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Abstract Microbial interactions and relationships are sig-

nificant for animals, insects and plants. Metagenomic

research enables properassessments and analysis for

microbial organs and communities. The analysis helps to

gain detailed insights on miscopies insects. Recent machine

learning techniques focused on algorithms and data mining

tools to check the depth of interactions and relationships on

metagenomic dataset. Accurate analysis over large genes

helps to solve real-world problems for public interest. In

this regard, graph-centric big gene dataset representations

are very important. De Bruijn graph is one the pivotal

media to demonstrate the relationships and interactions of

large genes dataset or metagenomic dataset. In this

research, mapping-based metagenomic graphical (MetaG)

genomes representation has been demonstrated. Data

cleaning is done before applying graphical illustration.

Random mapping is used to assess the variations in dataset.

Euler path-based De Bruijn graph is used to sketch the gene

annotation, translations, signaling and coding. This

research helps in computational biology to map the

genomic information in graphical ways with clear con-

ceptions. Adequate experimental comparisons as well as

analysis established the claims with tables and graphs.

Keywords Metagenomic � Euler path � Coding regions �
De Bruijn graph

1 Introduction

In the age of digitalization, genomic datasets are increasing

exponentially in all respects of biological research and

productions. Industries, universities, laboratories, agricul-

ture, healthcare and farm houses are producing billions of

data every day. From the millennium, metagenomic data

analysis has become one of the key areas in computational

biology, bioinformatics and genomics. Parallel processing

or next-generation sequencing enables massive computa-

tional support to solve big datasets and generate new

datasets again and again (Freitas et al. 2015; Hultman et al.

2015; Mitchell et al. 2015; Kopf et al. 2015). In this regard,

increasing datasets requires efficient techniques to repre-

sent metagenomic information and structures. Now-a-days,

researchers are developing reference-free machine learning

method to assess the metagenomic data structures.

Metagenomic analysis depicts a meaningful process that

can find a simpler illustration and sequencing for rRNA

dataset for large microbial associations (Sunagawa et al.

2015; Villar et al. 2015). Some popular research demon-

strates that there are about 100 trillions of cells constructed

by microbes in human bodies. The majority locations of

microbes are in the guts that have pivotal impact on human

characteristics such as physiology and nutrition. Conse-

quently, these gut microbes generate energy from food and

alter the gut elements related to some diseases (Hsiao et al.
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2014; Markowitz et al. 2014; Hunter et al. 2014). To have

enough ideas on gut impact on human body as well as

animals, it is essential to assess the interactions of

metagenomic datasets. rRNA-centric sequencing helps to

get the idea regarding bacterial divisions that determines

the functionalities of the major parts of the gut of microbes

(Huang et al. 2014). More research shows that the gut has

tremendous impact on human metagenomic as well as

interactions (Forster and Lawley 2015; Silvester et al.

2015; Bolger et al. 2014).

Basic metagenomic research is to computer the pair-

wise distinctions between genomes (Lozupone et al. 2011).

This approach is simple; however, it works in small data-

sets. One known and common analysis is beta-variations

analysis that numerically measures the dissimilarities

between two microbial genome groups. Basic characteris-

tics of metagenomic representations are done by consid-

ering important factor such as taxonomic comparisons,

total groups of genomic data, phylogenetic framework and

geometrical orientations. Mathematical and statistical

analysis helps to obtain meaningful information from

thousands of genomes. These genome dimensions are very

essential for getting faster information from disarray

datasets. Dissimilarity matrix arranges all the adjacent

distances among the collected datasets in row and column

orientations. For big datasets, there are large-scale

metagenomic genome sequences that require easy repre-

sentations and processing. For these reasons high-perfor-

mance algorithms and techniques are in demand in

metagenomic research and analysis (Lu et al. 2015; Li et al.

2015; Jing et al. 2004; De Cruz et al. 2015).

Recently some high-quality research projects are going

on metagenomic data analysis such as Ocean Sampling

Expedition and Human Microbiome Project (Rusch et al.

2007). These research and scientific analysis are significant

at all levels of metagenomic orientations. However,

excessive cost affects the analysis. To ensure better results

and impact, representations of genomes and its factors are

critical. Graphical metagenomic data representations help

to assess the factors with clear ideas as well as configura-

tions. One-dimensional, two-dimensional and multi-di-

mensional representations help to have clear view of

genomes. Of course, high-dimensional representations and

illustrations are very important for proper genomic view.

The key factors that graphical view enables are dissimi-

larity measurements as well as higher dimensional scaling

for all data levels. One popular graphical measurement of

metagenomic process is UniFrac; it computes dissimilarity

among genomes (Ayyala and Lin 2015).

Mapping-centric graphical representations of metage-

nomic data enable faster and impactful data representa-

tions. In this mapping, genomes are classified into the

several groups first. In phylogenetic cases the crab-RNA

are organized in a traditional structures (Fig. 1).

Then De Bruijn graph guided to demonstrate the divided

genomes into specific order. This order clearly represents

the complete datasets over time. Moreover, this graph can

part in next-generation sequencing and small read genome

assembly. When there are no reference genomes, this graph

arranges the genomes in probable orientations. Sometimes

most of the sample has proper references that help to adjust

the framework accurately visualize. Consequently, De

Bruijn graph helps to combine the bacterial genomes and

reflects common interest. When two genomes of microbes

are not similar, the constructed De Bruijn graph will be

mostly different. While if two constructed genomes are

similar, then combined genomes are transformed into

common structures (Chang et al. 2015; Franzosa et al.

