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Abstract In this study, QSAR modeling was performed

for predicting the IC50 value for a set of HIV-1 integrase

inhibitors using multiple regression and partial least square

method obtaining an optimized model for each method.

These models were used to predict a set of test compounds

obtained by performing a chemical similarity search of the

training set from the NCBI PubChem database subjected to

the Lipinski rule of five filters. The predicted IC50 value for

the test set compounds was further analyzed for molecular

docking simulation against HIV-1 integrase revealing that

the test set compounds have a more binding affinity than

the training set compounds and the market approved drug

raltegravir. The stability of the docked compounds (pro-

tein–ligand complexes) was further validated by perform-

ing molecular dynamics simulations for 20 ns using

Gromacs 5.0, and the RMSD backbone was analyzed. Last,

the ADME–toxicity analysis was carried out for the top

docking hit compounds and the market approved drug

raltegravir revealing that the docked compounds have

enhanced pharmacological parameters than raltegravir.

Keywords QSAR � Molecular docking � Molecular

dynamics � ADME–toxicity

1 Introduction

Human immunodeficiency virus type 1 (HIV-1) is a len-

tivirus that caused the acquired immunodeficiency syn-

drome (AIDS) in humans (Douek et al. 2009; Weiss 1993).

The virus encodes three enzymes that are required for viral

replication: reverse transcriptase, protease, and integrase

(IN). Although there are reports on limited use of antiviral

targeting reverse transcriptase and protease, the develop-

ment of resistant strains has caused a great havoc and

limited their effectiveness (Imamichi 2004). Therefore,

there is a vital requirement for the discovery of new

antiviral agents directed against alternative sites in the viral

life cycle, such as the HIV-1 integrase, and hence, HIV-1

integrase has come to light as an attractive target for anti-

HIV therapy, because this enzyme is necessary for

stable infection and its known functional analogs are not

found in the human host (Imamichi 2004). There are

reports on a wide variety of integrase inhibitors; however,

the Food and Drug Administration (FDA), USA, has

approved only a very few (Anthony 2004; Johnson et al.

2004). And hence, the discovery and development of

integrase inhibitors have led to the first FDA approved

integrase inhibitor—raltegravir (Fikkert et al. 2003;

Grobler et al. 2002; Murray et al. 2007). Even though

raltegravir succeed in suppressing the virus in HIV patients

(Murray et al. 2007), but HIV phenotypes resistance to

raltegravir have evolved very rapidly (Malet et al. 2008).
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Therefore, there is a vital requirement for developing novel

integrase inhibitors with alternative mechanisms of action.

In the present investigation, a set of 47 HIV-1 integrase

inhibitors with their known experimental IC50 values was

retrieved from the NCBI Bioassay database. These sets of

diverse 47 compounds were used as the training set to

construct the quantitative structure activity relationship

(QSAR) model using multiple regression (MR) and partial

least square (PLS). And the generated QSAR models were

used to predict a set of compounds obtained from a

chemical similarity search of the training set at the NCBI

PubChem database subjected to the Lipinski rule of five

parameters (Lipinski 2000). A molecular docking simula-

tion was carried out against the training set and test set

compounds and its subsequent protein–ligand interaction

analysis of the top docking hits. In additon, a molecular

dynamics simulation was performed for the best docked

compounds to check the stability and dynamic behavior of

the docked protein–ligand complexes.

2 Materials and method

2.1 Data set and QSAR modeling

A set of diverse HIV-1 integrase inhibitors (47 compounds)

with known experimental IC50 values was retrieved from

the NCBI Bioassay database (Wang et al. 2012). These 47

compounds were used to construct the QSAR model

training set. The chemical structure, PubChem Compounds

ID and the IC50 values of these 47 compounds are shown in

supplementary material table ST1 and ST2. For the gen-

eration of the QSAR model, initially, the two-dimensional

file format (SDF) of the training set compounds was opti-

mized using MM2 force field method (Ulrich and Norman

1982) and converted to its corresponding three-dimensional

file format (sybyl mol2) using (ChemOffice 2010). These

3D geometries of the compounds were then used to con-

struct the QSAR model with two different methods, viz.,

multiple regression (MR) and partial least square (PLS)

