450 Dermocybin 4.618 5.359 − 0.741
13 143,095 Pyrozofurin 6.298 6.091 0.207
14 629,971 9-Aminocamptothecin (R,S) 8.000 7.497 0.503
15t 606,173 11-Hydroxymethyl-20(RS)-camptothecin Camptothecin,N-diethyl 5.738 7.535 − 1.797
16 364,830 Glycinate 7.934 7.413 0.521
17 94,600 Camptothecin 7.596 6.865 0.731
18t 606,985 Campothecin analog 8.050 7.92795 0.122
19 606,499 Camptothecin butylglycinate ester hydrochloride 7.142 7.613 − 0.471
20 606,497 Camptothecinethylglycinate esterhydrochloride 7.049 7.675 − 0.626
21 176,323 9-Methoxycamptothecin 8.353 7.939 0.414
22t 3088 Chlorambucil 5.113 4.306 0.807
23 338,947 Clomesone 4.379 4.726 − 0.347
24 95,678 Picolinaldehyde 5.276 4.542 0.734
25 264,880 Dihydro-5-azacytidine 5.646 5.493 0.153
26 163,501 Acivicin 5.484 5.525 − 0.041
27t 71,851 alpha-Thiodeoxyguanosine 4.71 5.826 − 1.116
28t 132,483 l-Aspartic acid 7.927 8.041 − 0.114
29 308,847 Amonafide 5.604 5.889 − 0.285
30t 355,644 Anthra[1,9-cd]pyrazol-6(2H)-one der 9.000 7.865 1.135
31t 63,878 Cytosine, monohydrochloride 7.145 5.69 1.455
32 182,986 Diaziquone 5.614 6.405 − 0.791
33t 139,105 Triazinate 7.311 7.597 − 0.286
34 409,962 Carmustine 4.428 4.043 0.385
35 337,766 Bisantrene hydrchloride 8.000 8.633 − 0.633
36 750 Busulfan 3.650 4.076 − 0.426
37t 95,382 Camptothecin, acetate 5.995 8.009 − 2.014
38t 107,124 10-Hydroxycamptothecin 7.603 7.329 0.274
39 79,037 Lomustine 4.848 4.159 0.688
40 132,313 Dianhydrodulcitol 4.670 4.705 − 0.035
41 376,128 AC1L2OAS 9.793 8.987 0.806
42 73,754 Fluorodopan 3.690 3.402 0.288
43 148,958 Uracil 3.185 3.521 − 0.336
44a 1895 Guanazole 2.449 3.203 − 0.754
45 329,680 Hepsulfam 3.793 3.638 0.155
46 142,982 Hycanthone mesylate 5.427 6.638 − 1.211
47a 32,065 Hydroxyurea 3.205 3.032 0.173
48 153,353 Alanosine monosodium salt 6.546 6.008 0.538
49 249,992 Amsacrine 6.809 6.813 − 0.004
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‘t’ represents test sets
a Identified compounds found outside the applicability domain of the QSAR model

Table 2  (continued)

S/N NSC Name Experimental 
 pGI50

Predicted  pGI50 Residuals

50t 740 Methotrexate 7.573 7.826 − 0.253
51ta 95,441 Semustine 4.834 3.809 1.025
52 26,980 Mitomycin C 6.489 6.559 − 0.07
53 353,451 Mitozolomide 4.663 5.887 − 1.224
54ta 268,242 N,N-Dibenzyldaunorubicin hydrochloride 6.312 8.176 − 1.864
55ta 95,466 Urea 4.327 5.561 − 1.234
56 25,154 Pipobroman 4.312 3.759 0.553
57t 56,410 Profiromycin 5.94 6.5751 − 0.635
58t 366,140 Pyrazoloacridine mesylate 6.769 6.975 − 0.206
59 51,143 Pyrazoloimidazole 3.000 2.576 0.424
60 172,112 Spiromustine 4.024 5.496 − 1.472
61 125,973 Paclitaxel 7.992 7.781 0.211
62 296,934 Teroxirone 4.885 5.229 − 0.344
63t 363,812 5-((4-Chlorobenzyl)thio)-3-(trifluoromethyl)-1H-1,2,4-triazole 6.063 6.016 0.047
64 361,792 3-Demethylthiocolchicine 8.000 6.881 1.119
65 6396 Thiotepa 5.146 5.056 0.09
66 9706 Triethylenemelamine 5.507 5.474 0.033
67ta 83,265 Tritylcysteine 6.066 5.885 0.181
68 49,842 Vinblastine sulfate 9.154 8.078 1.076
69 67,574 Vincristine sulfate 6.955 8.164 − 1.209
70 757 Colchicine 8.268 7.362 0.906
71 33,410 N-Benzoyl-deacetylcolchicine 7.849 7.474 0.375

Fig. 1  The predicted  pGI50 
against the experimental values 
for the training and test sets
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The SpMin6_Bhv descriptors have been proposed as the 
chemical structure descriptors derived from a new repre-
sentation of the molecular structure. SpMin6_Bhv is the 
smallest absolute eigenvalue of Burden modified matrix-n 
6/weighted by relative van der Waals volumes. The SpMin6_
Bhv mean effect has a positive sign as presented in Table 4. 
This sign suggests that the anti-melanoma activity is directly 
related to this descriptor.

