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Abstract
The  pGI50 cytotoxicity values of 112 compounds on K-562 cancer cell line were modeled to illustrate the quantitative struc-
ture–activity relationship (QSAR) of the compounds. The dataset were divided into training and test set through Kennard-
stone algorithm, while the pool of molecular descriptors calculated with paDEL descriptor metric program was subjected 
to the genetic functional algorithm (GFA) for selection of descriptor to be modeled. The best QSAR model developed was 
then subjected to a rigorous statistical test. The statistical significance of the model was verified by calculating the values of 
Q2

LOO (0.845), Q2
F1 (0.9397), Q2

F2 (0.6862) and R2
pred (0.6862) needed to evaluate the strength and robustness of the model. 

The result of the internal and external validation of the model indicates that the model is good and could be used to predict 
the  GI50 of anticancer compounds on K-562 leukemia cell line. The model developed was used in designing new anticancer 
drugs with higher activity or more potent and less toxic in nature when compared to the lead compound. These compounds 
significant activities were found to correlate to with some of the molecular descriptors such as the number of hydrogen bond 
acceptors present in the surface of the molecule.
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1 Introduction

Cancer is one of deadliest diseases in the world, it is caused 
by uncontrolled cellular growth. The disease is best seen 
as the inhibition of the defense mechanism responsible for 
the eradication of cells, which has been the backbone of 
carcinogenesis.

Cancer reportedly kills 135,000 people a year, which 
is a bit higher than from heart disease (News 2003). Most 
cancers noticed have been reportedly linked to mutations 
caused by chemical exposure from environmental pollutants, 
food constituents, tobacco smoking, etc. (Ferlay et al. 2010; 
Iuliano et al. 2012; Organization 2002). Cancerous tumours 
are of two types, one malignant or benign in nature (Siegel 

et al. 2015), and the other metastasis, which is the spread 
of cancer from the main site to other neighbouring organs, 
is the major cause of mortality in cancer suffering patients 
(Parkin et al. 2011). Some tumor cells have been reported 
to resist the effect of present-day chemotherapeutic agents, 
given rising to a problem involving the clinical treatment 
of cancer, and so bringing our search for novel anticancer 
agents that selectively induce apoptosis.

K562 cells were the first human immortalized myelog-
enous leukemia line to be recognized. They are of the eryth-
roleukemia type, and the cell line was gotten from a 53-year-
old female chronic myelogenous leukemia patient in blast 
crisis (Drexler 2000; Lozzio and Lozzio 1975).The cells are 
non-adherent and rounded, they are positive for the BCR/
ABL fusion gene, and bear some proteomic similarity to 
undifferentiated erythrocytes (Andersson et al. 1979). In cul-
ture, they display much less clattering than many other sus-
pension lines, probably due to the down-regulation of sur-
face adhesion molecules by bcr/abl. Though, the additional 
study proposes that BCR/ABL over-expression may actu-
ally increase cell adherence to cell culture plastic (Karimiani 
et al. 2014). The issue with K562 cells, and numerous other 
cancer cell sorts is an excess of Aurora kinases (Fan et al. 
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2016). These kinases assume a part in the development of 
spindles, the partition of chromosomes, and cytokinesis (Fan 
et al. 2016). These functions are important in cells so as 
to divide and regenerate tissues and assume a support part 
in homeostatic capacities. Be that as it may, the excess of 
Aurora kinases takes into consideration uncontrolled cell 
division, bringing about tumor (Fan et al. 2016). Inhibiting 
these kinases is an essential direction mechanism of cancer 
since it keeps cells from advancing into mitosis.

Computational design of novel molecule is a tool that has 
been used to accelerate discovery process, resulting in its 
acknowledgment and popularity. This is due to its tendency 
to reduce the classical trial and error approach (Roy et al. 
2015b). Also, development of molecular modeling tech-
niques such as quantitative activity relationship (QSAR), 
application of conformational search methodologies like 
molecular dynamics and Monte-Carlo simulations and so 
on have also contributed greatly to discovery and develop-
ment of new molecules (Sabet et al. 2010; Speck-Planche 
et al. 2012a, b). The purpose of this study to develop a new 
in silico QSAR model, that can be used to screen the bioac-
tivity of known and hypothetical molecules against K-562 
cancer cell line, and further design new active molecules 
by altering molecular descriptors and chemical fragments 
which were found to be significant within the applicability 
domain of the model.

2  Experimental section

The computational hardware and software used in this work 
includes: Computer [HP pavilion Intel(R) Core i5-4200U 
with 1.63 Hz and 2.3 Hz processor and Windows 8.1 operat-
ing system], Spartan 14 (Hehre and Huang 1995), ChemBio 
Ultra 12.0 (Evans 2014; Li et al. 2004), Padel-descriptor 
(Yap 2011), MS Excel (Denton 2001).

