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Abstract
Purpose of Review The present study aims to review the existing literature to identify pathophysiological proteins in obesity 
by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and 
clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications.
Recent Findings Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as 
a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the 
potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity 
development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions 
and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive 
and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a 
review presents a significant challenge for researchers trying to interpret the existing literature.
Summary This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic 
studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported 
to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress 
responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identi- 
fied proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, 
seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone  
family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins 
(catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of 
comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents 
a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable 
insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential 
biomarkers and the development of personalized medicine in obesity

Keywords Obesity · Proteomics · Metabolism · Personalized medicine

Introduction

Obesity is defined as a nutritional, endocrine and metabolic 
disorder characterized by an abnormal accumulation of body  
fat and subclinical chronic inflammation. More than 1 billion 
people are grappling with obesity [1], which is associated 

with an increased risk of morbidity and mortality, causing 5 
million deaths every year along with overweight [2] https:// 
www. who. int. It is also linked to several chronic diseases such 
as type 2 diabetes (T2DM), metabolic syndrome, liver disease 
or cardiovascular diseases and some types of cancer [2].

Body mass index (BMI) is the main parameter used 
to classify obesity; however, this index does not allow to 
evaluate body composition because it does not differentiate 
muscle mass from adipose tissue (AT) or bone [3]. Con-
sequently, it is easy to overestimate obesity and predict 

Francisco J. Tinahones and Mora Murri both share last authorship.

Extended author information available on the last page of the article

/ Published online: 4 May 2024

Current Obesity Reports (2024) 13:403–438

http://crossmark.crossref.org/dialog/?doi=10.1007/s13679-024-00561-4&domain=pdf
https://www.who.int
https://www.who.int


wrongly health outcomes. On the one hand, a proportion 
of individuals with obesity seems to be protected against 
worsening of metabolic health, whereas at the other end of 
the spectrum, there are normal weight individuals who have 
the metabolic abnormalities usually associated with obesity 
[4]. This paradox hampers new diagnosis and treatment 
approaches of obesity and all its comorbidities. Additionally, 
when considering obesity, every person should be assessed 
based on their own specific and unique circumstances [5]. 
Therefore, it is essential to find novel molecular parameters 
that provide a broader understanding of the molecular events 
that control body weight.

As mentioned earlier, the quality and quantity of body 
fat accumulation may be responsible for a major risk of 
developing several pathologies. This is possible due to the 
fact that adipose tissue (AT) has secretory functions and 
acts as a metabolic and endocrine organ, capable of produc-
ing metabolic regulators [6]. Secreted proteins as well as 
plasma or serum proteome represent an important group of 
molecules that provide us valuable insights for monitoring 
physiological changes caused by obesity [7]. Obesity can 
alter or even change some proteins in different tissues; an 
unhealthy amount of body fat caused by protein interactions 
and modifications are responsible for different affections 
related to the accumulation of AT. For example, the accu-
mulation of AT around the throat and larynx causes sleep 
apnoea [8], whereas its accumulation around the heart can 
lead atrial fibrillation and heart failure [9]. Additionally, 
obesity can also increase the secretion of certain hormones 
and pro-inflammatory mechanisms which may produce 
infertility due to an increase in male hormones, among other 
issues [10]. The accumulation of fat around various tissues 
has the potential to induce alterations and modifications at 
the protein level, as well as in protein–protein interactions.

Proteomics—a powerful approach part of the “OMICS” 
spectrum—is a promising tool to elucidate the intricate 
interplay between proteins and obesity. Proteomics can 
identify and measure changes in protein levels and profiles 
in response to genetic variations, pathological conditions or 
physiological states [11]. This technology allows us to inves-
tigate how obesity affects cells in different body fluids and 
tissues such as, visceral adipose tissue (VAT), subcutaneous 
adipose tissue (SAT), skeletal muscle (SKM), liver, ovarian 
granulosa cells (GCs), platelets, plasma, sperm, endometrial 
tissue or extracellular vesicles (EVs).

Obesity, being a multifaceted condition influenced by 
genetic, environmental, and lifestyle factors, presents a com-
plex disease model. Despite many non-targeted proteomic 
studies exploring obesity, a comprehensive and up-to-date 
systematic review of the molecular events implicated in 
obesity development is lacking. The lack of such a review 
presents a significant challenge for researchers trying to 
interpret the existing literature.

Our goal, as the first systematic review of non-targeted 
proteomics in obesity, is to evaluate all available studies to 
identify pathophysiological mechanisms that may improve 
our comprehension of obesity and its clinical implications. 
We aim to determine which proteins or processes should be 
prioritized over others while selecting potential targets for 
hypothesis-driven research. In our review, we have included 
the latest published research comparing different proteomics 
profiles of patients with obesity and normoweight subjects. 
This review provides valuable insights that may contribute to 
the identification of novel therapeutic targets, and to facili-
tate the development of new treatments for obesity.

Methods

Registration and Protocol

This systematic review was registered a priori at PROS-
PERO (human studies: CRD42023212429) and structured 
following the PRISMA guidelines [12].

Study Design

We conducted a systematic review of original studies report-
ing proteomics analysis in general adult human population 
up to February of 2023. Proteomics analyses were defined 
as high-throughput analyses conducted at the protein level, 
aiming to uncover novel insights through non-targeted 
approaches [13]. Five different electronic databases were 
searched: PubMed, EMBASE, Scopus, Web of Science 
(WOS), and Directory of Open Access Journals (DOAJ). 
Body mass index (BMI) was used to stratify participants as  
patients with obesity (BMI > 30 kg/m2) or normoweight  
controls (18.5 kg/m2 > BMI < 25 kg/m2).

Search Strategy and Data Collection

All the publications that studied the association between pro-
teins with obesity were searched and reviewed. We included 
studies published using non-targeted proteomics approaches 
and identifying a characteristic pattern of proteins in patients 
with obesity compared to healthy normoweight matching 
controls. In addition, a hand search of the references of the 
retrieved articles and relevant reviews was performed to 
identify other potentially eligible studies.

The search algorithm was: “Obesity” [Title] AND “Prot-
eomic” [Title] OR “Proteomics” and the published language 
was limited to English. We only included studies in humans. 
Language was limited to English. Experimental methods, 
protocols, reviews or systematic reviews, abstracts and con-
ference proceedings were excluded from this research. At 
least two emails with logical intervals (about 3 weeks) were 
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sent to the corresponding author of the manuscript to elimi-
nate the limitations of no access to full text.

All studies were independently screened by three 
research. Data were extracted independently from 
included studies by two authors (AR, MI). Disagreements 
were resolved by discussion between the two authors and 
consultation was made with a third author (MM). We 
classified every selected study according to character-
istics of the cohort: age, BMI, matching criteria, as it 
is showed in Table 1. Moreover, analytical, identifica-
tion or software method used in selected manuscripts, as 
well as biomarker source and the different abundance of 
expressed proteins are represented in Table 2.