method using MDL QSAR 2.3 (MDL QSAR 2006). Mul-

tiple regression computes the least squares fit in an inde-

pendent variable ‘Xk’ to a dependent variable ‘Y’. It is

commonly used in problems with a small number of

independent variables that are not close to linearly

dependent (Fisher 1922). In the multiple regression QSAR

model, several models were obtained and the best model

was chosen after baring 15 outlier molecules, and hence,

only 25 molecules were considered in the regression model

(shown in supplementary material Table ST1). The

regression model quality was then accessed by multiple

R-squared and cross validated with RSS. Furthermore, a

randomization test was performed to check the validity of

the descriptor set. Finally, the cross-validation regression

coefficient Q-Squared and the non-cross-validation coeffi-

cient R-Squared were used to estimate the model qualities.

On the other hand, a second model was constructed

using partial least squares (PLS) regression. PLS is used

where regression, principal components are used. In PLS,

instead of forming egression equations, it produces a

sequence of models with a different number of variables

for predicting the dependent variable (Ildiko and Friedman

1993). Employing PLS QSAR model, the best model was

chosen after barring 15 outliers, and hence, only 25

molecules were considered for the constructing the QSAR

model (shown in supplementary material Table ST2).

2.2 Test set prediction

For predicting the IC50 of the test set compounds, a

chemical similarity search was performed for each of the

training set at the NCBI PubChem database for related

structures and analogs (Bolton et al. 2008). The search

parameters were set at 95% similarity subjected to the

Lipinski rule of five filters (Lipinski 2000). In addition,

only the compound whose IC50 value has not been reported

in the PubChem Bioassay was retrieved (55 compounds).

These compounds were used as the test set for predicting

their IC50 values. The CID and 2D structures of these test

set compounds are shown in Table ST1 and ST2 of sup-

plementary material.

2.3 Molecular docking computation

Molecular docking simulation was carried out using

Molegro Virtual Docker. For molecular docking simula-

tions, the three-dimensional crystal structure of HIV-1

integrase catalytic core domain (Kessl et al. 2012) (PDB

ID: 4DMN) was retrieved from the Protein Data Bank

(http://www.rcsb.org/). The protein was then imported in

the Molegro Virtual Docker (MVD) (Molegro APS 2011)

and the search space was set for the active site residues

(Asp64, Asp116 and Glu152). Furthermore, the binding

site was set inside a restricted sphere of radius 13 Å (X:

-34.57, Y: -10.85, Z: 5.52) with the MolDock Score

(GRID) scoring function having a grid resolution of

0.30 A�. Then, the test set and training set compounds

along with experimental known inhibitor raltegravir (for

validation purpose) were also imported in MVD. The bond

flexibility of the compounds was set along with the side

chain flexibility of the protein for search space (Asp64,

Asp116 and Glu152) was also set with to a tolerance of

1.10 and a strength of 0.90 for docking simulations. RMSD

threshold for multiple cluster poses was set at 2.00 Å. The

docking algorithm was set at a maximum iteration of 1500

with a simplex evolution size of 50 and a minimum of 10
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runs were performed for each compound. The pose gen-

eration energy threshold was set to 100, and the simplex

evolution maximum step was set to 300 by a neighbor

distance factor of 1. The best pose of each compound was

selected for the subsequent ligand–protein interaction

energy analysis.

2.4 Molecular dynamics simulation

Molecular dynamics simulation was carried out using

Gromacs 5.0.1 (Van Der Spoel et al. 2005) operated in

Ubuntu Linux 14.0 LTS. MD Simulation was carried out

for the enzyme 4DMN and the top docking complexes

4DMN-CID69851424, 4DMN-CID66861330, and 4DMN-

CID54714968 complexes, respectively. In MD simulation

studies, initially, the protein and the protein–ligand com-

plexes were solvated using the TIP3P water model and the

solvated structures were energy minimized using the

steepest descent method, terminating when the maximum

force is found in smaller than 100 kJmol-1nm-1. All

simulations were performed in the NPT ensemble at con-

stant temperature (300 K) and pressure (1 bar) with a time

step of 2 fs. NVT was performed for 1 ns (nanoseconds),

and the minimized structure were equilibrated with a

timescale of 20 ns (nanoseconds). The molecular dynamics

simulation was performed to both the protein and the

protein–ligand binding complex for 20 ns to understand the

dynamic behavior of the protein and their stability.