The dataset contained 112 molecules used to evaluate 
the relationship between the chemical fingerprints of the 
compounds and their anticancer activities on human leu-
kaemia (K-562) cell line (Marx et al. 2003). The chemi-
cal structures of the dataset, NSC, and CAS number were 
taken from the drug discovery and development arm of the 
National Cancer Institute (NCI) (https ://wiki.nci.nih.gov/
displ ay/NCIDT Pdata /NCI-60+Growt h+Inhib ition +Data). 
The data contains aminopterin and camptothecin deriva-
tives, colchicine analogues and so on. The anticancer activ-
ity results are shown in  GI50, which is the concentration for 
50% of cancer cell proliferation (Marx et al. 2003). Some the 
compounds containing salts or small fragments were treated 
separately, the metal ions and chloride ions were removed 
since they play no significant contribution to the activity of 
the drugs, this was collaborated by authors such as Fatemi 
et al. (2015) and Roy (Kar and Roy 2012; Roy et al. 2015a). 

The counterpart of the ions was optimized at a protonated 
state, as they should in solution.

The biological activity (− LogGI50) of the studied com-
pounds are presented in Table 1 and the dataset of the activ-
ities ranges from 2.2 to 9.3. Further literature (Chopade 
et al. 2015), showing the wide range of activities dataset 
used to improve the quality of information gotten from the 
compounds.

3  Generation of molecular descriptors

The 2D structure of each of the compounds was generated 
using the sketch option on Spartan 14 and was converted 
into 3D structure using the view option on Spartan 14. From 
the build option on the program, the structures were mini-
mized using molecular mechanic force field (MMFF) option 
to remove any strain present in the molecular structure. In 
addition, this ensures a well defined conformer relationship 
between the compounds under study (Viswanadhan et al. 
1989). From the setup calculation option on Spartan 14, the 
calculation was set to equilibrium geometry at the ground 
state using density functional theory at B3LYP. After opti-
mization, Spartan molecular descriptor was obtained from 
the display-output and display-properties option on Spartan 
14 GUI. The fully optimized 3D structure without symmetry 
restrictions were saved as SD file through the file option on 
the Spartan 14 GUI. The fully optimized 3D structure in SD 
file was then open with ChemBio 3D ultra 12.0 to calcu-
late molecular topological descriptors using the calculation 
option on the ChemBio 3D ultra 12.0 GUI.

4  Splitting of dataset into modelling sets 
and evaluation test sets

The dataset was divided into two sets, the modelling set, and 
test set. The modelling set is used in developing the model, it 
contains 80% of the entire dataset. While the test set which 
constitutes the remaining 20% of the whole dataset was not 
used in the construction of the model but to ascertain the 
predictive ability of the model (Tropsha 2010).

5  Data division

To obtain validated QSAR models, the dataset was divided 
into training and test sets. Ideally, this division should be 
performed such that points representing both training (80% 
of compounds) and test sets (20% percent of compounds) 
are distributed within the whole descriptor space occupied 
by the entire dataset, and each point of the test set is close 
to at least one point of the training set. This partitioning 
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Table 1  Chemical names of dataset with NSC numbers and their  pGI50 values on K-562 cell lines

Serial 
number 
(ID)

Name NSC K-562 (experi-
mental  pGI50)

K-562 (pre-
dicted  pGI50)

Residual Stand-
ardized 
residual

1 11-Formyl-20(RS)-camptothecin 606,172 5.7 4.808 0.892 1.592
2 11-Hydroxymethyl-20(RS)-camptothecin 606,173 5.6 6.165 − 0.565 − 1.009
3 14-Chloro-20(S)-camptothecin hydrate 643,833 5.7 6.521 − 0.821 − 1.466
4 2′-Deoxy-5-fluorouridine 27,640 6.1 4.809 1.291 2.305
5 3-HP 95,678 5.7 5.888 − 0.188 − 0.336
6 5,6-Dihydro-5-azacytidine 264,880 5.5 5.571 − 0.071 − 0.127
7 5-Aza-2′-deoxycytidine 127,716 4a 4.243 − 0.243 − 0.596
8 5-Azacytidine 102,816 6.1 5.289 0.811 1.448
9 5-HP 107,392 5.3 5.530 − 0.230 − 0.411
10 7-Chlorocamptothecin 249,910 7.3$ 6.897 0.403 0.720
11 9-Amino-20-(R,S)-camptothecin 629,971 7.5 7.307 0.193 0.345
12 Acivicin 163,501 5.5a 4.490 1.010 2.478
13 Allocolchicine 406,042 8a 6.869 1.131 2.774
14 Alpha-TGDR 71,851 4.1 4.996 − 0.896 − 1.599
15 Aminopterin derivative 1 132,483 6.4a,* 8.250 − 1.850 − 4.539
16 Aminopterin derivative 2 184,692 8 8.520 − 0.520 − 0.929
17 Aminopterin derivative 3 134,033 7.6 8.334 − 0.734 − 1.311
18 Amonafide 308,847 5.4 5.671 − 0.271 − 0.484
19 AN antifol 623,017 7.6 7.344 0.256 0.457
20 Anthrapyrazole derivative 355,644 6.7 5.929 0.771 1.377
21 Aphidicolin glycinate 303,812 5.3 5.744 − 0.444 − 0.793
22 ARA-C 63,878 4.6 5.422 − 0.822 − 1.467
23 Asaley 167,780 5.2 5.811 − 0.611 − 1.498
24 AZQ 182,986 5.3 5.203 0.097 0.174
25 Baker’s soluble antifol 139,105 6.8 6.653 0.147 0.262
26 BCNU 409,962 4.3 3.858 0.442 0.789
27 Beta-TGDR 71,261 6.2 5.348 0.852 1.521
28 Bisantrene HCl 337,766 7.3 6.931 0.369 0.659
29 Brequinar 368,390 6.9a 7.050 − 0.150 − 0.368
30 Busulfan 750 3.6a 3.201 0.399 0.978
31 Camptothecin 94,600 7.3a 6.766 0.534 1.311
32 Camptothecin analog 295,500 6 6.655 − 0.655 − 1.169
33 Camptothecin analog 2 606,985 7.5 6.622 0.878 1.567
34 Camptothecin analog 3 295,501 7.5a 7.019 0.481 1.179
35 Camptothecin butylglycinate ester hydrochloride 606,499 6.3 6.528 − 0.228 − 0.408
36 Camptothecin ethylglycinate ester hydrochloride 606,497 6.1 6.466 − 0.366 − 0.654
37 Camptothecin glutamate HCl 610,459 6.5a,* 8.558 − 2.058 − 5.049
38 Camptothecin hemisuccinate sodium salt 610,456 6.3 6.431 − 0.131 − 0.234
39 Camptothecin lysinate HCl 610,457 7.2a 6.366 0.834 2.046
40 Camptothecin phosphate 610,458 6.2 4.868 1.332 2.379
41 Camptothecin, 9-methoxy- 176,323 7.3 7.002 0.298 0.532
42 Camptothecin, acetate 95,382 5.5 6.050 − 0.550 − 1.349
43 Camptothecin, hydroxy- 107,124 7.4 7.153 0.247 0.442
44 Camptothecin, NA salt 100,880 7.3 7.424 − 0.124 − 0.222
45 Camptothecin,20-O-(4-(2-hydroxyethyl)-1-piperazino)OAC 374,028 6.1a 7.211 − 1.111 − 2.726
46 Camptothecin-20-O-(N,N-dimethyl)glycinate HCl 618,939 7.3a 7.767 − 0.467 − 1.147
47 CCNU 79,037 4.6 4.393 0.207 0.370
48 Chlorambucil 3088 4 4.608 − 0.608 − 1.086
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Table 1  (continued)