2014; Brown 2015; Wu et al. 2016; Brown et al. 2015;

Kang et al. 2015; Gibbons et al. 2015; Deng et al. 2015).

2 Related work

Advanced metagenomic research opens a set of area such

as genome variations of profile sample, taxonomic com-

putations, sequence assembly, datasets clustering, binning,

protein code predictions and functional assessments of

related data and genome referencing. Computational

intelligence and machine learning are dominating in a wide

range of biological data even genome assembly are easily

manageable by advanced data structures along with data

mining algorithms (Sato and Sakakibara 2015). In a study,

authors have reviewed 25 tools and the sizes are continu-

ously expanding (Bazinet and Cummings 2012). There are

set of new challenges for large metagenomic data to handle

with effective machine learning solutions. Ongoing

research with metagenomic datasets and machine learning

environment are generating new dimensions for handling

excessively big data to find meaningful and hidden

information.

Assembling of metagenomic datasets is critical in recent

data mining under machine learning environments. These

assemblies permit accurate formation of genomes into

database. Moreover, genetic variations, depth of sequenc-

ing and genome binning are assured by these assemblies

(Sangwan 2016). However, there are some problems during

the visualization of genomic datasets with details depth in

the assemblies. Consequently, redundancy frequently gen-

erates wrong predictions. These problems can be easily

overcome by using graph-based approach. De Bruijn graph

with Euler path helps to find exact path to represent the

whole genomes. Many other significant metagenomic

research work focused on microbial function ignoring
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genome structures. Functionalities depict only few features

and factors (Markowitz et al. 2014; Hunter et al. 2014;

Huang et al. 2014; Sharma et al. 2010). Typical research in

this domain includes statistical predictions of genomic

functions as well as RNA sequence reads (Leimena et al.

2013) or protein sequences (Franzosa et al. 2014). Some

other tools also focused the same such as MG-RAST

(Meyer et al. 2008), MEGAN (Huson et al. 2011) and

HUMAnN (Abubucker et al. 2012). Text mining processes

for phylogenetic motif finding analyze genomes in differ-

ent dimensions as well as structured. Motif findings permit

support for small datasets. This is not suitable for large

datasets (Wang et al. 2016). Principal coordinate analysis

(PCoA) is used frequently to measure the Euclidean dis-

tances between genomes. This distance maintain in a

matrix can keep a small amount of values. PCoA is iden-

tical to the principal component analysis (PCA) that has

great influences in dimension reduction process. GrammaR

constructed by PCoA and PCA provides user-friendly

graphical genome representation under a choice to remove

irregularities as well as multidimensional orientations

(Brum et al. 2015; De Vargas et al. 2015; Lima-Mendez

et al. 2015; Ten Hoopen et al. 2015). Some other microbial

research surveys say about the impact and importance of

metagenomic analysis towards the proper visualizations

(Gilbert et al. 2014; Pylro et al. 2014; Reddy et al. 2015).

Metatranscriptomic synthesis during the gut microbiome

orientations for dietary (McNulty 2011) and xenobiotic

(Maurice et al. 2013) do not find any changes after making

huge changes on genomes functionalities. Moreover, cur-

rent research work on genomes mainly focused on orien-

tation of the gene structures. So there should have sufficient

graphical analysis for metagenomic analysis. Therefore,

recent tools have emerged to address these problems for

metagenomic reads. Three programs are widely used for

this purpose: Orphelia (Hoff 2009), MetaGene (MG)

(Noguchi et al. 2006), Meta Gene Annotator (MGA)

(Noguchi et al. 2008), and Gene-Mark (Besemer and

Borodovsky 1999). Shotgun metagenomic analyses have

been done on genomes and microbial datasets for large

functionalities. These are also considering the assembly

with critical memory efficiency. However, this analysis is

not always effective due to its less graphical structures

(Eikmeyer et al. 2013; Schlüter et al. 2008; Wirth et al.

2012).

VirAmp (Yinan et al. 2015) is a combined assembler

that compared with traditional assembler by web-based

graphical user interface. This assembler supports data

grouping in parallel process. The parallel process performs

in a single platform for large biological data processing and

provides a user-interactive platform for the users. However,

this package does not efficiently handle the overlapped

genomes and time complexity is high for interactive gen-

ome sets. Bridgers (Chang et al. 2015) is an application

system that measures the genome rearrangement by the

help of de novo assembler. In this tool Cufflinks algorithm

is used to overcome the limitations of de novo assembler. It

needs less computational time and storage than other

assemblers. But this tool does not fit in accuracy and sen-

sitivity of Cufflinks algorithm and does not efficiently

handle the overlap genome. ClusDCA (Wang and Cho

2015) is an ontological based approach that rearranges the

information for all biological datasets that have unique

activity of gene annotation function. In interconnected

process, ontology takes more time for data mapping. Edena

(Hernandez et al. 2008) is another graph-based de novo

assembler that follows the procedure of another graph-

based assembler. This approach used suffix tree to handle

the overlap genome sequence. Edena used heuristic

approach for finding overlap length gene and construct a

bidirectional graph. However graph traversing cost is too

much high along with high space complexity. A mapping-

based algorithm can overcome the problem where reads are

mapping into short read by using de Bruijn graph (Yuzhen

and Haixu 2015). Hashing function and other data structure

techniques are used to handle the k-mers for graph map-

ping. This technique is used in metagenomic transcription

to utilize the metagenome data.

