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Abstract Local sequence alignment (LSA) is an essential

part of DNA sequencing. LSA helps to identify the facts in

biological identity, criminal investigations, disease identi-

fication, drug design and research. Large volume of bio-

logical data makes difficulties to the performance of

efficient analysis and proper management of data in small

space has become a serious issue. We have subdivided the

data sets into various segments to reduce the data sets as

well as for efficient memory use. The integration of

dynamic programming (DP) and Chapman–Kolmogorov

equations (CKE) makes the analysis faster. The subdivision

process is named data reducing process (DRP). DRP is

imposed before DP and CKE. This approach needs less

space compared with other methods and the time require-

ment is also improved.

Keywords Dynamic programming � Chapman–

Kolmogorov equations � Data reducing process

1 Introduction

In our previous work (Khan and Kamal 2013a, b) we have

used hidden Markov model, neural network (NN), and

suffix tree (ST). The outcomes are good, but it takes more

space and time. Besides, we also checked the DNA dam-

ages for ontological alignment (Khan and Kamal 2013a, b).

In 1975, Frederick Sanger and his colleagues, and Alan

Maxam and Walter Gilbert developed two different meth-

ods for determining the exact base sequence of a cloned

piece of DNA (Robert 2002). These spectacular break-

throughs revolutionized molecular biology. They have

allowed molecular biologists to determine the sequences of

thousands of genes and they have even made it possible to

sequence all three billion base pairs of the human genome

(Robert 2002). It has made very positive impacts on

functional identification of newly sequenced genes and

building reshaped DNA sequences (Doolittle 1996).

Local sequence alignment locates the best approximate

subsequence match within two given subsequences.

Sequences might be DNA, RNA and protein sequences in

biological sequences. Besides LSAs, gapless alignment

such as BLAST (Altschul et al. 1990) or FASTA (Lipman

and Pearson 1985, 1988) is examined (Arratia et al. 1988;

Dembo and Karlin 1990; Karlin and Altschul 1990, 1993).

We have noticed that some alignments with gap also play

an important role to decide the proper match for the exact

sequence matching. We have examined the alignments

with gap such as Needleman–Wunsch (Needleman and

Wunsch 1970) or Smith–Waterman (Smith and Waterman

1981; Waterman 1989, 1994) algorithms. Dynamic pro-

gramming is also considered in these alignments (Batzog-

lou et al. 2000a, b).

Generally, nucleotides are arranged along two standards

of double helix, called the forward and reverse standards

with the nucleotides of one stand bonding with comple-

mentary nucleotides on the others. Normally, adenine

nucleotides bond only with thymine, and cytosine nucleo-

tides only bond with guanine; the bonded nucleotide is

called the basepair (bp). Sequencing consist of four bases

of DNA double strand structure. Suppose P ¼ a1; a2 � � � am

and Q ¼ b1; b2 � � � bn n�mð Þ over alphabet
P

. The general
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case of alignment is to match the similarities of these two

strings under the name of local, global or semi-local

alignments.

2 Related work

According to the various algorithms, implemented through

2001 to 2005, Ning et al. (2001), Kent (2002), Furey et al.

(2002), Schwarz et al. (2003) and Watanabe et al. (2005)

examined the accuracy of the sequencing. In the age of

information superhighway, we know that the genome

sequences may have continual or near continual patterns in

the given or collected data sets. As a result, the outcomes

might be the same for many positions. On the contrary, the

mutations and Indel may generate incorrect judgments for

sequencing and mapping, whether it is local, global or

pairwise alignment or mapping. The algorithms above do

not consider the situations regarding the repetitions of the

patterns, mutations and incorrect mapping. Here, we have

noticed that the system rejects the data sets, makes the area

small and as a consequence the calculations become

complicated as well as wrong. Ewing and Green (1998)