Serial 
number 
(ID)

Name NSC K-562 (experi-
mental  pGI50)

K-562 (pre-
dicted  pGI50)

Residual Stand-
ardized 
residual

49 Chlorozotocin 178,248 3.2 2.824 0.376 0.671
50 Clomesone 338,947 3.3a 2.779 0.521 1.277
51 Colchicine 757 7.2 7.402 − 0.202 − 0.362
52 Colchicine derivative 33,410 7.9a 7.947 − 0.047 − 0.116
53 Cyanomorpholinodoxorubicin 357,704 8.3 8.023 0.277 0.494
54 Cyclocytidine 145,668 3.4a 4.465 − 1.065 − 2.612
55 Cyclodisone 348,948 4.1 3.032 1.068 1.906
56 Daunorubicin 82,151 7 6.565 0.435 0.777
57 Deoxydoxorubicin 267,469 7.4 7.731 − 0.331 − 0.591
58 Dianhydrogalactitol 132,313 3.9 4.369 − 0.469 − 0.838
59 Dichlorallyl lawsone 126,771 5.7 5.962 − 0.262 − 0.468
60 Dolastatin 10 376,128 10.2 9.797 0.403 0.720
61 Doxorubicin 123,127 7 7.485 − 0.485 − 0.865
62 Fluorodopan 73,754 3.4a 4.587 − 1.187 − 2.912
63 Ftorafur (pro-drug) 148,958 3 4.029 − 1.029 − 1.838
64 Glycinate 364,830 7 7.718 − 0.718 − 1.282
65 Guanazole 1895 2.2a,* 4.738 − 2.538 -6.226
66 Hepsulfam 329,680 3.4 3.245 0.155 0.276
67 Hycanthone 142,982 5.3 6.207 − 0.907 − 1.619
68 Hydroxyurea 32,065 3 3.119 − 0.119 − 0.213
69 Inosine glycodialdehyde 118,994 4$ 3.228 0.772 1.378
70 l-Alanosine 153,353 4.8a,* 6.127 − 1.327 − 3.256
71 Macbecin II 330,500 7.1a 8.458 − 1.358 − 3.331
72 M-amsa 249,992 6* 5.616 0.384 0.686
73 Maytansine 153,858 7.8 8.709 − 0.909 − 1.624
74 Melphalan 8806 4.3 4.551 − 0.251 − 0.449
75 Menogaril 269,148 5.9 5.972 − 0.072 − 0.128
76 Methotrexate 740 7.5 6.725 0.775 1.383
77 Methotrexate derivative 174,121 9.4 9.272 0.128 0.229
78 Methyl CCNU 95,441 4.4 4.647 − 0.247 − 0.441
79 Mitomycin C 26,980 5.6 5.204 0.396 0.707
80 Mitoxantrone 301,739 6.9 6.927 − 0.027 − 0.048
81 Mitozolamide 353,451 4.1 4.052 0.048 0.086
82 Morpholinodoxorubicin 354,646 8.6 7.752 0.848 1.514
83 N-(phosphonoacetyl)-l-aspartate (pala) 224,131 4 4.822 − 0.822 − 1.468
84 N,N-dibenzyl daunomycin 268,242 5.2$ 5.289 − 0.089 − 0.159
85 Nitrogen mustard 762 5.2 3.963 1.237 2.209
86 Oxanthrazole 349,174 5.9 6.560 − 0.660 − 1.178
87 PCNU 95,466 3.8 4.014 − 0.214 − 0.382
88 Piperazine drugsmainator 344,007 3.7 3.501 0.199 0.356
89 Piperazinedione 135,758 5.6 5.637 − 0.037 − 0.067
90 Pipobroman 25,154 3.9 4.267 − 0.367 − 0.656
91 Porfiromycin 56,410 4.8 4.962 − 0.162 − 0.290
92 Pyrazofurin 143,095 6.3 6.082 0.218 0.389
93 Pyrazoloacridine 366,140 6.7 5.895 0.805 1.438
94 Pyrazoloimidazole 51,143 2.5 2.649 − 0.149 − 0.267
95 Rhizoxin 332,598 8 7.624 0.376 0.672
96 Rubidazone 164,011 6.4 6.730 − 0.330 − 0.589
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ensures that a similar principle can be employed for the 
activity prediction of the test set. Kennard-Stone algorithm 
will be applied for dividing dataset into a training and test 
set (Rajer-Kanduč et al. 2003; Wu et al. 1996; Kennard and 
Stone 1969).