Recently a significant number of techniques are used for

gene annotation or gene prediction. An ensemble gene

selection method is used for cancer gene prediction that

contains conditional mutual information (Liu et al. 2010).

Fig. 1 Phylogenetic tree for

Crab-RNA genome sequence
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Multiple gene subsets serve to train the prediction approach

and outputs are combined with ranking approach. Multiple

filters and multiple wrapper approach (Leung and Hung

2010) enhance the accuracy and robustness of biological

data classification for gene selection. Ensemble gene

grouping selection (Liu et al. 2010) is another approach

that drives multiple gene subsets. This method is based on

approximate markov blanket and virtue of information

theory. Bolón-Canedo et al. (2012) proposed another gene

selection method for ensemble of gene and annotation. A

voting approach is used to combine the outputs of gene

selection that helps to reduce the variability of features for

certain domain. A hybrid generative discriminate approach

(Bicego et al. 2012) used biological data for gene selection.

Interpretable feature extraction for topics model is used for

hybrid approach.

Laplace naı̈ve Bayes (Wu et al. 2012) model for gene

classification and annotation. These approaches focus on

the robustness of gene outliers and take group effects

because of their chemical and electrical reason. Gene pair

combination inputs (Chopra et al. 2010) are used for cancer

classification algorithm rather than gene original profiler.

Supervised and unsupervised approaches (Basford et al.

2013) are used for biological gene prediction. Supervised

classification classified the tissues based on specific gene

and unsupervised techniques classified the gene based on

tissues. A computational protocol (Xu et al. 2010) is used

as a gene markers for cancer cells of various cancer tissues.

An under-sampling method (Xu et al. 2010) is used the idea

of ant colony optimization to predict imbalanced gene data

analysis. Association rules (Giugno et al. 2013) are also

used for gene classification and prediction, but it needs

enhanced system complexity. The author suggested that the

transcript expression interval demonstration discriminates

subtype in the same class. A web-based interactive tool

(Reboiro-Jato et al. 2014) is used to assess the discriminate

of hypothesis performance of biological gene datasets. The

tool is able to evaluate for medical diagnosis and man-

agement decision. Many methods and classification

approaches are used to gene pattern. These approaches are

applicable and comprehensive for clinical and real practice.

The behavior of prediction rules is also used for biological

data size (Ives et al. 2004; Raman and Joseph 2001).

3 Methods and materials

The structure of this work is built based on gene annotation

(Fig. 2). Our method works based on three phases: data

collection, randomized approach, graph generation and

gene annotation. The sample data are the dataset of DNA

nucleotides of human, plants or micro-organ. Sample data

are character of set of DNA nucleotide data stream. Col-

lected DNA data are divided into several parts that are

known as sampling operation. In data sampling phase we

used randomized approach (Sect. 3.1) for data prepro-

cessing. Then data sampling data is ready for graph gen-

eration. Graph generation phase is divided into sub-phases:

generation of signed graph and graph reduction. In graph

generation phase, we generate an undirected sign graph

with multiple edges and loop (Sect. 3.2). Graph reduction

rules are used for graph rewriting. Basic reduction rule for

graph rewriting technique is used for specification and

generation of graph optimization (Sect. 3.3).

After graph optimizationwe performed gene annotation. In

the next phase, gene annotation process is applied with Euler

path by using optimize de Brujin graph. We transform de

Bruijn graph into series of equivalence sub-graphs. Euler

Fig. 2 Semantic view of the

proposed methodology for exon

separation
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paths of all sub-graphs represent the sub-solution of the

problem. Euler path is an efficient algorithm that is solved in a

linear time. To combine every solution of the sub-graphs

represents the solution of gene annotation (Sects. 3.4, 3.5). In

exon transcription, we marked initial and stopping sites in

optimize de Brujin graph and find out Euler path from initial

site to stopping sites (Sect. 3.6). Initial and stopping site

indicates the exon annotation region.

3.1 Randomized approach

Data mapping features provide an environment of faster

analysis and noise-free computations. Training datasets will

be collected from either biological databases or wet labora-

tories. It is difficult to handle the large biological data. Col-

lected dataset is processed by randomized algorithms.

Randomized algorithms provide unique facilities for noise-

free and faster data processing. Randomized algorithm con-

siders a rank matrixMi with some scaling parameters k for ith

iteration. MatrixMi contain two limit parameters as aj and bj
and primary values a0 and b0 satisfies the certain condition

such as a0[ 0, b0\ 0. We can define these two limit

parametersaj andbj in a systematicway for every iteration that

data proportional satisfy the following condition:

ajI\bjI ð1Þ

Eigenvalue of matrixM is measured for limit parameters

a and b. An implied function is used to measure the

behavior of matrix M eigenvalues between the desired limit

parameters:

ua;b Mð Þ ¼ ;ðaI �MÞ�1 þ ;ðbI �MÞ�1 ð2Þ

An implied iteration function is designed for data sam-

pling is h q
�
e2

� �
, here C constant is introduced that exists

ai C Cbi and e is constant for data subdivision.

Randomized algorithm is basically used for DNA

datasets mapping. DNA datasets mapping are used for

data cleaning and integration (Carreira and Helena

2004; Raman et al. 2001; Lenzerini 2002). Cleaning

and integration process are responsible for generating

system that handle large dataset and peer-to-peer data

management system (Raman et al. 2001). DNA data-

sets mapping is essential because it helps in exon

prediction and gene annotation. Basically, mapping is

considered as Al-complete problem that data mapping

have concentrated on controlled mapping such as one-

to-one data schema and structural mapping (Lenzerini

2002).