Quality Assessment

The quality assessment of the included studies was 
assessed independently from included studies by two 
authors (AR, MI). Disagreements were resolved by 
discussion between the two authors, and consultation 
was made with a third author (MM). Study quality was 
appraised using the Critical Appraisal Skills Programme 
(CASP) checklists (Online resource 1) in all the included 
studies of the present systematic review.

Results

Characteristics of the Studies

PRISMA diagram of the individual proteomics systematic 
search is summarised in Fig. 1. Then, 3934 manuscripts 
were identified and, according to inclusion criteria, 16 stud-
ies were included in systematic review. All articles extracted 
from mentioned databases were precisely evaluated based on 
the full text and reported supplementary data.

A summary of the characteristics of the eligible studies 
for systematic review are summarized in Table 1. The total 
number of participants included in the current systematic 
review was 149 normoweight subjects and 152 patients 
with obesity. The mean age of participants ranged from 
24 [14] to 52 years [15]. In 7 studies, control and obese 
groups were matched by age and gender, 6 studies by age 
and 3 studies by gender. Different non-targeted proteom-
ics approaches were addressed in order to compare proteins 
from patients with obesity and lean subject. Examined 
samples expressing different protein abundance included 
extracellular vesicles (EVs), platelets, SAT, VAT, SKM, 
endometrial tissue, GCs and sperm. Analytical and iden-
tification methods of the included studies are represented 
in Table 2. Analytical method included two-dimensional 

Table 1  Characteristics of published studies included in systematic review comparing samples from patients with obesity and normoweight sub-
jects

Results are shown as mean ± standard deviation (mean ± SD)

Author (year) Country Simple size (n) Age (years) BMI (kg/m2) Matching criteria

Normoweight Obesity Normoweight Obesity Normoweight Obesity

Barrachina et al. 2018 Spain 22 22 35 ± 11 35 ± 11 22 ± 2 46 ± 5 Age and gender
Barrachina et al. 2019 Spain 10 10 34 ± 11 34 ± 12 22 ± 2 46 ± 6 Age and gender
Benabdelkamel et al. 2015 Saudi Arabia 7 7 36 ± 5 38 ± 7 23 ± 0 45 ± 4 Age
Boden et al. 2008 USA 6 6 36 ± 4 44 ± 4 24 ± 1 34 ± 2 Age
Giebelstein et al. 2012 Germany 10 11 51 ± 1 49 ± 1 24 ± 1 34 ± 1 Age
Giuliani et al. 2022 USA 6 6 26 ± 9 31 ± 6 22 ± 3 38 ± 6 Age and gender
Grande et al. 2019 Italy 4 4 43 ± 4 44 ± 5 22 ± 1 50 ± 1 Age and gender
Hittel et al. 2005 USA 6 6 45 ± 3 38 ± 3 24 ± 1 54 ± 4 Gender
Hwang et al. 2010 USA 8 8 37 ± 4 44 ± 3 24 ± 1 32 ± 1 Age and gender
Karlsson et al. 2009 Sweeden 9 10 47 ± 16 52 ± 19 21 ± 3 33 ± 3 Age and gender
Kras et al. 2018 USA 16 17 33 ± 3 32 ± 3 23 ± 1 34 ± 1 Age and gender
Kriegel et al. 2009 Germany 5 2 24 ± 4 38 ± 22 22 ± 2 33 ± 3 Gender
Oberbach et al. 2011 Germany 15 15 24 ± 2 24 ± 3 24 ± 2 37 ± 7 Age
Pini et al. 2020 USA 5 5 38 ± 2 41 ± 2 24 ± 0 33 ± 1 Age
Shang et al. 2019 China 8 9 44 ± 7 34 ± 10 22 ± 1 49 ± 10 Gender
Si et al. 2021 China 12 14 31 ± 2 38 ± 1 21 ± 0 31 ± 1 Age
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difference gel electrophoresis (2D-DIGE), two-dimensional 
polyacrylamide gel electrophoresis (2D-PAGE), protein gel 
electrophoresis NuPAGE Bis–Tris, high performance liq-
uid chromatography-electrospray tandem mass spectrometry 
(HPLC–ESI–MS-MS), tandem mass tag (TMT) and label 
free. Identification methods included liquid chromatog-
raphy mass spectrometry (LC–MS/MS), matrix-assisted 
laser desorption/ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS), nano-high performance liquid 
chromatography/electrospray ionisation mass spectrometry 
(Nano-LC-ESI_MS/MS), 1D-high performance-liquid chro-
matography-mass spectrometry (1D-HPLC–ESI–MS/MS), 
matrix-assisted laser desorption/ionization mass spectrom-
etry (MALDI-MS/MS), nano liquid chromatography tandem 
mass spectrometry (Nano-LC-ESI_MS/MS) and 1D-liquid 

chromatography-mass spectrometry (1D-LC–MS/MS). 
Full name of identified proteins along with the correspond-
ing genes can be found in Table 3. UniProt Software was 
employed to provide comprehensive and functional informa-
tion of these proteins. Molecular functions, type of analyse 
sample and protein abundance were reported according to 
each study.

A Proteomics Approach to Obesity

All outcome data were semi-quantitative, i.e. relative pro-
tein abundance. In total, the abundance of 362 proteins 
was reported to be statistically different between indi-
viduals with obesity compared to normoweight controls. 

Table 2  Summary of published studies comparing samples from patients with obesity and normoweight subjects using proteomic approaches

Analytical and identification method of proteins of studies included in systematic review as well as analysis software employed for proteom-
ics analysis is shown. Every expressed protein found showing different abundance are represented in last column as "↑”, increased and “↓”, 
decreased
2D-DIGE two-dimensional difference gel electrophoresis, 2D-PAGE two-dimensional polyacrylamide gel electrophoresis, Bis–Tris NuPAGE 
protein gel electrophoresis, HPLC–ESI–MS-MS high performance liquid chromatography-electrospray tandem mass spectrometry, TMT tandem 
mass Tag, LC–MS/MS liquid chromatography mass spectrometry, MALDI-TOF MS matrix-assisted laser desorption/ionisation time-of-flight 
mass spectrometry, Nano-LC-ESI_MS/MS nano-high performance liquid chromatography/electrospray ionisation mass spectrometry, 1D-HPLC–
ESI–MS/MS 1D high performance-liquid chromatography-mass spectrometry, MALDI-MS/MS matrix-assisted laser desorption/ionisation mass 
spectrometry, Nano-LC-ESI_MS/MS nano liquid chromatography tandem mass spectrometry, 1D-LC–MS/MS 1D-liquid chromatography-mass 
spectrometry, EVs extracellular vesicles, SAT subcutaneous adipose tissue, VAT visceral adipose tissue, GCs ovarian granulosa cells, SKM skel-
etal muscle