K is the number of inputs and are mean and standard devia-
tion of the input or output variable, respectively. With this 
technique, all objects are considered as candidates for the 
training set. The selected candidates are chosen sequentially. 
KS algorithm can be summarized as follows

K is the number of inputs and � and � are mean and stand-
ard deviation of the input or output variable, respectively. 
With this technique, all objects are considered as candi-
dates for the training set. The selected candidates are chosen 
sequentially. KS algorithm can be summarized as follows: 
first, the KS algorithm takes the pair of samples with the 
largest Euclidean distance of x-vectors (predictors) and then 
it sequentially selects a sample to maximize the Euclidean 
distance between x-vectors of already selected samples and 
the remaining samples. This process is repeated until the 
required number of samples is achieved. For each pair of 
samples i and j, the Euclidean distance in x space is defined 
as (Wu et al. 1996; Saptoro et al. 2012; Kennard and Stone 

Objective function =

K+1
∑

i=1

{[

�(i)train − �(i)test
]

+
[

�(i)train − �(i)test
]}

1969). The algorithm employs Euclidean distance  EDx (p q), 
between the x vectors of each pair (p,q) of samples to ensure 
a uniform distribution of such a subset along the x data space

N is the number variables in x and M is the number of sam-
ples, while xp(j) and xq(j) are the j the variable for samples 
p and q, respectively.

5.1  Model development

Multiple linear regression was used to show the relationship 
between the dependent variable Y  (pGI50) and independent 
variable X (atomic descriptors). The model is fit such that 
sum-of-squares difference between the experimental and 
predicted values of set biological activity is minimized. In 
regression analysis, the contingent mean of dependent vari-
able  (pGI50) Y relies on (descriptors) X.

5.2  Evaluation of the QSAR model

The QSAR models developed were validated by reviewing 
some of its parameters like R2 (the squared correlation coef-
ficient); F test (Fischer’s Value) for statistical significance; 

EDx(p, q) =

√

√

√

√

N
∑

j=1

[

xp(j) − xq(j)
]

2 p, q ∈ [1, M].

Table 1  (continued)

Serial 
number 
(ID)

Name NSC K-562 (experi-
mental  pGI50)

K-562 (pre-
dicted  pGI50)

Residual Stand-
ardized 
residual

97 Spirohydantoin mustard 172,112 3.7 4.093 − 0.393 − 0.701
98 Taxol 125,973 8.4 8.746 − 0.346 − 0.617
99 Teroxirone 296,934 4.5a 3.977 0.523 1.283
100 Tetraplatin 363,812 6 5.387 0.613 1.095
101 Thiocolchicine 361,792 7.6 7.981 − 0.381 − 0.680
102 Thioguanine 752 6.4 5.696 0.704 1.256
103 Thio-TEPA 6396 3.9 3.867 0.033 0.059
104 Triethylenemelamine 9706 5 4.411 0.589 1.051
105 Trimetrexate 352,122 7.6 7.460 0.140 0.250
106 Trityl cysteine 83,265 6.2 6.105 0.095 0.169
107 Uracil nitrogen mustard 34,462 4.4 4.924 − 0.524 − 0.936
108 Vinblastine sulfate 49,842 9.3 8.995 0.305 0.544
109 Vincristine sulfate 67,574 7 6.348 0.652 1.164
110 VM-26 122,819 6.1 6.577 − 0.477 − 0.852
111 VP-16 141,540 4.7 5.277 − 0.577 − 1.029
112 Yoshi-864 102,627 2.7 3.441 − 0.741 − 1.323

*Identifies compounds found outside the applicability domain
$ Compounds structurally different from all other compounds within the dataset
a Test sets for K-562 leukaemia cell lines, respectively
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Q2 (cross-validated correlation coefficient); pred R2 (R2 for 
external test set).