proposed a solution to overcome the ambiguity, but this

method produces low-quality regions. Here, we have

implemented the Markov chain concept under Chapman–

Kolmogorov equations to establish probable sequenced

positions. In the field of sequencing, there are a number of

softwares that help to detect the sequences and the fre-

quently used systems are PolyPhred (Stephens et al. 2006),

SNP detector (Zhang et al. 2005), and novoSNP (Weckx

et al. 2005). But these three systems only detect genotype

sample. They are unable to solve the dynamic patterns and

sequences. Our systems will cover these problems under

the bounding box scheme. The softwares that are used for

sequencing are mainly classified broadly into two catego-

ries: training based and detection based. The detection-

based category depends on homolog finding. But the

homolog finding mainly depends on database finding

(Claverie et al. 1997). However, database finding is not

always efficient due to the size and cost of the equipments.

Training-based sequencing is not able to identify the proper

coding regions due to the lack of generalizations (Pati et al.

2010). Besides, predictions are vulnerable with many false-

positives identifications and sensitivities (Yok and Rosen

2011). Nowadays, many researchers have focused on the

efficiency and correctness of predictions. The latest meth-

ods have been designed on the basis of advanced annota-

tions or predictions in alignments and matching by

removing false predictions (van Baren and Brent 2006) or

generating new genome sequences. However, there is some

scope of uncertainty in the generated sequences, which are

convergent, bounded or monotonic.

Frameshift identification (Tech and Meinicke 2006) is

an important part of the sequencing, whether cross-

checking of genes or adjustment of translational initiation

site (Stormo et al. 1982; Zhu et al. 2004, 2007). According

to Wu et al. 2006, phylogenic fingerprint DNA sequencing

is improved, but the convergent features are not checked.

In the same field of multiple sequencing of proteins (Keller

et al. 2011), there are no guarantees of finiteness checking.

Besides, there are some established gene identifiers such as

ORPHEUS (Fleischmann et al. 1995), AUGUSTUS (Keller

et al. 2011), SLAM (Alexandersson et al. 2003) and

GenePrimp (Stormo et al. 1982) that have strictly mapped

the genes. To accomplish efficiency as well as reduce

sensitivity, we have designed a complete package that

coordinates the stages by maintaining the linkage and

arrangements of sequences. Due to the lack of linkage of

methods, the sequencing does not always answer proper

actions. In ORPHEUS, we have noticed that the system

does not take invariant information at the stage of match-

ing. It also proposed that (Dhar et al. 2009) unknown

motifs may be difficult to identify from intergenic regions.

We have checked the alignments by OHSUMED data set.

OHSUMED data set is a very informative data house for

medical document classification and identifications. The

OHSUMED data set, which was created for the TREC

conference, has become an evaluation benchmark in

automatic information classification research since 1994

(Yetisgen-Yildiz and Pratt 2005). OHSUMED is composed

of 348,566 MEDLINE documents from 270 journals pub-

lished between 1987 and 1991. The documents are cate-

gorized under the environment of 14,321 MeSH classes.

We have selected the OHSUMED due to its smaller

amount of spaces on storing and manipulating. For exam-

ple, there are 753 classes with only 1 document in OH-

SUMED. The research result and implementation of Ruiz

and Srinivasan (1999), and Lewis (1992, 1996 ) used 49

categories related to heart diseases with at least five

training documents. The data set related to DNA and dis-

eases has been commonly used in DNA classification as

well as for the identification of specific patterns from a

given DNA set and DNA collections.

3 LSA and integration

Local sequence alignment is a process that enables the

sequence to match the sequence at specific parts of the total

given DNA sequences. Local alignment may be on the

basis of pairwise comparison of sequences, whatever the

length. Local alignment is very important in DNA testing

for medical science, law and justice, criminal identifica-

tion, baby identification and, last but not the least, diseases

identifications. Local alignment works by finding small
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polynucleotides (e.g., UAA, UCG, ATG) or any pattern

that is responsible for the identification of the desired

identity. Figure 1 shows the brief scenario of local

sequencing.