2.5 ADME toxicity studies

Molecular docking may result with a compound having a

favorable binding affinity and strong interactions. However,

an ideal oral drug should possess certain factors such as quick

gastrointestinal tract absorption. The potential drug candi-

date should also specifically distributed to its target and

metabolized in such a way that it does not instantly eliminate

its activity, and removed in an appropriate manner without

causing any damage (Ghasemi et al. 2015). Hence, ADME–

toxicity (absorption, distribution, metabolism, excretion,

and toxicity), which describes the nature of a pharmaceutical

compound within an organism, is an important step in the

drug discovery process. It is also evident that poor human

pharmacokinetics (ADME–toxicity) is a main reason for the

Table 1 IC50 values (experimental) and IC50 values (predicted) generated using multiple regression (MR) and partial least square (PLS)

SN Compound Multiple regression (MR) Residual Compound Partial least square (PLS) Residual

IC50 (Exp) IC50 (Predicted) IC50 (Exp) IC50 (Predicted)

1 CID11166962 0.004 0.0042 -0.0002 CID11166962 0.004 0.0040 0.0000

2 CID11225444 0.004 0.0042 -0.0002 CID11225444 0.004 0.0035 0.0005

3 CID11453518 0.002 0.0019 0.0001 CID11453518 0.002 0.0020 0.0000

4 CID25256802 0.002 0.0018 0.0002 CID25256802 0.002 0.0019 0.0001

5 CID25263157 0.004 0.0043 -0.0003 CID25263157 0.004 0.0041 -0.0001

6 CID25263158 0.004 0.0040 0.0000 CID25263158 0.004 0.0039 0.0001

7 CID25263160 0.004 0.0038 0.0002 CID25263160 0.004 0.0039 0.0001

8 CID25263162 0.004 0.0039 0.0001 CID25263162 0.004 0.0036 0.0004

9 CID25263169 0.004 0.0035 0.0005 CID25263169 0.004 0.0044 -0.0004

10 CID54677501 0.007 0.0066 0.0004 CID54677501 0.007 0.0068 0.0002

11 CID54677537 0.006 0.0060 0.0000 CID54677537 0.006 0.0056 0.0004

12 CID54682238 0.006 0.0061 -0.0001 CID54682238 0.006 0.0059 0.0001

13 CID54682241 0.007 0.0066 0.0004 CID54682241 0.007 0.0069 0.0001

14 CID54682247 0.007 0.0071 -0.0001 CID54682247 0.007 0.0068 0.0002

15 CID54682250 0.007 0.0071 -0.0001 CID54682250 0.007 0.0070 0.0000

16 CID54688265 0.005 0.0051 -0.0001 CID54688265 0.005 0.0054 -0.0004

17 CID54682263 0.005 0.0049 0.0001 CID54682263 0.005 0.0045 0.0005

18 CID54712035 0.006 0.0055 0.0005 CID54712035 0.006 0.0059 0.0001

19 CID54709826 0.004 0.0045 -0.0005 CID54686312 0.003 0.0035 -0.0005

20 CID54709838 0.005 0.0055 -0.0005 CID54709833 0.006 0.0062 -0.0002

21 CID54709842 0.007 0.0067 0.0003 CID54709839 0.007 0.0066 0.0004

22 CID54712034 0.004 0.0041 -0.0001 CID54709841 0.006 0.0066 -0.0006

23 CID25023920 0.007 0.0069 0.0001 CID25023913 0.004 0.0042 -0.0002

24 CID25263163 0.003 0.0031 -0.0001 CID25263144 0.004 0.0047 -0.0007

25 CID54682245 0.005 0.0055 -0.0005 CID54682260 0.007 0.0070 0.0000
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majority of the drug failure (Alavijeh et al. 2005). For these

purposes, ADME–toxicity predictions were calculated for

the top docking hits using ACD/I-Lab 2.0 (Advanced

Chemistry Development, Inc). ACD/I-Lab 2.0 is a web-

based service that provides instant access to spectral and

chemical databases, and predicts properties, including

physicochemical, ADME, and toxicity characteristics. In

addition, comparative analyses were performed for the

LD50 mouse (intraperitoneal, oral, intravenous, subcuta-

neous) and probability of health effect of blood, cardio-

vascular system, gastrointestinal system, kidney, liver, and

lung.