Author (year) Analytical Method Identification Method Analysis software Sample Protein abundance

Barrachina et al. 2018 2D-DIGE LC–MS/MS or MALDI-
TOF MS

Progenesis SameSpots 
v 4,5

EVs 22 (9 ↓, 13 ↑)

Barrachina et al. 2019 2D-DIGE LC–MS/MS or MALDI-
TOF/TOF

Progenesis SameSpots 
v 4,5

Platelets 32 (19 ↓, 13 ↑)

Benabdelkamel et al. 
2015

2D-DIGE MALDI-TOF MS Progenesis SameSpots 
v 3.3

SAT 61 (30 ↓, 31 ↑)

Boden et al. 2008 2D-PAGE MALDI-TOF/TOF PDQuest SAT 20 (7 ↓, 13 ↑)
Giebelstein et al. 2012 2D-DIGE nanoHPLC/ESI–MS/MS DeCyder-2D-V6.5 SKM 26 (12 ↓, 14 ↑)
Giuliani et al. 2022 Bis–Tris NuPAGE nano LC–MS/MS R package DEP Endometrial tissue 16 (14 ↓, 2 ↑)
Grande et al. 2019 Label free LC–MS/MS MaxQuant (MQ) 

v.1.5.0.30
Platelets 46 (3 ↓, 43 ↑)

Hittel et al. 2005 2D-PAGE MALDI-TOF/TOF MS/
MS

Z3 software SKM 13 (4 ↓, 9 ↑)

Hwang et al. 2010 Label free 1D-HPLC–ESI–MS/MS Affymetrix software SKM 15 (6 ↓, 9 ↑)
Karlsson et al. 2009 2D-PAGE MALDI-TOF MS PDQuest Plasma 11 (6 ↓, 5 ↑)
Kras et al. 2018 HPLC–ESI–MS-MS HPLC–ESI–MS-MS Proteome software 

v.4.6.1
SKM 70 (43 ↓, 27 ↑)

Kriegel et al. 2009 2D-DIGE MALDI-TOF/TOF MS/
MS

DeCyder software 5.0 Sperm 9 (6 ↓, 3 ↑)

Oberbach et al. 2011 2D-DIGE MALDI-MS/MS Nano-
LC-ESI_MS/MS

Delta2D v3.6 Plasma 6 (6 ↑)

Pini et al. 2020 Label free LC–MS Proteome software 
v.4.8.9

Sperm 26 (23 ↓, 3 ↑)

Shang et al. 2019 Label free 1D-LC–MS/MS Progenesis software v 
4.0

VAT 30 (10 ↓, 20 ↑)

Si et al. 2021 TMT LC/MS Limma package R 4.1.0 GCs 10 (10↑)
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Forty-one proteins were found to be altered in at least 2 
studies (Table 3) and were described in detail according to 
their function in this section. As those proteins were not 
reported in the same kind of samples in at least 3 different 
studies, a meta-analysis was not performed.

Proteins Related to Metabolic Pathways

Obesity involves a sustained abundance of available energy; 
therefore, metabolic pathways that play an important role 
in maintaining cellular energy homeostasis are often dys-
regulated under this condition [16]. The excess of energy 
intake associated with the progression of obesity can result 
in hyperglycaemia, hyperinsulinemia and an increasement in 
fat mass. Moreover, the expansion of AT requires the forma-
tion of new blood vessels that supply nutrients and oxygen to 
proliferate adipocyte cells. Multiple proteins orchestrate the 
processes required for the efficient production of this energy 
demand [17]. In this regard, 7 proteins related to metabolic 
pathways have shown a consistent decrease in subjects with 
obesity as compared to their normal-weight counterparts, 

while 3 proteins were found to be increased and 3 proteins 
were found increased/decreased in different studies.

Alcohol Dehydrogenase Class‑3 Alcohol dehydrogenase 
class-3 (ADH5) possesses a great ability to metabolize long-
chain alcohols, playing a significant role in the metabolism 
of formaldehyde in the human body. They have attracted 
considerable interest due to its detoxifying role, modulating 
the effects of ingested ethanol, tissue damage and devel-
opmental abnormalities [18]. A previous study in obesity 
has shown that ADH5 transcript is significantly increased in 
brown adipose tissue (BAT) from patients with obesity, sug-
gesting its role in protecting BAT against obesity-associated 
metabolic dysfunction [19]. Moreover, differential expres-
sion of ADH5 abundance during gestation and lactation has 
been correlated with weight gain in early life [20]. Decreased 
abundance of ADH5 together with some other proteins in 
obesity compared to normoweight patients was related to 
several biological processes, including oxidative stress, 
inflammation, translation, DNA damage repair and sperm 
function, being significantly less abundant in the sperm of 

Fig. 1  Flow chart for study identification and selection
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men with obesity compared with healthy weight controls 
[21]. Low protein abundance of ADH5, thus, suggest that 
oxidative stress together with other biological process as 
inflammation are closely tied to reproductive dysfunction in 
men with obesity, compromising their fertility [21]. Addi-
tionally, patients with obesity have reduced abundance of 
ADH5 in platelets [22].

Aldehyde Dehydrogenase  Aldehyde dehydrogenase  
(ALDH2) is an important enzyme that eliminates toxic 
aldehydes by catalysing their oxidation to non-reactive 
acids. There is a consistent association with ALDH2 and 
obesity-related features including BMI, waist circumfer-
ence, waist-to-hip ratio, and visceral fat accumulation [23]. 
Boden et al. revealed an increase of ALDH2 on SAT of 
patients with obesity and IR [24]. Those results differ from  
Benabdelkamel et al. who reported a decrease in abundance of  
this antioxidant enzyme on SAT [25]. Low abundance of 
ALDH2 is known to lead accumulation of toxic acetalde-
hyde and lipid aldehydes as well as to decrease in lipoly-
sis within the mature adipocytes of SAT; however, these 
reported differences could be explained by the difference 
of proteomics analysis employed, more recent in the case of 
Benabdelkamel et al. [25] and the significative differences 
in BMI of population with obesity from both studies [24, 
25]. Boden et al. employed subcutaneous fat biopsies from 
the upper thighs of six nondiabetic subjects with obesity 
while Benabdelkamel et al. employed SAT obtained by lipo-
suction from patients with morbid obesity [24, 25]. On the 
other side, a decreased ALDH2 abundance was also found in 
mitochondria isolated from SKM of individuals with obesity 
compared to lean healthy controls [26], highlighting how 
obesity can alter the expression of mitochondrial proteins 
regulating key metabolic processes in SKM, including ATP 
production or fatty acid oxidation [27, 28].