From Fig. 1, we see that the left part of the figure

indicates the LSA under the two small lengths (T G C G in

the first row and A G C G in the second row). In this case

the local sequence length is four and it may be any length

less than or greater than this length. Pairwise alignments

are frequently used in repeat match, unique match, con-

tiguous seed, space seed, vector seed and maximum match

subsequences (MMSS) (Waqaar et al. 2008), a collection of

bases that is also part of the LSA. Recently, sequencing has

been performed on the basis of seed selection and then

extending the sequence according to the demand of the

sequence (Yu et al. 2007). The right part of Fig. 1 shows

the operations of the LSA where indel is used when there

are any deletions or insertions of the nucleotides. The

group of nucleotides representing perfect matches indicates

the seeds of the LSA. This seeds finding process is

accomplished by two phases. In the first phase, the algo-

rithm finds the seeds under consideration of perfect mat-

ches, and in the next phase the system increases the length

of the seeds toward the MMSS finding. The BLAST

algorithm works for the fixed length alignment, whereas

our algorithm works with any variable length sequences.

We also compare the alignment of our system with

MUMmer and MUMmerGPU. We have significantly

noticed that RSAM is faster and moderately sensitive than

BLAST, MUMmer and MUMmerGPU. Schatz et al.

(2007) and Delcher et al. (2002)) depicted that both

MUMmer and MUMmerGPU show the same outcome

where the sensitivity is very high and the complexity is

O(n2) when the sequences vary their lengths and it is

always more sensitive.

Suppose s(p,n) indicate the number of alignments of two

sequences of DNA length n and seed size b. Basically,

s(p,n) is a count of (0,1) matrices under minimum two

sequences or rows of the given DNA and an unknown

number of columns, so that both sequences contain pre-

cisely n 1s, i.e., each column contains at least one 1. The

asymptotic expression of s(p,n) for a specified b as n ? ?,

is a function of b:

S p; nð Þ �
2n

n

 !

: ð1Þ

According to Stirling’s theory as n ? ? and seed b is

fixed,

s p; nð Þ� pnð Þ�0:5
� �

4n þ o 1ð Þð Þ as n!1: ð2Þ

When s(1,n) there is only 2-sequence alignment. It is

easy to narrate the sequencing by generating a function

when b C 1:

T xð Þ ¼ 1� xð Þ2�4x xb � xþ 1
� �2

: ð3Þ

From Eq. (3) it is possible to decide the alignment

possibilities under the finite seeds or blocks.

3.1 Data reducing process

For LSA, it is very important to have the specified length of

DNA, RNA or proteins. From the baseline paper (Waqaar

et al. 2008), we have reviewed that the author has imple-

mented two different steps: MMSS selection and MMSS

anchor selections. MMSS selection by suffix tree is a costly

approach due to its complexity in searching the matching at

any specified lengths of DNA. The complexity of the suffix

tree under this environment is O(n ? m) time, where

O(m) time is essential to build the suffix tree and O(n) time

is used for searching the patterns. Total time is O(n ? m).

After than to select the anchor length it is essential to have

O(n) time. So the total complexity is O(n ? m) 9 O(n),

i.e., the total time complexity for the first two steps is

O(n2 ? mm).

We have implemented these two steps by using the data

reducing process (DRP) length selections of the given

DNA where the length of the genome is n and the number

of genome is t. The total size of the bounding box is

n 9 t. The size will repeatedly divide until it reaches the

unique portions of the nucleotide. Here, unique means

single nucleotide. The consideration whether the length of

a genome is odd or even is an important factor. The DRP

(n, t) algorithm will narrate details about the process.

Figure 2 shows the operations of the DRP.

Data reducing process (n, t)

1. Select the length n, with the dimensions t, and the

number of genome sequences under the array as n 9 t.

2. Subdivide the array n 9 t to (n/2 9 t/2) in the first

phase.

3. Continue step 2 until the subdivision reaches the single

nucleotide.