3.2 Signed graph

In this section, we have introduced basic notations for

signed graph. Let G = (V, E) be a finite undirected graph

with multiple edges and self loop. The number of |t| the
vertices, is called the order of G and the connected number

of |e| is called the degree of G. We write m 2 G if t is vertex
and e 2 G if e is edge of G. The neighborhood of a vertex t
is NG tð Þ ¼ uj t; uð Þ 2 Gf g. The vertex t is isolated if

NG(t) = 0. If a vertex has exactly one neighbor, it is

denoted as a leap. We called G is discrete graph if all

vertices are isolated. A subset A ( G is stable if there is no

edges (t, u) with t, u e A. Graph A is complete if any two

vertices of G are adjacent.

A signed graph G = (V, E, /) consists of vertices and

edges (V, E) together with a labeling function /:V ? {?,

-} of vertices V. A vertex t e G said to be positive and

negative if uðtÞ ¼ þ and uðtÞ ¼ �, respectively. We let

Gþ ¼ ftjuðtÞ ¼ þg and G� ¼ ftjuðtÞ ¼ �g ð3Þ

We say that a signed graph is negative if all its vertices

are negative (Fig. 3). Also, an edge e ¼ f u; tg is called

negative, if t; u 2 G�.
If G and I constitute two signed graphs and its two

disjoint vertex sets are V(G) and V(I), let G� I be their

disjoint union, the vertex set of G� I is VðGÞ [ VðIÞ
(Fig. 4a) and its edge forms,

EðG� IÞ ¼ EðGÞ [ EðIÞ ð4Þ

The complete connection G� I has the vertices set and

the edge set is (Fig. 4b).

EðG� IÞ ¼ EðGÞ [ EðIÞ [ fðt; uÞjt 2 G; u 2 Ig: ð5Þ

3.3 Graph reduction rule

There are three basic fundamental operations of reductions

rule for signed graph (Villar et al. 2015). The molecular

operations are translated into following operations:
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Let u and v be two vertices:

1. The negative graph rule for v is applicable to G if

t 2 G� and it is isolated in G. The result is the signed

graph nrtðtÞ ¼ G� ftg: The number of vertices is

jnrtj ¼ ftg:

2. The positive graph rule for v is applicable to G if

t 2 Gþ. The result is the signed graph nptðtÞ ¼ G�
ftg: The number of vertices is jnrtj ¼ ftg:

3. The double rule for v = u is applicable to G if v; u 2
G� and e ¼ ft; ug 2 EðGÞ: The result for signed

graph drðtÞ ¼ G� fðu; tÞ;E0
;u

0 g, where u
0

is

obtained to G� fu; tg and E’ obtained from the

complementary of E.

In basic reduction rule, graph rewriting technique is used

for specification and generation of graph optimization.

Graph analysis and transformation are performed by graph

rewriting technique.Analyzing graphmeans enlarging graph

by joining new edges with information and graph transfor-

mation means reduced into the graph rewriting by deleting

and attaching sub-graphs. In reduction rules, we delete or

replace two or more nodes by another node (Fig. 5).

In graph reduction rules, nodes D and E are rewritten by

F (Fig. 5). Here D and E nodes can correlate with F,

redundant nodes D and E are replaced by F. Nodes C, D

and E are rewritten by new node H. Reduced edges are

encrypted with new edge. Termination by edges accumu-

lation and termination by edges subtraction is used for

graph termination process. When null point (U) was

reached, it indicated termination (Fig. 5).

3.4 Optimize de Brujin graph

A set of reads S = {s1…….sn}, define the de Bruijn graph

G(S1) with (l-1) vertices. An (l-1) tuple v [ Sl-1 is joined

by directed with l-edges. If Sl contains l-tuple for which the

first (l-1) nucleotides coincide with v and last (l-1)

nucleotides coincide with tuple w. Each l-tuple from Sl
corresponds to an edge in G. If S contains the only

sequence S1, then this sequence corresponds to a path

visiting each edge of the de Bruijn graph. A de Bruijn can

substitute every edge by k parallel edges, where k is the

number of times the edge is used. If S contains the only

sequence S1, this operation creates k parallel edges for

Fig. 3 A simple signed graph with positive and negative edges

Fig. 4 Operations of signed graph. a And operation for two disjoint

graphs. b Complete operation for disjoint graph

Fig. 5 Graph reduction rule with termination point
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every l-tuple repeating k times in S1. Euler path is an

efficient algorithm solved in a linear time.

In de Bruijn graph, a vertex v is called a source if inde-

gree(v) = 0, a sink if outdegree(v) = 0 and branching vertex

if indegree(v).outdegree(v)[ 1. A path v1……vn in the de

Bruijn graph is called a repeat pattern if indegree(v1)[ 1,

outdegree(vn)[ 1 and indegree(vi) = outdegree(vi) = 1,

for 1 B i B n-1. Repeat pattern starts with vi node and vn,

are called exits from a repeat (Fig. 6). An Eulerian path visits

a repeat some times by visiting entrance and exit nodes. An

Eulerian path covers a repeat if it contains an entrance into

and exits from repeat by using the end node. Every covering

read-path reveals some information about the gene annota-

tion between entrances and exit.