3 Results and discussion

3.1 QSAR modeling

QSAR modeling was carried out using MDL QSAR and

two optimized models were generated using MLR and

PLS. First, the generated regression equation of the MLR is

given below:

pIC50 ¼ 0:0004949 � SHBint5 Acnt� 0:002895 � nelem
þ 0:002142 � xvp6þ 0:0001224
� SdO� 0:009271 � SsF� 0:0008987 � SHsOH
þ 0:134736

ð1Þ

where SHBint5_Acnt is the count of internal hydrogen

bonds with five skeletal bonds between donor and acceptor,

nelem is the number of chemical elements, xvp6 is the

valence 6th order path Chi indices, SdO is the sum of all

(=O) E-State values in molecule, SsF is the sum of all (–F)

E-State values in molecule, and SHsOH:nSum of all [–OH]

E-State values in molecule].

The regression quality of the optimized model generated

using MR is described with a multiple R-Squared value of

0.9666 with a standard error of estimation of 0.0003275

(the smaller the better). The equation has an F-statistic

value of 86.9 with a P value of 2.657E-012. The multiple

Fig. 1 a Regression line and b regression model graph of IC50

(predicted) vs IC50 (experimental) generated employing multiple

regression (MR)

Fig. 2 a Regression line and b regression model graph of IC50

(predicted) vs IC50 (experimental) generated employing partial least

square method (PLS)
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Table 2 Predicted IC50 values of the test set compounds using multiple regression (MR) method and partial least square (PLS) method

SN Compound ID pIC50 (MR) pIC50 (PLS) Residual IC50 (PLS-MLR)