5.3  Validation of the QSAR model

The ability of a QSAR equation to predict the bioactivity of 
unknown compounds was determined using the leave-one-
out cross-validation method. The cross-validation regres-
sion coefficient (Qcv

2) was calculated with the following 
equation:

where ypred, yexp, and ỹ are the predicted, experimental, and 
mean values of experimental activity, respectively. It has 
been reported that high estimation of statistical attributes is 
not enough to justify the ability of a model, and so to assess 
the predictive capacity of the new QSAR model, the method 
depicted by Golbraikh and Tropsha (2002) and Roy et al. 
(2015) were utilized. The coefficient of determination for 
the test set Rtest

2, was calculated through the accompanying 
mathematical statement

where Ypredtest and YTest is the predicted value founded on the 
QSAR equation (model response) and experimental activ-
ity values, respectively, of the external test set compounds. 
ȲTraining is the average activity value of the training set com-
pounds (Tropsha et al. 2003). Additional assessment of the 
predictive ability of the QSAR model for the test set com-
pounds was done by determining the value of (rm

2), using 
the  rm2 metric calculator developed by Roy et al. (2013).

5.4  Evaluation of the applicability domain 
of the model

The applicability domain of the QSAR model is impera-
tive in establishing the model ability to make predictions 
within the chemical space for which it was developed (Trop-
sha et al. 2003). The leverage tactic was used in unfolding 
the applicability domain of the QSAR models (Gramatica 
et al. 2007), Leverage of a given chemical compound hi, is 
defined as: hi = xi

(

XTX
)−1

xi
T (i = 1,… ,m) , where xi is 

the descriptor row-vector of the query compound i, and X is 
the n × k descriptor matrix of the training set compounds 
used to develop the model. As a prediction tool, the warn-
ing leverage (h*) which is the limit of normal values for 
X outliers and is defined as: h ∗ = 3(k + 1)∕n, where n 

q2
CV

= 1 − press∕total = 1 −

∑n

i=1
(yexp − ypred)

2

∑n

i=1
(yexp − y)

2

R2
Test

= 1 −

∑
�

Ypredtest − YTest
�2

∑

�

Ypredtest − YTraining

�2

is the number of training compounds, k is the number of 
descriptors in the model. The test compounds with leverages 
hi < h∗ are considered to be reliably predicted by the model. 
The Williams plot, a plot of standardized residuals versus 
leverage values, is utilized to translate the relevance area of 
the model in terms of chemical space. The domain of unfail-
ing prediction for external test set molecules’ is defined as 
compounds which have leverage values within the thresh-
old 

(

hi < h∗
)

 and standardized residuals no greater than 3α 
(3 standard deviation units), hence they are accepted as Y 
outlier. Test set compounds where 

(

hi > h∗
)

 are thought to 
be unreliably anticipated by the model because of consider-
able extrapolation. For the training set, the Williams plot 
is utilized to recognize compounds with the best structural 
influence 

(

hi > h∗
)

 in developing the model.

6  Results and discussion

A QSAR analysis was performed to explore the struc-
ture–activity relationship of different 112 compounds with 
different organic moiety acting as anticancer. In a QSAR 
study, generally, the quality of a model is expressed by its 
fitting and prediction ability (Table 2).

7  QSAR on K‑562 cell line dataset

7.1  K‑562 cell line

N is the number of compounds, R2 is the squared correla-
tion coefficient, Q2

LOO, is the squared cross-validation coef-
ficients for leave one out, F is the Fisher F statistic, and 
RMSE is the root mean square error.

The built model was used to predict the test set data, and 
the results are presented in Table 1. The predicted  pGI50 
values for the compounds in the training and test sets for 
K-562 leukaemia cell line were plotted against the exper-
imental  pGI50 values in Fig. 1, Likewise, the plot of the 
residuals values for both the training and test sets against the 

pGI
50

= − 5.524(Methanal) + 5.514 (PSA)

− 6.097 (ATS7e) − 2.255 (ATSC5c)

− 1.219 (naasN) − 2.813 (minHBint7)

− 2.162 (minHBint10) + 1.482 (maxHBint5)

− 4.484 (hmax) + 7.419(MDEC − 11)

+ 8.762 (MDEC − 23) − 3.254 (RDF155v) + 6.467

Ntrain = 90, R2
train

= 0.915, R2
adjusted

= 0.902,

Ftrain = 69.298, Q2
LOO

= 0.845, Outliers > 3.0 = 5,

Ntest = 22
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experimental  pGI50 estimations is presented in Fig. 2. As can 
be seen from Table 1 and Figs. 1 and 2, the computed values 
for the  pGI50 are in great concurrence with those of the test 
set, hence the model did not demonstrate any relative and 

systematic error, since the arrangement of the residuals on 
both sides of zero is arbitrary.

The QSAR of K-562 model in this literature was reported 
to have an R2 value of 0.902 and Q2

CV value of 0.845, while 

Table 2  Model external 
validation statistics

Test set validation information Name K-562

Model biasness test Systematic error result Absent
Classical metrics (for 100% data) R^2Test (100% data) 0.6722

R0^2Test (100% data) 0.6614
Q2F1 (100% data) 0.9161
Q2F2 (100% data) 0.5816
Scaled Avg.Rm^2 (100% data) 0.5591
Scaled DeltaRm^2 (100% data) 0.1417
CCC (100% data) 0.7961

Classical metric (after removing 5% data with 
high residuals)

R^2Test (95% data) 0.7390
R0^2Test (95% data) 0.7205
Q2F1 (95% data) 0.9397
Q2F2 (95% data) 0.6862
ScaledAvgRm2 (95% data) 0.6509
ScaledDeltaRm2 (95% data) 0.0601
CCC (95% data) 0.8507