To solve the Euler path for gene annotation, we have

transformed both graph G and path P into new graph G1

with path P1. This is called equivalence if it exists in one-

to-one correspondence in (G,P) and (G1,P1).We transform

de Bruijn graph into series of equivalence transformation:

G;Pð Þ ! G1;P1ð Þ ! G2;P2ð Þ ! � � � ! Gk;Pkð Þ:

To combine every solution of sub-graphs represents

the solution of gene annotation (exon/introns separation),

Euler path solution is used. We describe a simple

equivalence transformation that solves the Euler path

problem where graph G has no multiple edges. We

consider two cases of transformation; one is x–y detach-

ment and the other one is x-cut. Let x = (vin, vmid) and

y = (vmid, vout) are two consecutive edges of graph

G and Px,y be the collection of all paths of P that

includes all sub-paths. P?x defines as a collection of

paths from P that end with x and Py? as a collection of

paths from P that starts with y. Then x,y-detachment is a

transformation that adds a new edge z = (vin, vout) and

deletes the edges x and y from G (Fig. 7a). This

detachment transformation alters the systems of path

P as follows:

1. Substitute z for x, y in all path from Px,y

2. Substitute z for x in all paths from P?x.

3. Substitute z for y in all paths from Py?.

Every detachment reduces the number of edges in G and

reduces the complexity of Euler path problem.

Consider a fragment of graph G with 5 or 4 paths y3-x,

y4-x, x-y1 and x-y2 (Fig. 7b). In symmetric situation, x is

tangle (repeated pattern) and there is no available infor-

mation to relate any of paths y3-x and y4-x to relate other

paths x-y1 and x-y2.An edge x = (v, w) is removable if

Fig. 6 A repeat v1…..vn and

arcs are represented by the

overlapping the pattern

Fig. 7 Equivalent transformation for Euler path; connected edges indicates the overlap paths and disconnected edges indicates equivalent paths.

a X, Y –detachment b X-cut
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1. It is only incoming edge v and only one outgoing edge

w.

2. x is either the initial or the terminal edge for every path

P containing x.

An x-cut transformation P into a new system of paths by

simply removing x from all paths in P?x and Px? without

affecting graph G itself (Fig. 7b). If x is a removable edge

then x-cut is an equivalent transformation. Detachment and

x-cut proved to be powerful technique to build a simple de

Bruijn graph and reduce fragments for all genomes.

3.5 Annotation with Euler path using de Brujin

graph

De Bruijn graph is used for gene annotation (exon intron

separation) and next-generation sequence assembler. It

reduces the computational effort by breaking read (sort

sequence) into smallest part of DNA. Reads are called k-

mer where the parameter k denotes the length of bases for

these sequences. De Bruijn graph captures exon separation

considering exon initial and stop sites using k-mer (Fig. 8).

Construct a de Bruijn graph for exon introns where sepa-

ration consists of the following steps:

1. Structure of k-spectrum: Reads are divided into

overlapping sequence of k. Every k-mer consists of a

transcription and a stopping site in exon chain.

2. Node generation: Every (k-1) node generates for k-

spectrum. In de Bruijn graph, exon initial site is

marked as initial node (source), ending node (sink)

represents stop site of exon chain and intermediate

node serves as donor and acceptor site for exon

transcription.

3. Edge construction: A directed edge is created from

x node to y node if there exists k-mer such that its

prefix is equal to x node to y node. Overlap path is

reduced to Euler path simplification which described in

Sect. 4. To traverse marked source node to sink node,

we had indentified the exon chain from whole DNA

sequence.

By reducing whole dataset into k-mer overlaps the de

Bruijn graph reduces the high redundancy in short read

dataset. In exon annotation, imitation sites start with ATG

and termination site with TAA or TAG or TGA. Another

donor and acceptor site generates the internal node in de

Bruijn graph. Initial and stopping site indicate the exon

annotation region (Fig. 8).

By converting the set of reads into edges of the de

Bruijn graphs, the annotation problem becomes equivalent

to finding an Euler path graph. To reduce the exponential

distinct Euler path, heuristics are usually applied to con-

struct the graphs. The graphs are filtered of erroneous

occurrences and nodes are unambiguously connected by

edge which are merged together (Fig. 7).

3.6 Exon transcription

As exons are not independent, by splicing exons together to

assemble a gene one can further eliminate false exon pre-

dictions by imposing translatability (i.e., adjacent exons

must maintain the open reading frame). The main difficulty

in exon assembly is the combinatorial explosion problem:

the number of ways N candidate exons may be combined

grows exponentially with N. The key idea of computational

feasibility comes from dynamic programming (DP), which

allows finding ‘‘optimal assembly’’ quickly without having

to enumerate all possibilities. We can limit possible errors

by assuming each entry with a correct annotation that

should satisfy:

– The initiation site is ATG.

– The donor site is GT.

– The acceptor site is AG.

– The stopping site is either TAA or TAG or TGA.

– No stop codon interrupts the open reading frames.

– The length of coding regions is a multiple of three.

In pattern reorganization, the performance of a predic-

tion system can be measured by the following statistics:

true positive (TP), true negative (TN), false positive (FP)

and false negative (FN). The internal exon prediction

measurement on the nucleotide base pair level is shown in

Figs. 5 and 9.