Fig. 1 The process of LSAs. Perfect matches, Mismatches, Insertions

and deletions (indel) are marked clearly using various colors. The

fundamental basic for the local alignment sequencing are these three

measurements
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n� tð Þ � � � n=k � t=kð Þ � � � n=2k � t=2kð Þ � � �
n=4k � t=4kð Þ � � � n=nk � t=nkð Þ:

4. Let (n = 2n ? 1).

5. n / (n – 1).

6. Store (2n ? 1)th position nucleotides; repeat steps 2

and 3.

7. if ((n/nk9t/nk) == 1)

8. Stop subdivisions.

9. Otherwise,

10. Repeat 2, 3, 4 and 5.

11. Locate, match, mismatch and indel are shown in

Fig. 1.

The DRP sign DRP(S) denotes a set of nucleotides S.

Here DRP ¼ a1; a2; a3 � � � anð Þ are various nucleotides

elements.

4 Integration environments

In this algorithm we have checked the alignment by con-

sidering individual nucleotides. After taking the input of

the sequences, we perform dynamic programming and

inverse dynamic programming to check the alignments

with set operations and check that the modifications are

matches, mismatches and indel (Fig. 3).

Integration Algorithm (MNU, NMNU)

Here,

MNU = matched nucleotide unit

NMNU = non-matched nucleotide unit

1. At first, input the genome sequences and identify the

MNU and NMNU from the DRP algorithms.

2. Implement the dynamic programming and inverse

dynamic programming to identify pairwise

alignments.

3. Use the set operations on the selected part of the

alignments.

4. Modify the matches, mismatches and indel.

5. Finally, train the sequencing to identify the MNU and

NMNU.

6. Let (NNLN == NMNU).

7. Repeat the step 5.

Input the sequences

Dynamic and Inverse 
Dynamic programming

Programming

Markov chain for 
mismatch selection

Fig. 3 In this integrated algorithm the figure shows the relationship

among various machine learning approaches. The identity of this

algorithm is that it contains dynamic programming and set operation

along with Markov chain. The process started by taking DNA

sequence as input. After taking the sequences dynamic programming

is imposed on the respective sequences. This step helps to classify the

sequences. At the third step, we see that the set operation makes the

distinction of the DNA segments. The next step is a very important

part of this algorithm. In this case the selection of matches,

mismatches and indel is determined

Fig. 2 DRP with length n = 40; genome number middle part shows

the first division of the selected DNA genomes and the last part shows

the second division of the same DNA with the same length and

genomes toward unique nucleotides. This process will lead to obtain

unique nucleotides for LSAs. This DRP is used for the first time in the

field of bioinformatics LSAs. This is a novel idea for sequence length

selections
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8. Otherwise,

9. Repeat the steps 1 to 5.

10. End.

4.1 Dynamic and inverse dynamic programming

We have implemented dynamic programming to choose

the MMSS. Consequently, we also imply inverse dynamic

programming to verify the alignment that does not match.

Suppose

P ¼ pl; p2 � � � pn; and Q ¼ q1; q2; . . .qm; are two DNA

sequences. The indel of two sequences is denoted by the

weight M (g). At first, we consider the best alignments as

F p; qð Þ ¼ max8 p�; q�ð Þ, where F is a function which relates

the current alignments and new alignment. By using dynamic

programming we can check the sequences F(p, q) recursively.

F i; jð Þ ¼ F p1; p2 � � � pi q1; q2; . . .qj

� �

where F 0;Oð Þ ¼ O;F O; jð Þ ¼ F �; q1; q2; . . .qj

� �
¼ M jð Þ

and F i; 0ð Þ ¼ M ið Þ. Then,

F i; jð Þ ¼ F i� 1; j� lð Þ þ F pi; qj

� �
;maxfF i� k; jð Þ

�

þM kð Þg;max F i; j� Ið Þ þM lð Þf g. For LSA the function

L p; qð Þ ¼ maxfF pu; puþ1; . . .pv; qx; qxþ1; . . .qy

� �
: 1

� u� v� n; l� x� y�mg. The dynamic algorithmic oper-

ation to select maximum matches subsequence for the two

DNA sequences P and Q are as follows.