Error-based metrics (for 100% data) RMSEP (100% data) 1.1011
SD (100% data) 0.6363
SE (100% data) 0.1357
MAE (100% data) 0.9088

Basic data structure information
N compound test 22

Result (MAE-based criteria applied on 95% data) Prediction quality Moderate

Fig. 1  The predicted  pGI50 against the experimental values for the 
training and test sets of K562 leukaemia cell line

Fig. 2  The residuals against the predicted  pGI50 values for the train-
ing and test sets of K-562 leukaemia cell line
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for the external validation R2
pred, Q2F1 and Q2F2 values were 

reported in Table 3 as 0.672, 0.916 and 0.581. The result jus-
tifies that the classic metric test for 100% developed by Roy 
et al. (2015a) for a QSAR model biasness test is good and in 
well agreement with other standards stated by Tropsha and 
Golbraikh (Golbraikh and Tropsha 2002).

7.2  QSAR model validation

The genuine value of QSAR models is not only their capac-
ity to reproduce known activities of a compound, confirmed 
by their fitting power (R2), but for the most part is their 
potential for predicting biological activity. Therefore, the 
internal consistency of the training set was confirmed using 
leave-one-out (LOO) cross-validation method to guarantee 
the strength of the model (Supratik Kar 2010).

The leverages for every compound in the dataset were 
plotted against their standardized residuals, leading to dis-
covery of outliers and influential chemicals in the models. 
Figure 3 shows the Williams plot of K-562 dataset. The 
applicability domain is established inside a squared area 
within ± 3 bound for residuals and a leverage threshold h* 
(

h ∗ = 3po∕n

)

, where po is the number of model param-

eters and n is the number of compounds. The Williams plot 
for the training set shown in Fig. 3, establishes applicability 
domain of the model within ± 3d and a leverage threshold 
h* = 0.433.

The Williams plot for K-562 dataset shows two group 
of outliers, one of which is related to the difference in the 
structures of the compounds used as training set and the other 
directly related to the wide variations in their experimental 

data. Compound with these identification number (ID: 15, 37, 
65, 70 and 72) from Table 1, were identified as outliers within 
the plot because of their incorrect experimental data used, the 
remaining three compounds (ID: 10, 64 and 84) which influ-
ences the scope of the model positively are structurally differ-
ent from other compounds in the model (Roy et al. 2015). All 
these compounds have their leverage values greater than the 
warning leverage (h*) value, their high leverages are respon-
sible for swaying the performance of the model.

To assess the robustness of the model, the Y-randomization 
test was applied in this study. Y-randomization test confirms 
whether the model is obtained by chance correlation, and is a 
true structure–activity relationship to validate the adequacy of 
the training set molecules.

The new QSAR models (after several repetitions) was 
reported to have low R2 and Q2

LOO values for K-562 activ-
ity (Table 3). In the event that the opposite happens, then an 
adequate QSAR model cannot be obtained for that particular 
modelling system and information. The after effects of Table 3 
show that an adequate model is obtained by GA–MLR system, 
and the model created is measurably noteworthy and vigorous. 
In Table 2, statistical parameters such the mean absolute error 
(MAE) and root mean square error (RMSE) for training and 
test set were recorded to investigate the overall error included 
in the model (Roy et al. 2015a). The slope of the models and 
their coefficients are also presented (Table 2), which validate 
the model strength and supports other results presented in 
Table 3.

To examine the relative importance, and the contribution 
of each descriptor in the model, for each descriptor the value 
of the mean effect (MF) was calculated. This calculation was 
performed with the equation below

Table 3  R2
Train and Q2

LOO values after several Y-randomization tests 
for K-562 cell line

Iteration R R^2 Q^2

Random 1 0.287 0.082 − 0.434
Random 2 0.359 0.129 − 0.176
Random 3 0.313 0.098 − 0.161
Random 4 0.256 0.065 − 0.325
Random 5 0.375 0.141 − 0.049
Random 6 0.164 0.027 − 0.221
Random 7 0.357 0.127 − 0.218
Random 8 0.317 0.100 − 0.326
Random 9 0.255 0.065 − 0.173
Random 10 0.381 0.145 − 0.169
Random models parameters
 Average R 0.306
 Average R^2 0.098
 Average Q^2 − 0.225
 cRp^2 0.766

Fig. 3  The Williams plot, the plot of the standardized residuals versus 
the activity  (pGI50) leverage value for K562 dataset
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MFj represents the mean effect for the considered descrip-
tor j, �j is the coefficient of the descriptor j, dij stands for the 
value of the target descriptors for each molecule, and m is 
the descriptor’s number in the model (Dimić et al. 2015).

The MF value provides important information on the 
effect of the molecular descriptors in the developed model, 
the signs and the magnitude of these descriptors combined 
with their mean effects reveals their individual strength and 
direction in influencing the activity of a compound. The 
mean effect values are presented in Table 4. The molecular 
edge descriptor (MEDC-23) (Liu et al. 1998), polar surface 
area (PSA) and maximum hydrogen electropological state 
(hmax) (Hall and Kier 1995) were found to have the most 
pronounce effect on the model. The mean effects of MEDC-
23 (− 3.918) and PSA (− 3.887) were negatively correlated 
with activities of the model, while that of hmax (2.978) con-
tributes positively to the model. Hereby indicating that high 
polar surface area and molecules edge of the type (MEDC-
23) were responsible for hindering the potency of these com-
pounds on K-562 cancer cell line.