SpMax4_Bhe is defined as the largest absolute eigenvalue 
of Burden modified matrix-n 4/weighted by relative Sander-
son electro-negativities. The SpMax4_Bhe mean effect has 
a negative sign as shown in Table 4. This sign suggests that 
the decrease of value for this descriptor will increase the 
anti-cancer activity of a molecule and vice versa. SpMin5_
Bhi is the smallest absolute eigenvalue of Burden modified 

piPC1 > SpMin6_Bhv > GGI4 > SpMin5_Bhi

> SpMin3_Bhs > SpMax4_Bhe

matrix-n 5/weighted by relative first ionization potential. 
The negative sign of the mean effect (Table 4) of SpMin5_
Bhi suggests that its decrease may increase the anti-cancer 
activity. SpMin3_Bhs is the smallest absolute eigenvalue 
of Burden modified matrix-n 3/weighted by relative I-state. 
SpMin3_Bhs also has a negative mean effect value which 
suggests that the decrease of value for this descriptor will 
increase the anti-melanoma activity of a molecule. The 
SpMin5_Bhi has a negative mean effect (Table 4) and its 
decrease may improve the anti-melanoma activity.

piPC1 is a 2D descriptor defined as the conventional bond 
order ID number of order 1 (ln(1 + x); it is also describe 
as the molecular multiple path counts of order 01; and the 
mean effect of piPC1 was found to positively influence the 
anti-melanoma activity of the compounds when increased 
as shown in Table 4. GGI4 is defined as topological charge 
index of order 4. The mean effect value for this descriptor 
has a negative sign (Table 4). This sign suggests that the 
anti-melanoma activity will increase with the decrease in its 
value. The descriptors used for building the QSAR model in 
this work encoded topological, electronic and geometrical 
aspects of molecules. Appearances of these descriptors in 
the model reveal the role of electronic and steric interactions 
in inducing anti-melanoma  pGI50 activity on LOX IMVI 
cell line.

3.4  In silico screening

An in silico screening method is a very powerful tool used 
for identifying new biologically potent compounds with 
improved characteristics and predicting their activities 
before their actual synthesis (Muegge and Oloff 2006; Trop-
sha et al. 2003). Therefore, the in silico technique reduces 
the time and cost involved in identifying potent compounds. 
Virtual screening was performed by deletion, insertion, and 
substitution of different substitutes on the original template 
(molecule) (Melagraki et al. 2007, 2009) and the effects 
of the structural alterations on the biological activity were 

Table 3  R2 and Q2 values after several Y-randomization tests

Model R R2 Q2

Original 0.879700251 0.77387253 0.561628025
Random 1 0.482831891 0.23312663 0.052213103
Random 2 0.25891164 0.06703524 − 0.30980934
Random 3 0.568132869 0.32277496 0.129408597
Random 4 0.409536891 0.16772047 − 0.07251305
Random 5 0.362492706 0.13140096 − 0.12337785
Random 6 0.436926035 0.19090436 − 0.00890762
Random 7 0.336000891 0.1128966 − 0.28251916
Random 8 0.465496064 0.21668659 − 0.02450686
Random 9 0.34931455 0.12202066 − 0.06406767
Random 10 0.26429312 0.06985085 − 0.20286786
Random models parameters
 Average r 0.393393666
 Average r2 0.163441731
 Average Q2 − 0.090694771
 cR2

p
0.69218154

Table 4  Specification of entered descriptors and their mean effect

Descriptors Definition Descriptor 
type

MF

SpMin6_Bhv Smallest absolute eigenvalue of Burden f-n 6/weighted by relative van der Waals volumes 2D 0.427624
SpMax4_Bhe Largest absolute eigenvalue of Burden modified matrix-n 4/weighted by relative Sanderson 

electronegativities
2D − 1.08867

SpMin5_Bhi Smallest absolute eigenvalue of Burden modified matrix-n 5/weighted by relative first ionization 
potential

2D − 0.25575

SpMin3_Bhs Smallest absolute eigenvalue of Burden modified matrix-n 3/weighted by relative I-state 2D − 0.31453
piPC1 Conventional bond order ID number of order 1 (ln(1 + x) 2D 2.322979
GGI4 Topological charge index of order 4 2D − 0.09165
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evaluated. Then, the applicability domain (AD) of the 
QSAR model was defined to use the model for predicting 
and screening new leads. Defining the domain of application 
of the QSAR model is essential in establishing the model 
capability to make predictions within the space (chemical) 
for which it was developed (Tropsha et al. 2003).