Maximum matches subsequences (Sequence P,

Sequence Q)

Maximum Matches Sub Sequences (Sequence P, 
Sequence Q) 
{ 
Input: Sequence P and Q
Output: The Maximum Matches Sub Sequences.

Reserve: Counting Matrix
G: Check the tracing table (use letter a, b, c )
n=P.length ()
m=Q.length ()
// fill in Reserve and G
for (i=0;i<m+1;i++)

for (j=0;j<n+1;j++)
if (i==0) || (j==0) 

then Reserve (i,j)=0;
else if (P[i]==Q[j])

Reserve (i,j)=max { Reserve [i-
1,j-1]+1, Reserve [i-1,j], Reserve [i,j-1]}

{update the entry in trace table G }
else 

Reserve (i,j)=max { Reserve [i-
1,j-1], Reserve [i-1,j], Reserve [i,j-1]}

{update the entry in trace table G  
}

then, use trace back table G to print 
out the optimal alignment.
}

Besides the alignment with DP for MMSS, our activity

also checked the complement of MMSS by inverse

dynamic programming (IDP). The inversion assures the

nonmatches nucleotides only. Inversion will consider for

both matches and mismatches. The inversions must be the

complement of the regular pairwise alignments.

INVERSION(c, d, i, j) = F1 (pc, pc?1, pc?2,…pi,

qj, qj-1,…qh).

Here,

INVERSE Að Þ ¼ T

INVERSE Cð Þ ¼ G

INVERSE Gð Þ ¼ C

INVERSE Tð Þ ¼ A:

In the case of regular and authentic sequencing, the

genome parts pc, pc?1, pc?2,…pi, qj, qj?1,…qh must be

matched after inversions.

4.2 Markov chain for mismatch selection

From the baseline work (Waqaar et al. 2008), we have

examined the total process of the mismatches seeds and

mismatches anchor selection where it cost time complexity

O(n2 ? mn) and space complexity as O(mn(n2 ? m2)). We

measure mismatches using Chapman–Kolmogorov for-

mula. The formula for a stochastic process with random

variable X is X ¼ fXt; t 2 Tg, where t = index and it

indicates the time. Xt = state of the process, T = index set

constituted by time t.

Suppose n ¼ 0; 1; 2; 3. . .; m ¼ 1; 2; 3. . . and i0. . .im 2
E: E = all possible values that the random variable Xt can

assume. Then,

Pr Xnþ1 ¼ i1; . . .;Xnþm ¼ im Xn ¼ i0jf g ¼ Pr
i0i1
� Pr

i1i2
� � � Pr

im�1im
:

Pr Xnþm ¼ j Xn ¼ ijf g

¼
X1

k¼0

Pr Xnþm ¼ j Xnþ1 ¼ k;Xn ¼ ijf gPr Xnþ1 ¼ k Xn ¼ ijf g

X1

k¼0

Pr Xnþm ¼ j Xnþ1 ¼ kjf gPr Xnþ1 ¼ k Xn ¼ ijf g

¼
X1

k¼0

Pr
ik

Pr
kj

¼ Pr
m

ij

In general,

Pr
nþm

ij
¼
X

k2E

Pr
n

ik
Pr
m

kj
for all n; m� 0; all i; j 2 E:
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5 Implementation

Before starting the experiments we have marginalized

the data set by sampling. Based on the sequence nature

we have verified the data set by stratified sampling,

because it helps to select the subgroups from a defined

population so that it represents the total impact of the

population. To accomplish this sampling, first of all we

have to define and determine the population and sample

size. Then, the desired variables have to be selected so

that the sample becomes appropriate. Here, the local

variables will be the nucleotides and polynucleotides.