1 CID11188356 0.0036 0.0035 -0.0001

2 CID49768913 0.0035 0.0035 0.0

3 CID54683051 0.0039 0.0035 -0.0004

4 CID54684210 0.0067 0.0067 0.0

5 CID54686299 0.0060 0.0031 -0.0029

6 CID54686300 0.0051 0.0034 -0.0017

7 CID54709855 0.0054 0.0057 0.0003

8 CID54712001 0.0059 0.0059 0

9 CID54712049 0.0059 0.0056 -0.0003

10 CID54712050 0.0062 0.0059 -0.0003

11 CID54714968 0.0053 0.0066 0.0013

12 CID54735067 0.0071 0.0060 -0.0011

13 CID54751387 0.0044 0.0033 -0.0011

14 CID58899512 0.0042 0.0027 -0.0015

15 CID59382804 0.0047 0.0053 0.0006

16 CID59513436 0.0042 0.0027 -0.0015

17 CID59513438 0.0032 0.0033 0.0001

18 CID59513441 0.0018 0.0013 -0.0005

19 CID59513448 0.0052 0.0038 -0.0014

20 CID59513450 0.0042 0.0034 -0.0008

21 CID59513457 0.0043 0.0032 -0.0011

22 CID59513489 0.0031 0.0063 0.0032

23 CID59513494 0.0037 0.0033 -0.0004

24 CID59513499 0.0019 0.0013 -0.0006

25 CID59513503 0.0043 0.0030 -0.0013

26 CID59513512 0.0031 0.0033 0.0002

27 CID59771033 0.0062 0.0063 0.0001

28 CID59771039 0.0055 0.0059 0.0004

29 CID59771043 0.0061 0.0063 0.0002

30 CID59771054 0.0064 0.0063 -0.0001

31 CID59771063 0.0069 0.0059 -0.001

32 CID59771080 0.0059 0.0062 0.0003

33 CID59771093 0.0050 0.0061 0.0011

34 CID66860413 0.0043 0.0030 -0.0013

35 CID66860724 0.0043 0.0035 -0.0008

36 CID66860834 0.0049 0.0041 -0.0008

37 CID66860876 0.0042 0.0034 -0.0008

38 CID66860937 0.0041 0.0033 -0.0008

39 CID66860979 0.0019 0.0013 -0.0006

40 CID66860988 0.0052 0.0038 -0.0014

41 CID66861008 0.0042 0.0027 -0.0015

42 CID66861015 0.0052 0.0038 -0.0014

43 CID66861120 0.0042 0.0029 -0.0013

44 CID66861173 0.0036 0.0035 -0.0001

45 CID66861176 0.0043 0.0030 -0.0013

46 CID66861221 0.0031 0.0033 0.0002

47 CID66861241 0.0043 0.0032 -0.0011

48 CID66861266 0.0032 0.0033 0.0001
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Q-Squared value is 0.932 and the RSS value for cross

validation is 3.936E-006. The R-Square and Q-Square

values closer to unity give a conclusion that the training set

is very well described by the regression equation, which is

statistically very significant and the cross-validation

showed that the constructed model is very efficient for

predicting the IC50 values.On the other hand, the generated

equation for the PLS is given below:

pIC50 ¼ 0:3857 � tp1þ 1:141 � tp2þ 0:2949 � tp3
þ 0:3149 � tp4þ 0:4892 � tp5 ð2Þ

The regression quality of the optimized model generated

using PLS is described with a multiple R-Squared of

0.9578 and an RSS value of 2.531E-006. The multiple

Q-Squared value is 0.8793, and the RSS value for cross

validation is 7.242E-006 with a skewness of -0.4975,

which describes that the training set is very well, and the

cross validation showed that the constructed model is

efficient for predicting the IC50 values.

The IC50 experimental and predicted using MR and PLS

is shown in Table 1 and also the regression graph is shown

in Fig. 1 for multiple regression and Fig. 2 for partial least

square method.

3.2 IC50 prediction

Applying both the optimized QSAR models, the IC50 val-

ues for the 55 test set compounds were predicted, which is

Table 2 continued

SN Compound ID pIC50 (MR) pIC50 (PLS) Residual IC50 (PLS-MLR)

49 CID66861321 0.0042 0.0027 -0.0015

50 CID66861330 0.0038 0.0033 -0.0005

51 CID66861408 0.0034 0.0035 0.0001

52 CID66861663 0.0018 0.0013 -0.0005

53 CID66861863 0.0042 0.0032 -0.001

54 CID66861928 0.0041 0.0031 -0.001

55 CID66861937 0.0037 0.0033 -0.0004

56 CID66862537 0.0042 0.0034 -0.0008

57 CID66862568 0.0031 0.0033 0.0002

58 CID66862596 0.0042 0.0032 -0.001

59 CID67010999 0.0048 0.0061 0.0013

60 CID67011494 0.0064 0.0063 -0.0001

61 CID67120646 0.0052 0.0062 0.001

62 CID67478780 0.0041 0.0040 -0.0001

63 CID68223283 0.0060 0.0063 0.0003

64 CID68223466 0.0025 0.0039 0.0014

65 CID68311349 0.0031 0.0067 0.0036

66 CID69234998 0.0066 0.0062 -0.0004

67 CID69310201 0.0056 0.0061 0.0005

68 CID69319961 0.0036 0.0056 0.002

69 CID69322713 0.0036 0.0059 0.0023

70 CID69610495 0.0068 0.0035 -0.0033

71 CID69803743 0.0040 0.0059 0.0019

72 CID69850060 0.0022 0.0063 0.0041

73 CID69850430 0.0054 0.0058 0.0004

74 CID69850486 0.0040 0.0064 0.0024

75 CID69850630 0.0042 0.0063 0.0021

76 CID69851424 0.0063 0.0064 0.0001

77 CID69852302 0.0024 0.0061 0.0037

78 CID69852333 0.0029 0.0061 0.0032

79 CID69852653 0.0042 0.0060 0.0018

80 CID69853144 0.0028 0.0060 0.0032

81 CID69861341 0.0043 0.0061 0.0018
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shown in Table 2. From Table 2, it is revealed that there is

not much variation in the IC50 values predicted applying

MLR and PLS methods. Hence, confirmed the reliability of

both the model for the IC50 value prediction.