Various methods have been utilized to define the AD of 
the QSAR models (Eriksson et al. 2003). The most usual 
one was described by Gramatica et al. (2007) which used the 
leverage values for each compound. The leverage approach 
allows the determination of the position of new chemical 
in the QSAR model (Gramatica et al. 2007), In this regard, 
Leverage approach is used and is represented as hi in Eq. (7):

where x refers to the descriptor vector of the considered 
compound and X represents the descriptor matrix derived 
from the training set descriptor values. The warning leverage 
(h*) was determined as in Eq. (8):

(7)hi = xi(X
TX)−1xT

i
,

(8)h∗ =
3(p + 1)

N
,

where N is the number of training compounds and p is the 
number of descriptors in the model.

The defined applicability domain (AD) was then viewed 
via a Williams plot, the plot of the standardized residuals 
against the leverage values (h). A compound with hi > h* seri-
ously influences the model performance and may be elimi-
nated from the AD applicability, but it does not appear to 
be an outlier since its standardized residual could be small. 
Furthermore, a value range of ± 3 standardized residuals is 
often used as a cutoff value for accepting predictions of a 
molecule, because points which lie within ± 3 standardized 
residual from the mean cover ninety-nine percent (99%) of 
the normally distributed data (Jaworska et al. 2005). Thus, 
the leverage and the standardized residuals were used jointly 
for the characterization and determination of the applicabil-
ity domain. The Williams plot for the built QSAR is shown 
in Fig. 2. The warning leverage (h*) was found to be 0.430 
for the developed QSAR model. Based on the leverages 
(h i> 0.430), the two compounds among the training set (44 
and 47) and five test set compounds (1, 51, 54, 55 and 67) 
were found to be outside of the defined AD (Fig. 2) of the 
QSAR model; so, they were identified as structurally influ-
ential chemical based on their large leverage values (hi> h*).

Fig. 2  The Williams plot, the 
plot of the standardized residu-
als versus the leverage value
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Furthermore, the in silico screening method was used 
for the design of new potent structures with  pGI50 activity 
on LOX IMVI cell line according to the developed QSAR 
model. For this purpose, compound 41 (AC1L2OAS, NSC-
376,128) listed in Table 2 with  pGI50 of 9.793 was chosen as 
a template due to its high  pGI50 activity, low residual value 
and was found to be within the defined AD (Fig. 2). The 
structure of compound 41 and the template used for modi-
fications are shown in Fig. 3. The compound was altered in 
a way that will make its synthesis experimentally possible. 
Then, the in silico screening was applied by the insertion and 
substitution of different groups in the X, Y and Z positions 
as presented in Fig. 3; the results of this are presented in 
Table 5. The model endures various AC1L2OAS substitu-
ents since the majority of the newly designed analogous was 
within the applicability domain. The predicted  pGI50 of the 
majority of the designed analogous were more than the lead 
compound (41) used for the design and among which com-
pound N5 showed the best activity  (pGI50 = 13.186). Thus, 
it is clear that using a simple QSAR model, there is a pos-
sibility to simultaneously predict and identify compounds 
with better activity and to determine which of the structural 
modifications do not fall within the AD. Lastly, the result 
in this research confirms the robustness and reliability of 
the developed QSAR model and it illustrates that with the 
modeling of the QSAR model and use of an in silico screen-
ing technique, it is possible to identify new potent synthetic 
targets for drug development.

4  Conclusions

In this research, GFA-MLR modeling tool was used in the 
construction of a QSAR model for predicting  pGI50 of anti-
melanoma compounds on LOX IMVI cell line. The accuracy 

and predictability of the proposed model was illustrated by 
various criteria, the model is statistically fit both internally 
( R2

train
 = 0.867, R2

adj
 = 0.848 and Q2

cv
 = 0.809), externally 

( R2
test

 = 0.749), and Y-randomization. This satisfies the cri-
teria of acceptable QSAR model proposed by different 
groups. Moreover, in silico screening method was applied to 
the developed QSAR model which enables the design and 
prediction of  pGI50 of new potentially active compounds on 
LOX IMVI cell line. The predicted  pGI50 of the majority of 
the designed analogous were more than the lead compound 
41 used for the design. The proposed model was found to be 
useful for the prediction of  pGI50 of anti-melanoma com-
pounds for which no experimental data are available and it 
also helps in the reduction of time and cost involved in the 
synthesis and anti-melanoma activity prediction of com-
pounds on LOX IMVI cell line.
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