Finally, the exact classification determines the local

sequences. Compared with the baseline paper (Waqaar

et al. 2008), we have checked the sensitivity with

specificity of the sequencing based on polynucleotide

segments as sequence key factors under receiver oper-

ating characteristics (ROC).

We have implemented and experimented under the

environments of Java with Integrated Development Envi-

ronment NetBeans. The object-oriented implementation

helped us to perform with the nucleotides (A, C, T, and G)

as distinct objects. The total process was executed in an

object-oriented manner instead of procedural C program-

ming language as in Waqaar et al. (2008). Object orienta-

tion enables faster and machine-independent environments

over any procedural language. The machine-independent

analysis, synthesis and anti-synthesis create a powerful

algorithmic procedure. The steps of the algorithm are

depicted in Fig. 3.

6 Experiments and result

In most of the cases, the authors have considered one or

two matrices to assess the speed and sensitivity of

sequencing. We here consider six dominant metrics to

identify the performance of our alignment algorithm. The

matrices are: speed (X1), complexity (X2), space (X3),

sensitivity (X4), accuracy (X5) and risk (X6). For speed,

sensitivity and accuracy we measured the referential value

as best, average and low. We have checked the complexity,

risk, accuracy and space for the first time and many LSA

tools measured the sensitivity without any standard

parameter. According to the MUMmer, Delcher et al.

(2007) termed the parameter ‘q’ as the ratio between

accurate aligned nucleotides pairs and total number of

nucleotides in the given sequence. Total column score is

another aspect of the MUMmer procedure. Again accord-

ing to the AVID (Bray et al. 2003), the authors consider the

alignment pairs which have score greater than the prede-

fined threshold value. Instead of all of the methods above,

we have concentrated on the set operations under the

complete machine learning process on exons and introns.

Introns measurement are also an essential part of the

alignment to maintain proper checking instead of only one

parameter checking (exons). For speed, sensitivity and

accuracy the reference values have been checked according

to the fuzzy manner, such as best (H), average (M) and low

(L).

The measurements of all the parameters mentioned

above have been depicted in the following tables

(Table 1). We have considered the sequence length

randomly starting from 500 thousand to 2,000 thousand.

In this work we used Nucleotide Database from

National Central for Biotechnology Information, OH-

SUMED database and ROSETTA (Batzoglou et al.

Table 1 The reference values for speed, sensitivity and accuracy

Parameters Dependent parameters

(antecedent)

Result (consequent)

Speed (X1) If X5 is H ^ X3 is H ^ X2 is H Then X1 is H

If X5 is H ^ X3 is M ^ X2 is M Then X1 is

{(H.0.3),(M,0.7)}

If X5 is H ^ X3 is L ^ X2 is L Then X1 is

{(H.0.3),(L,0.7)}

Sensitivity

(X4)

If X5 is H ^ X2 is ^ H Then X4 is H

Accuracy

(X5)

If X5 is H ^ X4 is ^ H ^ X6 is

H ^ X2 is H

Then X5 is H

Table 2 The speed comparison of three algorithms: BLAST, base-

line paper and this system

Iteration Sequence

length

(weight)

Speed (ns) Comparison

BLAST Base

line

paper

This

system

1 500,000 0.63 0.60 0.55 11 %

higher

2 600,000 0.69 0.66 0.57 11 %

higher

3 700,000 0.71 0.67 0.60 12 %

higher

4 800,000 0.73 0.69 0.61 15 %

higher

5 900,000 0.80 0.72 0.60 14 %

higher

..

. 1,000,000 ..
. ..

. ..
.

1,100,000

..

.

20 2,000,000 0.95 0.90 0.67 24 %

higher
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2000a, b) database instead of only one database. It is

clearly visible that alignment varies from database to

database. Table 2 depicts the speed comparisons of

BLAST, baseline paper (Waqaar et al. 2008) and our

algorithms. The input of the sequence length is con-

sidered as the weight of the comparisons of this system.