7.3  Interpretation of descriptors in model

Methanal fragment count is a 2D molecular descriptor uti-
lized by the model to predict the 50% reduction in prolifera-
tion of K-562 leukaemia cell line. This descriptor defines the 
number formaldehyde fragment that is within a molecule, its 
mean effect (0.184) to the model though a little insignificant 

MFj =
�j
∑i=n

i=1
dij

∑m

j
�j
∑n

i
dij

in magnitude is positively correlated to the activity of the 
compounds.

The polar surface area (PSA) of a molecule is defined 
as the surface sum over all polar atoms, primarily oxygen 
and nitrogen, also including their attached hydrogens, it is 
a commonly used medicinal chemistry metric for the opti-
misation of a drug’s ability to permeate cells. The mean 
effect of PSA (− 3.887) reported in Table 4 is significantly 
high and its responsible for decreasing the bioactivity of 
most of the compounds used in developing the model. 
Hence in the design of a hypothetical new drug a signifi-
cant decrease in this descriptor is needed to improve its 
activity.

ATS7e is a 2D autocorrelation molecular descriptor 
developed by Todeschini and Consonni (2009), which is 
defined as Broto–Moreau autocorrelation—lag 7/weighted 
by Sanderson electronegativities.

where, wi and wj are the weights of the atoms i and j, 
w ∈ (m, p, e, v) , and δij is Kronecker delta, that is, δij = 1 
if the ijth entry in the topological level matrix is = d, and 
δij = 0 otherwise (Broto and Devillers 1990; Broto et al. 
1984; Moreau and Broto 1980a, b).

ATS7e descriptor with mean effect (1.837) is found to 
be a significant descriptor which is positively correlated to 
the bioactivity of the compounds, hence by increasing the 
magnitude of the descriptor its activity is also increased. 
Other autocorrelation descriptor used in the model includes 
ATSC5c, which is defined as centered Broto–Moreau auto-
correlation—lag 5/weighted by charges. This molecular 

ATSdw =

n
∑

i=1

n
∑

j=1

�ij(wiwj)

Table 4  Specification of entered descriptors in genetic algorithm multiple regression model of K-562

VIF variance inflation factor, MF mean effect

Descriptors Definition Descrip-
tor type

P value VIF MF

Methanal Number of methanal group 2D 1.09E−14 1.345 0.184
PSA Polar surface area 2D 2.01E−12 4.847 − 3.887
ATS7e Broto–Moreau autocorrelation—lag 7/weighted by Sanderson electronegativities 2D 7.24E−08 11.141 1.837
ATSC5c Centered Broto–Moreau autocorrelation—lag 5/weighted by charges 2D 9.63E−06 1.362 1.427
naasN Count of atom-type E-state: N 2D 4.20E−06 1.217 0.162
minHBint7 Minimum E-state descriptors of strength for potential hydrogen bonds of path length 7 2D 4.60E−06 1.848 1.658
minHBint10 Minimum E-state descriptors of strength for potential hydrogen bonds of path length 10 2D 0.000499 1.097 1.286
maxHBint5 Maximum E-state descriptors of strength for potential hydrogen bonds of path length 5 2D 3.32E−05 2.61 − 0.641
hmax Maximum H E-state 2D 4.42E−11 2.342 2.978
MDEC-11 Molecular distance edge between all primary carbons 2D 2.26E−13 2.857 − 0.459
MDEC-23 Molecular distance edge between all secondary and tertiary carbons 2D 3.81E-20 6.158 − 3.918
RDF155v Radial distribution function − 155/weighted by relative van der Waals volumes 3D 9.30E−09 2.141 0.373
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descriptor is weighted by the charges on the molecule unlike 
ATS7e which is related to the polarization of the molecules 
caused by highly electronegative elements present in a com-
pound, the former has a mean effect of 1.427, which indi-
cates the direction of the descriptor influences the activity 
positively when increased.

The E-state and the HE-state indices may be used as 
atomic parameters to generate other topological indices. 
naasN is a 2D Atom type electrotopological state descrip-
tor, which is defined as the number of atom-type N:- 
descriptor present in a compound. It is an example of a 
combination of electronic, topological, and valence state 
information developed by Hall and Kier (1995) to relate 
the importance of nitrogen atom type of the order in affect-
ing the topological feature of the overall compound and 
how this in turn affects the activity of the compound as a 
direct result of this effect. The calculated effect (0.162) of 
the descriptor to the model was directly correlated to the 
activity of anticancer agents. Three other E-state descrip-
tor used in the model are minHBint7, minHBint10, max-
HBint5 and hmax, they are defined as minimum E-state 
descriptors of strength for potential Hydrogen Bonds of 
path length 7, minimum E-state descriptors of strength for 
potential hydrogen bonds of path length 10, maxHBint5 
and maximum H E-state, respectively. The mean effects 
of the descriptors are presented in Table 4, their values 
vary in magnitude and direction with maxHBint5 which 
is negatively correlated to the activity of the molecules. 
Their values are given as 1.658, 1.286, − 0.658 and 2.978, 
respectively, hmax had the highest value (2.978) while 
maxHBint5 (− 0.658) which are negatively correlated 
to the activity of the molecules contributes the least to 
the model. Roy and Mitra (Ojha et al. 2011) showed that 
the importance of the ability to encode the topology and 
electronic environment of molecular fragments in unison 
portrayed the E-state indices as an indispensable tool in 
the field of QSAR studies.