Fig. 8 The length of overlap

k - 1 = 2. ATG indicates

initial site and TAA, TAG node

indicates termination site,

respectively. Black line

indicates the order of k-mer
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The accuracy of a prediction system is measured by

sensitivity (SN), specificity (SP) and F-measure as follows:

SN ¼ TP

TPþ FN
ð6Þ

SP ¼ TP

TPþ FP
ð7Þ

F �measure ¼ 2� SP� SN

SPþ SN
: ð8Þ

4 Results and discussion

Java environments have been considered for this system

design and implementation. During the experiments some

key factors such as graph generation, graph reduction and

graph optimization have been addressed. Three types of

real-world datasets are used for simulation performed here

and these dataset are adh22, h178 and sag178 (Table 1).

Adh22 is a single sequence of Drosophila melanogaster

with 2.9 Mb long. Adh22 contains different versions for

genome annotation. In the first version adh22 contains 38

genes with 111 exons and the second version consists of

222 genes with 907 exons. H178 has 178 genomic

sequences for human that are evaluated from EMBL and

GENSCAN. The average sequence length is 716,913 bases.

Sag178 is a set of 43 sequences with 178 genes. Graph

evaluation and graph generation time are computed for all

datasets for different gene sequence lengths. Adh22, h178

and sag178 have different lengths of gene sequences with

different number of exons (Table 1).

In Table 1, the first column indicates the three different

datasets and rest of the columns indicate the number of

gene, exons and base pairs, respectively. Adh22 datasets

have maximum genes, exons and base pair than other two

datasets. Sag178 has less number of base pairs due to small

number of genes. For this metagenomic gene analysis, De

Bruijn graph for different data lengths has been generated.

Every node contains k-mers with three nucleotides. Com-

parison between De Bruijn graph and non-De Bruijn graph

execution time is measured repeatedly. De Bruijn graph

needs less time than non-De Bruijn graph. De Bruijn graph

reduces the edge than non-De Bruijn graph. Only the valid

directed paths are constructed for exons transcription pro-

cess, on the other hand non-De Bruijn graph generates

multiple edges for exons annotation (Table 2).

Execution time of De Bruijn graph varies for different

DNA lengths. Both execution times of De Bruijn graph and

non-De Bruijn approaches are gradually increased due to

increase in base pairs. De Bruijn graph generation approach

required less time than non-De Bruijn graph process due to

small size of biological data. When the base pair is

500,000, the execution time of De Bruijn graph generation

is 2955 ns and non-De Bruijn graph process is 7213 ns. De

Bruijn graph process is (7213 - 2955)/7213 = 59.03 %

faster than non-De Bruijn graph process. De Bruijn graph

process required less time because De Bruijn graph nodes

consider only exons transcription k-mers. Graphical rep-

resentations of the same computing also reflect the impact

of both times (Fig. 10).

Figure 10 depicts the execution time for De Bruijn graph

and non-De Bruijn graph generation. The execution time of

De Bruijn graph generation for adh22 dataset needs less time

than non-De Bruijn graph generation. The graph generation

of De Bruijn graph and non-De Bruijn graph for h178 and

sag178 requires similar execution time as adh22 datasets,

though sag178 and h178 have less base pairs than adh22.

We used randomized De Bruijn graph for DNA cate-

gorizing in a specific format. Randomized algorithm is

used for sampling data in a specific format. Randomized

algorithm for De Bruijn graph has two phases: sampling

and pre-data analysis. Sampling indicates splitting DNA

Fig. 9 Measurement parameters for exon prediction

Table 1 Different gene length, exons and base pair for three datasets

Dataset Number of genes Number of exons Base pair

Adh22 222 907 898,702

H178 178 845 716,913

Sag178 156 756 632,420

Table 2 Execution time of De Bruijn graph and non-De Bruijn graph

for different data lengths of adh22 dataset

Data size (bp) Non-De Bruijn graph

generation

De Bruijn graph

generation

100,000 2824 1150

200,000 4257 1337

300,000 4980 1552

400,000 6689 2705

500,000 7213 2955

600,000 7934 2974

700,000 8134 3074

800,000 9967 3133

850,000 11,067 3384
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sequences. It is an important step for sampling distribution

because without proper subdivision, it is difficult to handle

large DNA dataset. Weights are assigned for finding DNA

factors. Weights are considered for threshold value for

DNA sampling. DNA sampling data are selected based on

threshold value. Metagenomic data analysis is more accu-

rate after data sampling by randomized algorithm. At first

we are sampling the DNA sequence for graph generation.

We measure the execution time for randomized De Bruijn

graph and non-randomized De Bruijn graph data sampling

(Table 3).

Execution time of non-randomized De Bruijn graph

process and randomized De Bruijn graph process varies for

different base pairs. Both execution times of randomized

algorithm and non-randomized approaches are gradually

increased due to base pairs increased. Randomized

approach required less time than non-randomized process

due to sample size of sampling data. When the base pair is

600,000, the execution time of randomized approach is

7576 ns and non-randomized process is 12,326 ns. The

randomized process is (12,326 - 7576)/12,326 = 38.54 %

faster than nonrandomized De Bruijn graph process. Ran-

domized De Bruijn graph process required less time

because DNA data are smaller and precise for subdivision

and data preprocessing.

Execution time of randomized and nonrandomized

graph is increased linearly (Fig. 11). Figure 11 depicts a

line graph that indicates the execution time of randomized

and nonrandomized De Bruijn graph for different base

lengths.