Alpha‑Enolase Alpha-enolase (ENO1) is a glycolytic 
enzyme involved in various processes such as energy or free 
fatty acid metabolism, growth control, and hypoxia tolerance 
[29]. Previous studies in obesity have reported decreased 
levels of ENO1 in adults with obesity and T2DM. It proves 
that inhibiting the non-glycolytic functions of alpha-enolase 
can generate an antidiabetic effect and weight loss in those 
individuals; however, it is needed further research [29]. In 
this regard, ENO1 downregulation have been associated 
with weight regain in patients with obesity who followed a 
weight loss program, indicating the role of ENO1 expression 
changes on finding target for preventing weight regain and 
treat metabolic disorders [30]. These findings are consistent 
with decreased levels of ENO1 abundance found on SAT 
of patients with obesity in two of the original manuscripts 
included in the present systematic review. A significant 
decrease in the abundance of this enzyme was also reported 

by Benabdelkamel et al., highlighting alterations in energy 
metabolism, including a decrease in the glycolytic activity 
due to weight gain in obesity [25].

Apolipoprotein A‑I Apolipoprotein A-I (APOA1) is the 
major peptide of human plasma high-density lipoproteins 
(HDL), which are crucial for reverse cholesterol transport 
from tissues to the liver excretion. This apolipoprotein has 
anti-inflammatory, antiatherogenic and anti-thrombotic 
properties, interacting with HDL particles and giving them 
their cardioprotective characteristics. Moreover, previ-
ously, it has been reported that plasma levels of APOA1 
are inversely associated with some metabolic conditions, 
including T2DM, hyperlipidaemia, NAFLD and obesity 
[31]. Some other reported lipoprotein abnormalities, includ-
ing decreased levels of APOA1 in patients with obesity com-
pared to lean individuals [32]. In this regard, APOA1 abun-
dance was found to be decreased in plasma from patients 
with obesity compared to healthy control individuals [15]. 
Those new findings are consistent with Benabdelkamel et al. 
who found significantly decreased APOA1 abundance on 
SAT of patients with morbid obesity compared to partici-
pants with overweight or lean controls [25]. Moreover, LDL 
proteome of women with obesity showed higher levels of 
APOA1 than men with obesity, highlighting sex-related dif-
ferences [15].

Apolipoprotein B‑100 Apolipoprotein B-100 (APOB) is a 
major protein constituent of LDL. Increased levels of this 
molecule are well established to be solid predictors for 
cardiometabolic events [33]. In this regard, recent studies 
reported that higher levels of APOB were a good risk pre-
dictor for long-term cardiovascular events in patients with 
obesity [34]. Moreover, increased abundance of this protein 
in patients with obesity were decreased by bariatric surgery, 
revealing the role of this intervention in reducing levels of 
APOB and decreasing risk of cardiometabolic diseases [35]. 
In addition, increased levels of APOB were found in plasma 
and VAT from patients with obesity compared to normo-
weight individuals revealing it concerning and important 
role in cardiometabolic health outcomes of patients with 
obesity [15, 36].

ATP Synthase Subunit Beta ATP synthase subunit beta 
(ATP5F1B) is a target enzyme for human health that pro-
duces ATP from ADP in the presence of a proton gradi-
ent across the membrane which is generated by electron 
transport complexes of the respiratory chain. Malfunc-
tion of this complex has been implicated in a wide vari-
ety metabolic disease. ATP5F1B plays a beneficial role in 
obesity-induced non-alcoholic fatty liver disease (NAFLD) 
by improving mitochondrial function in hepatic steatosis 
[37]. Inhibition of this enzyme could alter energy and lipid 
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metabolism, contributing to an insulin resistant phenotype 
and to the onset and progression of T2DM [38]. In addition, 
an impaired ATP5F1B translation has been correlated with 
the suppression of muscle metabolism in SKM of individu-
als with obesity compared to lean subject [39]. ATP5F1B 
abundance was increased in SAT samples from insulin-
resistant patients with obesity compared to lean insulin-
sensitive controls [40], demonstrating an important role in 
the development of obesity-related IR and inflammation due 
its involvement in energy and free fatty acid metabolism. In 
accordance with this result, ATP5F1B was also increased 
on SAT from individuals with morbid obesity compared to 
lean subjects, supporting those metabolic differences in both 
groups [25].

Creatine Kinase B‑Type Creatine kinase B-type (CKB) is 
a cytoplasmic enzyme involved in energy homeostasis. It 
reversibly catalyses the transfer of phosphate between ATP 
and various phosphagens, playing a central role in energy 
transduction in tissues with large and fluctuating energy 
demands as AT [41]. Moreover, CKB abundance is strongly 
induced by thermogenic stimulation in adipocytes. In this 
regard, recent studies in obesity reported that inactivation 
of CKB in adipocytes decrease thermogenic capacity, high-
lighting the important role of BAT in energy expenditure 
by generating heat through this process [42]. Decreased 
levels of CKB abundance were found on SAT and VAT of 
individuals with obesity compared to lean subjects [25, 43]. 
Shang et al. revealed a downregulation of CKB in VAT of 
women with morbid obesity who underwent bariatric sur-
gery compared to normoweight females who underwent 
elective abdominal surgical procedures [43]. Those results 
are consistent with Benabdelkamel et al. who also reported 
a decreased abundance of CKB on SAT from patients with 
morbid obesity, but also in individuals with overweight com-
pared to lean controls [25].

Dihydrolipoyllysine‑Residue Succinyltransferase Dihy-
drolipoyllysine-residue succinyltransferase (DLST) is a 
component of one of the rate-limiting enzyme complexes in 
the tricarboxylic acid cycle, playing a role in carbohydrate 
metabolism [44]. DLST has been reported to contribute to 
energy expenditure by enhancing the mitochondrial lipoyla-
tion pathway [45]. In this regard, DLST protein abundance 
was found increased in platelets of individuals with obesity 
compared to controls [46], while a decreased abundance of 
this protein was reported in subjects with obesity by Kras 
et al. and Boden et al. in SAT and SKM [24, 26].

d‑Lactate Dehydrogenase d-lactate dehydrogenase (LDHD) 
is a mitochondrial protein that catalyses specifically the 
reduction of d-lactate to pyruvate with concomitant oxida-
tion of  NAD+ to NADH [47]; it may play a role in regulating 

apoptosis, cell proliferation and cell differentiation, serving 
as a general indicator of acute and chronic diseases [48]; 
however, there is not much evidence available associating 
altered abundance of this protein in individuals with obesity. 
In contrast, LDHD was found decreased in VAT and SKM 
from individuals with obesity [26, 43]. These findings, thus, 
suggest that downregulation of this mitochondrial protein 
could have a potential role as a biomarker in obesity and its 
associated metabolic diseases.