3.3 Molecular docking analysis

Molecular docking simulation was carried out using MVD

for the test set and training set compounds using MVD.

Table 3 Molecular docking score of the test set and training set compounds

Ligand MolDock scorea Rerank scoreb Interactionc Internald HBonde LE1f LE3g

CID69851424 (test) -98.97 -74.99 -110.52 11.55 -10.05 -3.81 -2.88

CID66861330 (test) -96.26 -68.85 -124.05 27.79 -1.69 -2.83 -2.03

CID54714968 (test) -96.19 -66.93 -99.87 3.68 -7.49 -3.01 -2.09

CID25263165 (training) -83.19 -64.36 -115.10 31.91 -2.38 -2.45 -1.89

CID66861221 (test) -90.47 -61.40 -120.37 29.90 0.00 -2.58 -1.75

CID54682245 (training) -81.65 -60.91 -108.87 27.21 -6.25 -2.63 -1.96

CID54698277 (training) -67.83 -60.18 -95.26 27.44 -3.94 -2.61 -2.31

CID68223283 (test) -81.26 -59.14 -93.18 11.91 -4.28 -2.71 -1.97

CID69322713 (test) -77.40 -55.48 -95.70 18.30 -4.43 -2.87 -2.05

CID54709842 (training) -79.65 -55.43 -95.07 15.42 -5.00 -2.41 -1.68

CID54712049 (test) -70.55 -54.22 -95.50 24.96 -5.21 -2.61 -2.01

CID54684210 (test) -89.00 -53.81 -107.41 18.41 -9.73 -2.70 -1.63

CID54712049 (training) -71.10 -52.77 -83.95 12.85 -8.00 -2.63 -1.95

CID54712035 (training) -87.18 -51.80 -95.16 7.98 -3.99 -2.81 -1.67

CID54709833 (training) -72.74 -46.66 -87.04 14.30 -1.46 -2.27 -1.46

CID54709830 (training) -69.86 -45.25 -79.40 9.54 -8.40 -2.12 -1.37

CID11166962 (training) -77.81 -44.14 -109.65 31.84 -4.00 -2.29 -1.30

CID67478780 (test) -65.94 -43.59 -73.64 7.70 -11.05 -2.36 -1.56

Raltegravir -74.35 -34.18 -65.34 -9.01 -0.07 -2.32 -1.07

a Moldock score is derived from the PLP scoring functions with a new hydrogen bonding term and new charge schemes (Thomsen and

Christensen 2006)
b The Rerank score is a linear combination of E-inter (steric, Van der Waals, hydrogen bonding, electrostatic) between the ligand and the protein,

and E-intra (torsion, sp2-sp2, hydrogen bonding, Van der Waals, electrostatic) of the ligand weighted by pre-defined coefficients Weiss (1993)
c The total interaction energy between the pose and the protein (kJ mol-1)
d The internal energy of the pose
e Hydrogen bonding energy (kJ mol-1)
f Ligand efficiency 1: MolDock score divided by heavy atoms count
g Ligand efficiency 3: Rerank score divided by heavy atoms count

Table 4 Molecular interaction analysis of the top docking hits

SN Compound ID Ligand–protein interaction Interaction energy (kJ mol-1) Interaction distance (Å)

1 CID69851424 O(1)—OD1(Asp64) -0.81 2.4

N(6)—N(Cys65) -2.1 3.19

O(1)—OG1(Thr115) -0.78 3.44

O(2)—OG1(Thr115) -1.5 3.31

O(1)—N(Asp116) -0.75 3.02

O(2)—ND2(Asp120) -2.5 2.68

2 CID66861330 N(7)—OD1(Asp64) -2.82 2.82

3 CID54714968 O(2)—OD2(Asp64) -2.5 2.66

N(8)—OD1(Asp116) -1.5 3.30

O(2)—ND2(Asn155) -2.5 3.10
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MVD is a molecular visualization and molecular docking