Figure 11 depicts execution time for randomized and

nonrandomized approach for DNA data sampling. Ran-

domized process reduced the data length for metagenomic

data analysis that takes less execution time than

nonrandomized DNA data. The execution time of ran-

domized approach needs more when DNA sequence length

is increased. Data subdivision process of randomized

algorithm required more time when it generates more

splitted portions. In graph reduction phase, sign graphs are

optimized for graph simplification. Simplified graph redu-

ces the execution time for exon finding. In the graph

reduction phase, nodes of the graph that contain k-mers are

reduced. This reduced process simplified the graph. When

the graph is simplified, exon-finding operation becomes

easier by using reduced k-mers nodes. Graph-reducing

approach reduces execution time than non-reduction graph

(Table 3). Non-reduction graph consists of multiple and

redundant nodes that are responsible for graph and time

complexity (Table 4).

Execution time of non-reduction and graph reduction

processes varies for different base pairs. Both execution

times of optimized De Bruijn graph and De Bruijn graph

Fig. 10 Execution time for graph generation for De Bruijn graph and

non-De Bruijn graph for adh22

Table 3 Execution time of randomized De Bruijn graph algorithm

and nonrandomized De Bruijn graph process for different data lengths

Data size (bp) Nonrandomized

De Bruijn graph

Randomized De

Bruijn graph

100,000 2825 1375

200,000 6108 2936

300,000 8493 4140

400,000 10,021 5334

500,000 14,084 6974

600,000 14,326 7576

700,000 15,573 8040

800,000 16,110 8354

850,000 16,469 10,147

Fig. 11 Execution time analysis of randomized De Bruijn graph and

nonrandomized De Bruijn graph approach for DNA data sampling
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approaches are gradually increased due to increase in base

pairs. Optimized De Bruijn graph needs lesser time than

simple De Bruijn graph process. When the base pair is

500,000, the execution time of optimized De Bruijn graph

is 7106 ns and De Bruijn graph process is 14,216 ns.

Optimized De Bruijn graph process is nearly about two

times faster than simple De Bruijn graph process. Opti-

mized De Bruijn graph reduces the unnecessary nodes that

consist of k-mers for exon annotation. In simple De Bruijn

graph process, multiple nodes have to traverse for exon

finding that does not provide optimal solution and need

more execution time (Fig. 12).

We measured the accuracy, sensitivity and specificity for

exons prediction and gene annotation. Predicted exons are

correct if splice sites are at the annotation position. Predicted

gene is correct if all exons predicted are correctly predicted.

We also measure false positive that indicates when some

exons are partially predicted. For each data set gene pre-

diction and exons prediction are measured globally. Euler

path approach is used in optimized De Bruijn graph for exon

prediction and gene annotation. We compare our result with

another gene annotation approach, GENESCAN and GEN-

EID. GENSCAN as it is the most commonly used gene

annotation program for human’s genome. Optimized graph-

based approach of Euler path provides more accurate output

than GENESCAN. GENEID (version 1.1) is an exon-finding

approach more suitable for Drosophila. GENESCAN is a

program that identifies the gene structure. It is a GHMM-

based program that can be used to predict gene annotation

and exon introns boundaries (Mochizuki et al. 2011).

GENESCAN performs two-phase gene prediction structure:

statistical pattern identification and sequence similarity

comparison. GENEID is a gene prediction program with a

hierarchical structure (Parra et al. 2000). GENEID used

position weight matrices (PWMS) that build the exon gen-

eration site. We also compare our approach with GENEID

for exon finding with different base pairs. We calculate

sensitivity and specificity for exon prediction for GENEID

and optimized De Bruijn graph.

In Table 5, the first column indicates the three datasets

and second column indicates the prediction criteria. Opti-

mized De Bruijn graph is more accurate than GENESCAN

and GENEID for base pair analysis, exon prediction and

gene annotation. Sensitivity and specificity are higher for

base pair and exon prediction than gene annotation process.

Sensitivity and specificity are low for gene annotation,

because it is difficult to predict all exon predictions accu-

rately. Optimized De Bruijn graph analysis measures sen-

sitivity of base analysis, exon prediction and gene

annotation 91.4, 60.3 and 35.82 %, respectively, for adh22

datasets. For adh22 dataset, optimized De Bruijn graph

measures 62.3 % sensitivity for exon prediction, whereas

GENESCAN and GENEID measure 61.1 and 57.8 %

sensitivity for exon prediction. Optimized De Bruijn graph

measures higher sensitivity and specificity for h178 data-

sets than adh22. It is difficult for large datasets to predict

exon and introns splices for whole gene annotation that

measure the less sensitivity and specificity than other cri-

teria. We measure better result for h178 dataset for every

base pair analysis, exon prediction and gene annotation.

Sag178 datasets predict less sensitivity and specificity for

exon prediction and gene annotation. On the other hand,

GENESCAN measures better result for every dataset for

human genome analysis than GENEID process.

Figure 13a depicts the measurement of specificity and

sensitivity of exon prediction for our collected dataset. Our

approach is to more accurately measure the exon pattern

from whole genome sequence than GENESCAN and

GENEID for exon prediction. Optimized De Bruijn graph

operates only those k-mers that are responsible for exon

Table 4 Execution time of optimized De Bruijn graph and De Bruijn

graph process for different data lengths

Data size (bp) De Bruijn graph Optimized De Bruijn graph

100,000 2957 1507

200,000 6240 3068

300,000 8625 4272

400,000 10,153 5466

500,000 14,216 7106

600,000 12,458 7708

700,000 15,705 8172

800,000 16,242 8486

850,000 16,601 10,279

Fig. 12 Execution time analysis of graph reduction and non-reduc-

tion approach for different base pairs
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generation. By finding optimal analysis, optimized De