Glyceraldehyde‑3‑Phosphate Dehydrogenase Glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) modulates the 
organization and assembly of the cytoskeleton. It is one of 
the central enzymes in glycolysis, generating NADH, which 
is a source of energy and metabolites for several diseases 
[49]. Altered GAPDH expression in human muscle has been 
associated with IR and a tendency towards a higher lipo-
genic gene expression, which are associated with obesity 
phenotype [50]. In addition, significant increased abundance 
of glycolytic enzymes, including GAPDH, were found in 
women with obesity or morbid obesity, relative to lean con-
trol subjects. It was reported an increased protein abundance 
of GAPDH in SKM of individuals with obesity compared 
to lean patients [51, 52]. These alterations may balance the 
progressive decrease in muscle mitochondrial function of 
individuals with obesity, contributing to the loss of glucose 
and lipid homeostasis over time, and to the eventual develop-
ment of obesity-related diseases such as T2DM. In contrast, 
a low abundance of GAPDH was found in platelets of indi-
viduals with obesity compared to lean patients [22]; how-
ever, limitations of the study, including number and gender 
of individuals analysed should be considered.

Malate Dehydrogenase, Cytoplasmic Malate dehydroge-
nase (MDH1) catalyses the interconversion of malate and 
oxaloacetate in the mitochondrial membrane, playing an 
indispensable role in ATP generation [53]. It represents 
a source of energy in differentiated cells, supporting pro-
liferation and glucose consumption, but also acting as a 
prognostic biomarker in some life-threating situations [53]. 
Previous studies in obesity reported that acetylation levels 
of MDH1 are significantly increased during adipocyte dif-
ferentiation [53, 54]. Adipocyte differentiation can contrib-
ute to the development of obesity via a positive energy bal-
ance. Interestingly, increased levels of MDH1 in adipocytes 
induce enhanced adipogenesis in these cells, increasing its 
enzymatic activity [54]. These findings contrast with Grande 
et al. and Giebelstein et al. who reported decreased abun-
dance of this enzyme in platelets and SKM of individuals 
with obesity [52, 55]. In this line, decreased levels of MDH1 
are related to metabolic disorder of the malate–aspartate 
shuttle as well as disruption in several pathways, which 
may indicate that the decrease in MDH1 and subsequent 
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reduction in the NAD/NADH is a likely mechanism of cel-
lular aging controlled by carbohydrate metabolism [52, 55].

Mitochondrial Pyruvate Carrier‑1 Mitochondrial pyruvate 
carrier-1 (MPC1) is a key metabolic protein that regulates 
the transport of pyruvate into the mitochondrial inner mem-
brane [56]. It is critical for several major biological pathways 
of carbohydrate, lipid, and amino acid metabolism, provid-
ing energy [57]. Moreover, it has emerged as a promising 
pharmacological target for metabolic disorders by modu-
lating mitochondrial function [58]. MPC1 abundance was 
found decreased in several kind of samples of individuals 
with obesity, including SKM or sperm [21, 26], suggesting 
that a decrease in MPC1 may promote dysfunctional mito-
chondria metabolism in obesity.

Phosphatidylinositol 5‑Phosphate 4‑Kinase Type‑2 
Alpha Phosphatidylinositol 5-phosphate 4-kinase type-2 
alpha (PIP4K2A) is a protein implicated in lipid metabolism, 
including various aspects of intracellular cholesterol trans-
port [59]. Barrachina et al. and Grande et al. both identified 
decreased abundance of PIP4K2A in platelets of individuals 
with obesity compared to normoweight controls [22, 46]. 
Platelets are key players in the pathophysiology of several 
diseases related to obesity [60], and their function and size 
have been reported to be altered in obesity [61]. Decreased 
abundance of PIP4K2A in these cells suggests that PIP4K2A 
could be responsible at least in part for the platelet altera-
tions observed in obesity [46].

Pyruvate Kinase Pyruvate kinase (PKM) is an enzyme that 
catalyses the conversion of phosphoenolpyruvate and ADP to 
pyruvate and ATP in glycolysis. It plays an essential role in 
regulating cell metabolism [62]. Recent evidence suggests the 
involvement of this enzyme modulators in several metabolic 
diseases. PKM may regulates gene activation in the context of 
inflammation and metabolic reprogramming, being a promis-
ing target for addressing some pathologies, including obesity 
[63]. An increased abundance of this metabolic protein was 
reported by Kras et al. in SKM of individuals with obesity 
[26]. However, a previous proteomics study in obesity reported 
decreased levels of PKM in the same tissue of individuals 
with obesity compared to lean controls [51]. This could be 
explained by differences in muscle location of patients. Hittle 
et al. reported a decreased abundance of PKM in SKM [51], 
while Kras et al. reported an increased abundance of this pro-
tein in collected biopsies from the vastus lateralis muscle [26]. 
In addition, Grande et al. reported decreased levels of PKM in 
platelets of patients with obesity [55].

Proteins Related to Chaperon Binding Proteins that facilitate 
the folding of other proteins are called chaperones. Chap-
erones are a broad class of proteins that maintain protein 

homeostasis by monitoring the quality and integrity of 
protein structure. They have the potential to prevent non-
specific aggregation by binding to non-native proteins and 
assist in protein folding [64]. Protein folding is a process 
that usually takes place in the ER, eliciting proper form-
ing of proteins [65]. Given the growing body of research 
indicating the involvement of ER stress in various disease 
pathologies, including obesity, the concept of enhancing ER 
folding capacity through chemical chaperones has emerged 
as a promising therapeutic strategy, especially in the context 
of metabolic disorders [66]. Most of chaperon binding pro-
teins abundance have been found to be increased in individu-
als with obesity compared to normoweight matching con-
trols (Table 3) except for 2, that have been found increased/
decreased in different studies and 1 that have shown a con-
sistent decrease.

Albumin Albumin (ALB) is the most abundant extracellular 
chaperone protein. ALB is the most significant modulator of 
colloid osmotic-pressure and transports a large variety of mol-
ecules such as fatty acids, drugs or hormones. Moreover, it acts 
as an antioxidant agent [67]. Values of serum ALB has been 
reported to be decreased in obesity. This state of inflammation 
may lead to altered ALB levels among the population with 
obesity compared to healthy controls, making this condition an 
independent predictor of hypoalbuminemia [68]. In addition, 
ALB concentration was positively associated with the preva-
lence of metabolic syndrome (MetS), whereas an increase 
in ALB over time might protect against MetS development 
[67]. ALB abundance was found increased in several samples 
including, platelets, SAT or SKM proteome of individuals with 
obesity compared to normoweight matching controls. Differ-
entially altered ALB abundance thus, may point to increase 
according to BMI [25, 46, 51].