MDEC-11 and MDEC-23 are 2D molecular distance edge 
descriptor developed by Liu et al. (1998), MDEC-11 with a 
mean effect of − 0.459, is defined as molecular distance edge 
between all primary carbons. The magnitude of MDEC-11 
descriptor in the model shows that a decrease in the bond 
length of all primary carbons present in a potent anticancer 
agent increase the bioactivity of the molecule, while MDEC-
23 descriptor defined as molecular distance edge between all 
secondary and tertiary carbons was reported with the mean 
effect of − 3.918. The mean effect of MDEC-23 contributes 
the most in decreasing the activity of the molecules, its effect 
when compared to all other descriptor in the model is the 
most significant, hence the decrease in secondary and ter-
tiary Carbon atoms in a molecule would greatly increase the 
activity of an anticancer agent or hypothetical compounds 
with potent effect on K-562 leukaemia cell line.

Radial distribution function is a 3D coordinates of the 
atoms of molecules transformed into a structure code that 
has a fixed number of descriptors irrespective of the size of 
a molecule, Formally, the Radial Distribution Function of 
an ensemble of N atoms can be interpreted as the probability 
distribution to find an atom in a spherical volume of radius 
r. RDF155v is one of the descriptor used in the model, it has 
a mean effect of 0.373 contributing very little to the overall 
effect of the descriptor to the model. The radial distribution 
function − 155/weighted by relative van der Waals volumes 
as defined describes how the van der waal volume of the 
descriptor affects the activity of the molecule. Here the value 
of the mean effects implores the increase of the RDF-155 
weighted by the molecular volume in influencing the posi-
tive action of anticancer agents to their target site.

8  Ligand base drug design

Twenty-three (23) compounds were designed using the 
information derived from the model. The molecular descrip-
tor PSA and hmax were the principal descriptor used in our 
design and this is owed to their significant mean effect on the 
model compared to other descriptors. We selected two lead 
compounds from our test set with low residual value from 
their predicted  pGI50. This was done to minimize the possi-
bility of statistical error in our design. The compound Camp-
tothecin analogue 3, was used to design 12 new analogues, 
while Colchicine derivative was used as a lead compound 
in designing the remaining 11 compounds. The MF value of 
PSA descriptor suggest the removal of hetero atoms such as 
oxygen and nitrogen to reduce the polar surface area of the 
compounds, while hmax supports the conversion of unsatu-
rated carbons to saturated carbons or replacing the (-O-) 
alkoxy groups with methylene carbons (–CH2–), thereby 
making more room for hydrogen atoms and increasing the 
possibility of hydrogen bond formation with the receptor.

The  pGI50 result of the designed analogues of Camp-
tothecin analogue 3 (CA) and Colchicine derivative (CD) 
presented in Tables 5 and 6 shows a correlation between the 
activity of the newly designed compounds with the mean 
effect values of hmax and PSA. pGI50 of more than 90% 
of the designed compounds were more than the lead com-
pounds, thereby justifying the contribution of PSA and hmax 
descriptor to the activity of anticancer drugs in mitigating 
K562 cancer cell line.

9  Conclusion

For the robustness and statistical significance of the devel-
oped model, an initial division of dataset was done for train-
ing and test set compounds using Kennard-stone algorithm, 
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Table 6  2D structure and the predicted  pGI50 values of the newly designed Camptothecin analogue 3 (CA) and Colchicine derivative (CD) ana-
logues

Compound ID Newly designed drugs Predicted  pGI50

1 CD1 12.391

2 CD2 12.516

3 CD3 12.972

4 CD4 13.302

5 CD5 12.513
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Table 6  (continued)

Compound ID Newly designed drugs Predicted  pGI50

6 CD6 10.322

7 CD7 10.560

8 CD8 9.244

9 CD9 13.182

10 CD10 13.242
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Table 6  (continued)

Compound ID Newly designed drugs Predicted  pGI50

11 CD11 14.437

12 CA1 8.263

13 CA2 10.553

14 CA3 9.553

15 CA4 10.314
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Table 6  (continued)

Compound ID Newly designed drugs Predicted  pGI50

16 CA5 8.100

17 CA6 10.233

18 CA7 7.919

19 CA8 8.056

20 CA9 7.787
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before using GFA-MLR tool for building the model. The 
model is statistically robust both internally (Q2 0.845) and 
externally (Q2

F1 0.9397; Q2
F2 0.6862, R2

pred 0.6722) and 
satisfy the criteria of acceptable QSAR model proposed 
by different groups. The model indicates the importance of 
hydrogen bonding parameters (minHBint7, minHBint10, 
maxHBint5 and hmax), it indicates that a decrease in hydro-
gen bonding potentials of path length 7 and 10, as well a 
decrease in the total polar surface area (PSA) for any com-
pound is required to improve the  pGI50 of anticancer agents.

Acknowledgements We would like to acknowledge the National Can-
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in the website (https ://wiki.nci.nih.gov/displ ay/NCIDT Pdata /NCI-
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