The very interesting and effective observation of RSAM

is that as the size increases, the performance of the RSAM

increases. NNs and Markov process enables faster calcu-

lations in RSAM. Table 3 below is the comparison of the

complexity of the three algorithms. As the size increases,

the complexity of the BLAST and Baseline Paper algo-

rithm increases. But RSAM is the same, though the sizes of

the sequence increase.

From the figure above it is clearly visible that the high–

low lines among BLAST, baseline paper and RSAM

indicate the differences and faster response of RSAM

algorithm compared with the other two. Receiver operating

characteristics analysis for the data set according to the

CPU utilization is shown Figs. 4, 5, 6.

Table 3 below shows the complexity comparison of

BLAST, baseline paper (Waqaar et al. 2008) and RSAM.

The BLAST is a linear method to check the local sequence

and exon sequences. Linearity is good for simple and small

size of the sequences and exons finding is straightforward.

But it becomes difficult when the length of sequence and

exon are not fixed. We consider the complexity with CPU

utilization considering per-million nucleotides sequences.

CPU utilization is the ration between user time and wall

clock time. Besides the wall clock time, we have mini-

mized the number of comparisons by incorporating the

parallel comparisons (Akl 1985). Suppose k stands for the

total number of comparison rounds (time) of any algo-

rithms for n elements. Then the total comparisons are

denoted by a function Total (k,n). So in view of complexity

comparisons, Total (k,n) is the upper bound as worst case.

On the contrary, minimum total number of comparisons

Minimum (k,n) is lower bound as best case. In this work,

we have significantly noticed that for maximum rounds of

Fig. 4 The CPU utilization for

the sequence length starting

from the range of 500,000 to

two millions nucleotides with

the exons and introns in the

sequences. We have clearly

noticed that RSAMA performs

better irrespective of any length

and as the size of the

nucleotides increases. It is

interesting that as the lengths of

the sequences increase RSAM

performing better

Table 3 Complexity comparison of BLAST, baseline paper and this

system

Iteration Sequence length

(Weight)

Complexity

BLAST Baseline

paper

RSAM

1 500,000 O(n2) O(n) X (nlogn)

2 600,000 O(n2) O(n) X (nlogn)

3 700,000 O(n2) O(n) X (nlogn)

4 800,000 O(n2) O(n) X (nlogn)

5 900,000 O(n2) O(n) X (nlogn)

..

. 1,000,000 ..
. ..

. ..
.

1,100,000

20 2,000,000 O(n2) O(n) X (nlogn)
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comparisons, the complexity is X (nlogn). For sequence

lengths from 500,000 to 2,000,000, the complexities among

BLAST, baseline paper (Waqaar et al. 2008) and our

algorithms are as follows.

In our baseline paper (Waqaar et al. 2008), there is

no clue to compare the sensitivity of the sequencing

and suffix tree is implemented in patterns matching and

searching. We, on the other hand, measured the sensi-

tivity by comparing the performance between suffix tree

and suffix array. In view of this parameter, both suffix

tree and array have the benefit in space and time values.

Due to the fundamental benefits of suffix tree over

suffix array, it performs better searching and matching.

On the contrary, suffix array requires less space than

suffix tree. For very long sequence length, suffix array

is better than suffix tree.

7 Conclusion

In this work and activity, we have implemented and pro-

posed the combined machine learning approach for

sequence alignment and local sequencing. We have noticed

that the combination of neural network, Markov chain, set

operation, dynamic and IDP, bounding box algorithm for

fixing the lengths of the local sequence make our revised

sequence alignment matching (RSAM) faster and accurate

compared with BLAST and baseline paper. We also suc-

cessfully checked the performance between suffix tree and

suffix array under sensitivity measurement. Bounding box

algorithm is very interesting and newly imposed idea for

maximum matching subsequence selections. One parame-

ter we were unable to measure was the Specificity with

Sensitivity in the ROCs analysis. In future, we will check

this parameter.
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