Crystallin B Chain, Alpha Crystallin B chain alpha (CRYAB) 
is one of the most widespread and represented of the human 
small HSP. CRYAB prevents aggregation of various pro-
teins under a wide range of stress conditions. It is greatly 
expressed in tissues with high rates of oxidative metabo-
lism, such as skeletal and cardiac muscles [69]. Dysfunc-
tions of this protein are associated with several metabolic 
diseases due to its important role in protection of muscle tis-
sues from the alterations of protein stability [69]. Increased 
levels of CRYAB in the obesity as well as in weight regain 
after long-term weight loss maintenance have been demon-
strated previously [30, 70], supporting the role of CRYAB 
in obese phenotype. These results are consistent with our 
findings. Benabdelkamel et al. and Boden et al. revealed 
high abundance rates of CRYAB on SAT of individuals with 
obesity compared to normoweight controls [24, 25]. This 
could influence weight management, revealing CRYAB as 
a biomarker of obesity and a mediator of weight control.
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Endoplasmic Reticulum Chaperone BiP Endoplasmic retic-
ulum chaperone BiP (HSPA5) is a molecular chaperone 
involved in the correct folding and assembly of proteins, 
and in the degradation of misfolded proteins in the endo-
plasmic reticulum (ER). HSPA5 is a master regulator of ER 
homeostasis and functions, and it is an essential component 
of the protein translocation machinery into the endoplasmic 
reticulum (ER) [71]. Previous studies have reported that 
HSPA5 abundance was increased in AT of patients with 
obesity highlighting its direct association between BMI and 
other metabolic factors including IR or hypertriglyceridemia 
[72]. In this regard, Benabdelkamel et al. reported higher 
abundance of HSPA5 on SAT of individuals with obesity 
compared to lean controls [25]. On the other hand, Grande 
et al. identified a lower abundance of HSPA5 in platelets 
of individuals with obesity compared to lean subjects [55]. 
Those differences in protein abundance may indicate that 
HSPA5 role in obesity need to be further investigated, 
however, limitations of studies, including small number of 
individuals analysed or sex- related differences should be 
considered [25, 55].

Heat Shock Protein Beta 1 Heat shock protein beta 1 
(HSPB1) is a ubiquitous chaperone involved in key physi-
ological and cellular pathways such as inflammation, immu-
nity or apoptosis [73]. It also mediates the survivability of 
the cells under various stressful conditions, as it is able 
to control the redox state of the cell [74]. Previous stud-
ies in obesity showed a direct association between HSPB1 
abundance and BMI, or high levels of HSPB1 and IR, sug-
gesting an important role in metabolic disorders [75]. In 
addition, Boden et al. reported a higher HSPB1 abundance 
in SAT proteome of individuals with obesity compared to 
lean controls, supporting those previous findings [24]. How-
ever, results of Barrachina et al. and Benabdelkamel et al. 
reported a downregulation of this protein in platelets and 
SAT of patients with obesity, respectively [25, 46].

Heat Shock Protein Beta 6 Heat shock protein beta-6 
(HSPB6) plays an essential role as molecular chaperones in 
proteostasis and cell growth and survival [74]. Heat shock 
proteins (HSP) are produced in response to multiple stress-
ors [76]. HSPB6 is the most upregulated HSP protein dur-
ing differentiation of human adipose-derived stem cells into 
mature adipocytes [77] and it has been reported to be a nega-
tive regulator of adipocyte function [78]. Benabdelkamel 
et al. and Boden et al. revealed an increased abundance of 
HSPB6 on SAT of individuals with obesity [24, 25].

Protein Disulfide‑Isomerase A3 Protein disulfide isomerase 
A3 (PDIA3) is a chaperone protein that modulates protein 
folding of newly synthesized glycoproteins and responds to 
endoplasmic reticulum (ER) stress [79]. Previous studies 

in obesity showed that circulating levels of PDIA3 were 
increased in pediatric subjects with obesity compared 
to controls. PDIA3 circulating levels were positively asso-
ciated with obesity markers, IR and LDL-cholesterol. This 
is evidence that PDIA3 could be an early marker of IR, 
dyslipidemia and other obesity-related complications [80]. 
Those results match similar studies in adult population, 
emphasizing the role of PDIA3 in obesity [81]. Moreover, 
downregulation of PDIA3 abundance was also reported in 
two independent proteomics analyses selected for the present 
systematic review, including samples of SAT and platelets in 
individuals with obesity compared to lean patients [24, 55].

Proteins Related to Coagulation Cascades Obesity is charac-
terized by the elevation of several clotting factors and PAI-1 
directly affecting coagulation [82]. The involvement of adi-
pose tissue to increase the thrombotic tendency has been 
proposed through several mechanisms involving platelet 
function abnormalities and increased coagulation, together 
with endothelial dysfunction [82, 83]. No proteins related 
to coagulation cascades have shown a consistent decrease 
in subjects with obesity as compared to their normal-weight 
counterparts, while 3 proteins were found to be increased 
and 4 proteins were found increased/decreased in different 
studies as it is reported in Table 3. This may suggest that 
alterations in abundance of coagulation cascades proteins 
have an important role in obesity as they can modulate sev-
eral metabolic disorders [84].

Annexin A5 Annexin A5 (ANXA5) is the most abundant 
annexin and it is expressed ubiquitously. It has an antico-
agulant function and a potential role in cellular signal trans-
duction, inflammation, and differentiation [85]. Moreover, 
it appears to play a role in triglyceride metabolism [86]. 
ANXA5 protein was induced in adipocytes during aging 
[87] and one study demonstrated an association of ANXA5 
polymorphisms with obesity in a Korean patient cohort [88], 
which may suggest a function of ANXA5 on the fat deposi-
tion, storage or mobilization. Barrachina et al. and Benab-
delkamel et al. reported increased levels of ANXA5 in plate-
lets and SAT of individuals with obesity compared to lean 
healthy controls [25, 46]. As it is stated, higher abundance 
of ANXA5 in proteome of individuals with obesity may be 
associated with the development of obesity and could medi-
ate in some coagulation disorders related to this condition 
[88].

Coagulation Factor V Coagulation factor V (F5) is the cen-
tral regulator of haemostasis. It plays an important role in 
the propagation phase of coagulation as a component of the 
prothrombinase complex [89]; however, it mediates both 
procoagulant and anticoagulant functions as a result of the 
activity of proteases [90]. Alterations in coagulation have 
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been widely studied in obesity. A recent study comparing 
individuals with obesity and normoweight controls showed 
that BMI contributes to hypercoagulability, highlighting 
those individuals with obesity are more hypercoagulable 
[91]. F5 activity was found to be statistically insignificant 
in plasma of patients with obesity compared to control [92], 
which is consistent with Barrachina et al. [46]. They both 
reported decreased abundance of this protein in plasma of 
individuals with obesity, highlighting its role in cardiovas-
cular events in obesity [46]. However, Grande et al. showed 
that F5 was increased in platelets from patients with obesity 
compared to non-obese controls [55].