software based on a differential evolution algorithm; the

solution of the algorithm takes into account the sum of the

intermolecular interaction energy between the ligand and

the protein and the intramolecular interaction energy of the

ligand. The docking energy scoring function is based on the

modified piecewise linear potential (PLP) with new

hydrogen bonding and electrostatic terms included. Full

description of the algorithm and its reliability as compared

to the other common docking algorithm can be found in the

literature (Thomsen and Christensen 2006). The molecular

docking score indicates that the test set compounds have

favorable Rerank score than the training set as well as from

the experimentally known integrase inhibitors raltegravir

(Table 3). The test sets, compound, viz., CID69851424,

CID66861330, and CID54714968 have Rerank score of

-74.99, -68.85, and 66.93, respectively. While

CID25263165 (training set) has a Rerank score of -66.93

compared to -34.18 of raltegravir. The Rerank score is a

weighted combination of the terms used by the MolDock

score mixed with a few addition terms. The Rerank Score

includes the Steric term which is the Lennard–Jones

approximations to the steric energy, while the MolDock

score uses a piecewise linear potential to approximate the

steric energy. The coefficients for the weighted Rerank

Score are given in the Rerank Weight column, and the

weighted terms and their summations are given in the

Rerank Score column. The Reranking score function is

computationally more expensive than the scoring function

used during the docking simulation, but it is generally

better than the docking score function at determining the

best pose among several poses originating from the same

ligand (Thomsen and Christensen 2006).

In addition, CID69851424 and CID54714968 possessed

a hydrogen bonding energy of -10.05 kJ mol-1 and

-7.49 kJ mol-1, respectively, which accounts for the

attractive inter molecular binding affinity and binding

interaction. To understand the in-depth molecular

Fig. 3 a Binding mode of CID69851424 (yellow) to 4DMN active

site region. b Predicted bonded interactions (dashed lines) between

CID69851424 and Asp64, Cys65, Thr115, Asp116, and Asp120

residues

Fig. 4 a Binding mode of CID_66861330 (yellow) to 4DMN active

site region. b Predicted bonded interactions (dashed lines) between

CID_66861330 and Asp64 residues
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interaction, ligand–protein interaction analysis was carried

out for the CID69851424, CID66861330, and

CID54714968CID. The interaction analysis revealed the

compounds have interaction with Asp64 (shown in

Table 4) which is an active site residue. The snaps of the

ligand–protein interaction analysis are shown in Figs. 3, 4,

and 5 for CID69851424, CID66861330, and

CID54714968CID, respectively.

3.4 Molecular dynamics simulation

Molecular dynamics simulation was performed for 20 ns

using Gromacs 5.0.1 to understand the conformational

changes of the protein–ligand binding complex and the

protein to understand the amendment occurring in the

dynamic environment. The RMSD plot for 4DMN-

CID69851424 complex, 4DMN-CID66861330 complex,

4DMN-CID54714968 complex, and 4DMN is shown in

Fig. 6. The RMSD plot clearly explains the variations of

the HIV-1 integrase enzyme and protein–ligand binding

complexes. The average RMSD showed *0.27 Å for

4DMN-CID66861330 complex, *0.26 Å for 4DMN-

CID69851424 complex, and *0.29 Å for 4DMN-

CID54714968 complex, respectively, while the HIV-1

integrase enzyme (4DMN) showed an average RMSD

deviation of *0.30 Å, which is an indication revealing that

the protein–ligand complex is more stable in the dynamic

equilibrium condition. Furthermore, the dynamics simula-

tion revealed the 4DMN-CID69851424 complex is more

stable than the 4DMN-CID66861330 complex and 4DMN-

CID54714968 complex in the dynamic environment.

3.5 ADME–toxicity studies

From the ADME–toxicity analysis calculated using ACD/I-

Lab 2.0 (Advanced Chemistry Development, Inc 1994), the

three top docking hits from the test set compounds are

readily soluble in water compared to the market available

drug raltegravir (shown in Table 5). For absorption,

CID66861330 and CID69851424 showed 100 and 53%

passive absorption, respectively, compared to raltegravir

(7%). Moreover, the apparent volume of distribution of

these three compounds is higher than that of raltegravir

(Table 5). The comparative graph plot on LD50 mouse and

probability of health effect is shown in Figs. 7 and 8,

respectively. The LD50 mouse oral indicates these com-

pounds can be administered orally with more or less similar

values with raltegravir. Last, the probability of health

effects depicted CID69851424 is likely to have an overall

low impact on health effects. Overall, the ADME toxicity

analysis comes to a conclusion that these compounds in

general have enhanced pharmacological parameters than

the market approved drug raltegravir.