Bruijn graph accurately measures the exon pattern. GEN-

ESCAN more accurately measures the exon pattern than

GENEID approach for human genome. GENEID approach

has failed for whole exon pattern for whole human large

DNA sequences. We also measured the gene annotation

Table 5 Sensitivity and

specificity measurement for

gene annotation and exon

prediction

Datasets Prediction criteria Methods

Optimized De Bruijn graph (%) GENESCAN (%) GENEID (%)

Adh22 Base

SP 96.3 96.2 95.2

SN 91.4 91.2 90.3

Exon

SP 72.4 71.1 69.4

SN 62.3 61.1 57.8

Gene

SP 49.12 45.58 38.41

SN 35.82 31.58 27.54

H178 Base

SP 97.12 95.55 87.32

SN 88.12 84.57 89.22

Exon

SP 83.82 81.77 64.97

SN 75.62 73.32 73.58

Gene

SP 39.62 38.53 12.55

SN 38.12 34.58 13.61

Sag178 Base

SP 94.12 92.76 87.66

SN 84.32 62.77 76.27

Exon

SP 68.52 66.90 65.22

SN 62.12 43.11 58.31

Gene

SP 21.12 16.13 15.34

SN 23.12 12.58 15.58

Fig. 13 Sensitivity and specificity prediction for a exon prediction, b gene annotation using optimized De Bruijn graph, GENESCAN and

GENEID approach
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(Fig. 13b) for different datasets. Optimized De Bruijn

graph more accurately measures the gene than the other

two approaches. Optimized De Bruijn graph approach,

(49.12 - 38.41)/49.12 = 21.80 %, has more specificity

than GENEID approach for adh22 dataset. GENEID mea-

sures less accurate result for gene annotation for human

genome, but this approach is accurate for Drosophila

(Parra et al. 2000). GENESCAN approach measures more

accurately for gene than GENEID for all datasets. By

combining both measures, we use the f-measure and

accuracy for exon and gene prediction. A good indictor

indicates false positive and accuracy that are measured by

specificity and sensitivity. F-measure indicates that exon

pattern is wrongly predicted and accuracy indicates the rate

of accurate measurement of the exon pattern and gene

annotation.

Table 6 indicates the f-measure and accuracy rate for

gene annotation and exon prediction for three datasets.

When accuracy rate is increased, f-measure decreases; high

accuracy indicates maximum correct gene annotation pro-

cess. Our optimized De Bruijn graph approach measures

high accuracy and less f-measure for gene annotation than

other two prediction approaches. For adh22 dataset, opti-

mized De Bruijn graph approach accuracy is

Fig. 14 a F-measurement and b accuracy prediction for exon prediction using optimized De Bruijn graph, GENESCAN and GENEID approach

Table 6 F-measure and

accuracy for gene annotation

and exon prediction

Datasets Prediction criteria Method

Optimized De Bruijn graph (%) GENESCAN (%) GENEID (%)

Adh22 Exon

F-measure 12.7 14.8 16.6

Accuracy 87.3 85.2 83.4

Gene

F-measure 23.2 26.4 31.2

Accuracy 76.8 73.6 68.8

H178 Exon

F-measure 11.7 13.7 17.6

Accuracy 88.3 86.3 82.4

Gene

F-measure 25.2 27.8 30.2

Accuracy 74.8 72.2 69.8

Sag178 Exon

F-measure 17.7 17.6 22.6

Accuracy 82.3 82.4 77.4

Gene

F-measure 22.1 28.4 34.2

Accuracy 77.9 71.6 65.8
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(87.3 - 85.2)/87.3 = 2.41, higher than GENESCAN for

exon prediction. For similar datasets our approach is

4.47 %; more accurate exon prediction approach than

GENEID. For h178 datasets our optimized De Bruijn graph

measures less f-measure than other two approaches which

means our approach is more accurate than the others.

Optimized De Bruijn graph measures less f-measurement

for sag178 datasets, because it has less base pairs, that is,

nearly about 650,000 base pairs.

All possible exon prediction is important for accurate gene

annotation. Internal exons also have flanking splicing bound-

aries: the acceptor splicing sites at the 50 end and the donor sites
at the 30 end. In the optimized De Bruijn graph, Euler approach

selects donor and acceptor region of exon prediction more

efficiently than GENESCAN and GENEID. Potentially all of

the selected donor site and acceptor site candidates can be

paired to form exon boundaries. The number of internal exons

in a gene is one less than the number of introns.

Accurate gene annotation depends on perfect exon

prediction. Our optimized De Bruijn graph approach pre-

dicts the exon pattern better than other prediction algo-

rithms (Fig. 14b). Our optimized De Bruijn graph is more

accurate and has less f-measure for adh22, sag178 and

h178. Our approach accuracy is higher than GENEID and

GENESCAN for exon prediction. Optimized De Bruijn

graph method also provides optimal solutions for gene

annotation.

5 Conclusion

In this research, we have observed that graph theory gives

better accuracy than the other two models.

Our method is robust that continuously free the memory

storage. In fact, our simulation result indicates that it is more

accurate for a large dataset. It performs relatively well on the

task of assembling exons to genes, because programs with a

similar exon-level accuracy often have a lower gene-level

accuracy. This means those programs more often combine

the exons to a wrong gene structure, for example by splitting

or joining genes. With the growing number of sequenced

species, the possibilities of finding approximate possible

exons by cross-species alignments of homologous genomic

sequences also increase. This leaves the task of assembling

possible exons to genes. In future, we shall consider this

concept for finding possible intron analysis.
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