Fibrinogen Fibrinogen plays key roles in both blood clot-
ting and platelet aggregation. Fibrinogen is a hexameric 
plasmatic glycoprotein composed of pairs of three chains: 
fibrinogen alpha chain, fibrinogen beta chain (FGB) and 
fibrinogen gamma chain (FGG). The most significant bio-
logical role of fibrinogen is related to its ability to form the 
scaffold of a blood clot and prevent the loss of blood after 
injury [93]. However, fibrinogen together with fibrin plays 
important and overlapping roles in fibrinolysis, cellular and 
matrix interactions and inflammation [93]. Several stud-
ies have reported higher plasma fibrinogen levels in sub-
jects with obesity. More specifically, FGG has been found 
increased in women and children with obesity [94]. Protein 
abundance of FB and FGG were reported to be increased 
in several tissues, including EVs, platelets and SKM, of 
patients with obesity compared to lean individuals in three 
independent studies [52, 95].

Haemoglobin Haemoglobin (Hb) is an iron-containing met-
alloprotein that transports oxygen molecules from the lungs 
to the rest of the human body. Haemoglobin consists of 
protein subunits haemoglobin subunit alpha 1 (HBA1) and 
alpha 2 (HBA2), and haemoglobin subunit beta (HBB) [96]. 
Circulatory Hb levels have been reported to be increased in 
patients with obesity [97]; however, another study reported 
not differences [98]. In this regard, HBA1 and HBB were 
found to be decreased in serum proteome of metabolically 
abnormal individuals with obesity compared to controls 
[99]. However, different abundance of both subunit proteins 
was variable depending on the analysed sample selected. 
Barrachina et al. reported a decrease of HBA1 and HBB 
in EVs of women with obesity compared to normoweight 
controls [46], while an increase of both proteins was found 
on SAT and SKM in three other independent studies [25, 
51, 52].

Integrin Alpha‑IIb Integrin alpha-IIb (ITGA2B) is a highly 
abundant heterodimeric platelet receptor that can transmit 
information bidirectionally across the plasma membrane 
and plays a critical role in haemostasis and thrombosis and 

platelet aggregation [100]. ITGA2B levels were reported to 
be reduced in platelet particles from subjects with obesity 
using flow cytometry [55]. Two studies of the present sys-
tematic review found contradictory ITGA2B protein abun-
dance results in obesity. Grande et al. reported a decrease 
of ITGA2B abundance in platelets of woman with obesity 
compared to lean matching controls [55]. However, Bar-
rachina et al. found that ITGA2B was increased in patients 
with obesity compared to lean healthy controls [46]. These 
contradictory results may be a result of the effect of sex.

Proteins Related to Structure/Cytoskeleton Seven proteins 
related to structure/ cytoskeleton have shown altered abun-
dance in subjects with obesity as compared to their nor-
mal-weight matching controls. Two of them have shown a 
consistent increase, while 5 proteins were found increased/
decreased in different studies. Any of the analysed studies 
reported a consistent decrease of these types of proteins. 
This suggests the significant role in adipose tissue growth 
of proteins related to structure/ cytoskeleton as they are 
involved in both hypertrophy and hyperplasia of fat cells.

Actin, Cytoplasmic 1 Actin (ACTB) is the most abundantly 
expressed protein in eukaryotic cells and is the key building 
block of the filamentous actin cytoskeleton. It is an essential 
component for almost all actin-dependent cellular processes, 
including cell migration, cell cycle progression, chromatin 
remodelling and gene expression and DNA damage response 
[101]. ACTB has been used as a reference protein/gene in 
many studies including those for obesity studies [102]. How-
ever, proteomics studies reported in the present systematic 
review found altered abundance of ACTB protein in obesity. 
While Barrachina et al. reported an increase in ACTB abun-
dance in subjects with obesitycompared to lean individuals, 
Grande et al. and Hittle et al. reported a decreased ACTB 
abundance in platelets and SKM of patients with obesity, 
respectively [22, 46, 51].

Desmin Desmin (DES) is a muscle-specific intermediate 
filament protein and a key subunit of the intermediate fila-
ment in cardiac, skeletal, and smooth muscles [103]. It plays 
a critical role in the maintenance of sarcomeres structures, 
forming the myofibrils, and in mechanical integrity of the 
contractile apparatus in muscle tissues [103]. Previous stud-
ies showed that DES deletion is associated with mitochon-
drial dysfunction in muscle cells, which may result in altered 
metabolism and therefore, alter muscle function [104]. 
Moreover, DES has a strong association with the develop-
ment of some cardiometabolic diseases, including obesity 
[56, 105]. Giebelstein et al. reported increased expression of 
DES in SKM of individuals with obesity compared to lean 
controls [52]. However, a previous proteomics study describ-
ing differences in proteins abundance related to obesity in 
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the same tissue revealed decreased abundance of DES in 
individuals with obesity compared to lean controls [106].

Gamma‑Synuclein Gamma-synuclein (SNCG) is an adi-
pocyte-neuron gene with several implications in metabolic 
health due to its high abundance in white adipose tissue 
(WAT) [107]. In addition, SNCG plays an important role in 
adipocyte physiology. Previous studies in obesity reported 
that SNCG is highly expressed in human WAT and increased 
in obesity. Oort Pieter et al. reported that upregulation of 
SNCG is nutritionally regulated in WAT whereas its loss 
partially protects from high-fat diet induced obesity and 
ameliorates some of the associated metabolic complica-
tions, highlighting the role of SNCG overexpression in obe-
sity [107]. In this regard, decreased levels of this protein in 
human have been correlated with protection against obesity 
following high fat diet [108]. Those findings are consist-
ent with Boden et al. and Shang et al., who described an 
increased abundance of SNCG in both SAT and VAT of 
individuals with obesity compared to lean controls [24, 43].

IgGFc‑Binding Protein IgGFc-binding protein (FCGBP) 
is one of the core mucus proteins which are produced and 
secreted by goblet cells, which has an essential role in pro-
tection of epithelial surfaces or mucosal defence. A recent 
meta-nalysis reporting AT epigenetic profile in obesity 
showed that FCGBP gene is hypomethylated in metaboli-
cally unhealthy individuals with overweight or obesity [96]. 
This protein is expressed in mucin secreting cells in tissues 
such as the colon, small intestine or gall bladder, providing 
an anti-inflammatory function which may confer some pro-
tection against the obesity induced low-grade inflammatory 
state [96]. FCGBP protein abundance was found increased 
in endometrial tissue of women with obesity compared to 
normoweight matching controls but decreased in EVs of a 
similar population of women with obesity [46, 109].