4 Conclusion

IC50 values were predicted for a set of HIV-1 integrase

inhibitors employing QSAR models generated using mul-

tiple regression and partial least square method. The pre-

diction indicated that there is not much variation between

these two methods, and cross validation confirms that these

Fig. 5 a Binding mode of CID_54714968 (yellow) to 4DMN active

site region. b Predicted bonded interactions (dashed lines) between

CID_54714968 and Asp64, Asp116, and Asn155 residues

Fig. 6 MD Simulation analysis depicting the RMSD graph for

4DMN and 4DMN-ligand complexes
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Table 5 Predicted ADME–

toxicity parameters for

CID69851424, CID66861330,

CID54714968, and market

approved raltegravir

ADME–toxicity parameters CID69851424 CID66861330 CID54714968 Raltegravir

Solubility H2O (mg mL-1)a -0.81 -5.14 -1.88 -2.03

BBB Log PSb -3.8 -1.8 -5.4 -4.8

BBB Log PBb -0.36 -0.75 -2 -0.26

BBB Log(PS*fu, brain)b -3.9 -2.6 -5.4 -4.8

% Oral bioavailabilityc [30 30–70 [30% [30

Absorption (% passive absorption)d 53 100 3 7

Absorption (permeability, cm s-1)d 0.21 9 10-4 7.12 9 10-4 0.01 9 10-4 0.02 9 10-4

Distribution (L kg-1)e 0.46 1.6 0.37 0.7

LD 50 mouse (mg kg-1, intraperitoneal)f 630 670 730 630

LD 50 mouse (mg kg-1, oral)f 560 890 980 990

LD 50 mouse (mg kg-1, intravenous)f 130 71 130 530

LD 50 mouse (mg kg-1, subcutaneous)f 580 130 1200 210

Prob. of blood effectg 0.61 0.86 0.73 0.53

Prob. of cardiovascular system effectg 0.19 0.94 0.35 0.29

Prob. of gastrointestinal system effectg 0.46 0.99 0.96 0.83

Prob. of kidney effectg 0.41 0.68 0.72 0.28

Prob. of liver effectg 0.59 0.34 0.87 0.31

Prob. of lung effectg 0.39 0.38 0.51 0.89

a Calculates compound’s solubility in a buffer at a specified pH value
b Calculates the blood brain barrier (BBB) transport (LogPS, Rate of brain penetration; LogPB, Extent of

brain penetration; Log (PS*fu, brain) Brain/plasma equilibration rate)
c Estimates the probability of a compounds bioavailability being above 30 and 70%
d Estimates maximum passive absorption and human jejunum permeability
e Calculates the apparent volume of distribution for a compound in L kg-1

f Estimates LD50 value in mg kg-1 after intraperitoneal, oral, intravenous and subcutaneous administration

to mice
g Estimates probability of blood, gastrointestinal system, kidney, liver and lung effect at therapeutic dose

range

Fig. 7 Comparative analysis on LD50 mouse (intraperitoneal, oral,

intravenous, subcutaneous) for CID69851424, CID66861330,

CID54714968, and raltegravir

Fig. 8 Comparative analysis on probability of health effect on blood,

cardiovascular system, gastrointestinal system, kidney, liver, and lung

for CID69851424, CID66861330, CID54714968, and raltegravir
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models can be used to predict the IC50 values. Furthermore,

a molecular docking analysis against HIV-1 integrase

showed the compounds have favorable molecular interac-

tion than the market approved raltegravir. Furthermore, the

molecular docking simulation was validated by molecular

dynamics simulation for 20 ns, where the docked ligand–

protein complex showed more stability than the HIV-in-

tegrase enzyme. Last, ADME–toxicity prediction confirms

that the docked compounds have enhanced pharmacologi-

cal parameters than raltegravir. Hence, the authors pro-

posed for the clinical trial of these reported compounds,

viz., CID69851424, CID66861330, and CID54714968.
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