Myosin Light‑Chain Polypeptide‑6 Myosin light-chain poly-
peptide-6 (MYL6) is a hexameric ATPase cellular motor 
protein. It mediates airway smooth muscle contractile func-
tion, which is related to asthma due to the excessive airway 
narrowing produced by an increase in contractility of this 
tissue. This contractile response is reported to be enhanced 
in obesity [110]. MYL6 has been associated to metabolic 
alterations [111]. Previous studies in animals reported an 
upregulation of MYL6 in lung tissue of obese mice com-
pared to lean control after a nutritional intervention based on 
a high fat diet [112]. Moreover, higher differences in MYL6 
gene expression were found in placenta of pregnant women 
with obesity compared to lean matching controls [113]. In 
the present review, it was found that Boden et al. reported 
an increased abundance of MYL6 on SAT of individuals 
with obesity [24], while Grande et al. described a decreased 

abundance of MYL6 in platelets of women with obesity 
compared to lean controls [55]. Differences in MYL6 abun-
dance may be explained by the tissue sample or by the gen-
der analysed.

Tropomyosin Alpha‑1 Chain Tropomyosin alpha-1 chain 
(TPM1) is an actin-binding protein involved in the contrac-
tile system of striated and smooth muscles and the cytoskel-
eton of non-muscle cells. Mutations in this gene have been 
associated with physio pathological process related to 
several cardiometabolic diseases, such as obesity [114]. A 
recent study reported that expression level of TPM1 was 
decreased in subjects with obesity after a high-fat diet, 
while it was increased after an antioxidant intervention 
due to a reduction in process mediated by oxidative stress 
[115]. Therefore, it was suggested that obesity may damage 
the structure and function of the heart by down-regulating 
TPM1 expression. Conflicting proteomics results have been 
reported, while Grande et al. reported a decrease of TPM1 
abundance in platelets of individuals with obesity compared 
to lean controls [55], Barrachina et al. reported an increase 
of TPM1 abundance in platelets of subjects with obesity[46].

Vimentin Vimentin (VIM) is an abundant cytoplasmic pro-
tein which is recognized for its important role in stabiliz-
ing intracellular structure and its mechanical role in cell 
plasticity and stress absorbers [116]. VIM is expressed in 
mesenchymal origin, including adipocytes where it forms 
lipid droplets and stabilizes triglycerides [117]. Moreover, 
VIM participates in lipolysis through direct interactions 
with hormone-sensitive lipase [118]. In this regard, previ-
ous studies reported that a lack of VIM results in less fat 
accumulation [119]. In addition, it has been pointed out 
that VIM deficiency prevents high-fat diet-induced obesity 
[120]. Those findings are in the same direction of proteom-
ics study results. Boden et al. and Benabdelkamel et al. both 
reported an increased abundance of VIM on SAT of indi-
viduals with obesity [24, 25].

Proteins Related to Inflammation and Oxidative Stress Chronic 
low-grade inflammation has been increasingly recognized to 
be involved in the pathophysiology of metabolic disease such 
as obesity [121]. Moreover, it is known that obesity promotes 
oxidative stress by producing oxidants and reducing antioxidant 
levels, contributing to the development of obesity-related com-
plications [122]. Four proteins related to inflammation and oxi-
dative stress have shown a consistent increase in subjects with 
obesityas compared to their normal-weight counterparts, while 
2 proteins were found to be increased/decreased and only 1 pro-
tein was found to be consistent decreased in different studies.

Amyloid P‑Component, Serum Amyloid P-component, 
serum (APCS) is an acute phase protein made by the liver and 
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secreted into the blood which regulates several aspects of the 
immune system [123]. Elevated levels of this protein in obesity 
have been reported, accompanied by a positive correlation with 
BMI and risk of cardiovascular diseases [124]. However, the 
role of APCS in human obesity has not been clearly elucidated. 
Studies may indicate that levels of this protein are elevated 
compared with non-obese controls but, in contrast, this may 
be a mechanism to down-regulate the effects of obesity, rather 
than a cause of obesity [125]. According to our results, APCS 
abundance have been found upregulated in plasma and EVs of 
individuals with obesity compared to lean controls, suggesting 
that this protein abundance may be the result of adaptation 
of the organism to the low-grade chronic inflammatory that 
underlies severe obesity [14, 46].

Catalase

Catalase (CAT) is an essential antioxidant enzyme that protects 
cells against cellular toxic effects mediated by removing reac-
tive oxygen species [126]. The antioxidant activity of CAT is 
significantly diminished in adults with obesity [122]. How-
ever, increased abundance of CAT, together with other pro-
teins related to metabolic pathways has been associated with 
human AT protection and insulin-stimulated glucose uptake 
improvements in obesity [127]. Decreased levels of CAT were 
found in patients with morbid obesity after bariatric surgery 
[126]. Moreover, a significant decrease in abundance of CAT 
was found in patients with morbid obesity comparing to lean 
controls, additionally pointing to decrease in lipolysis within 
the mature adipocytes of SAT of this population [25]. In this 
regard, Kras et al. reported a decrease in CAT abundance in 
SKM proteome of subjects with obesity compared to controls 
[26]. Accordingly, upregulation of CAT may promote insulin 
sensibility and protect against obesity by influencing energy 
expenditure processes [25, 26].

Complement C3

Complement C3 (C3) is part of the complement system, a 
complex enzymatic cascade consisting of more than 50 cir-
culating and cell surface proteins working in cascades of 
stepwise protease activation, playing an important role as 
component of immune system [128]. C3 is a fundamental 
factor in metabolic organs and metabolic diseases, affecting 
insulin secretion and adipocyte maturation [129]. Moreover, 
previous studies have shown altered complement system in 
obesity, where excessive activation of the classic pathway 
of complement commonly occurs [130]. Increased C3 abun-
dance was found increased in 2 independent studies of the 
present systematic review comparing EVs and plasma of 
individuals with obesity and lean controls and revealing the 
role of C3 in as an early marker for obesity and some related 
cardiovascular diseases [14, 46].

Galectin‑1

Galectin-1 (LGALS1) is a carbohydrate-binding protein that 
plays key immune regulatory roles in autoimmunity and 
chronic inflammation [131]. Moreover, it plays a role in a 
variety of cell functions including interferes with cell adhe-
sion, proliferation, differentiation and angiogenesis [132]. 
LGALS1 is expressed in many tissues under normal and 
pathological conditions. Its abundance has been reported to 
be increased in obesity, both in the circulation and in the AT 
[133]. Moreover, LGALS1 expression has been reported to 
be decrease in participants with obesity during weight loss 
while increased during weight gain [133]. In this regard, 
LGALS1 was found increased on SAT of individuals with 
obesity in two different studies in the present systematic 
review [24, 25].

Glutathione‑S‑Transferase P

Glutathione-S-transferase P (GSTP1) is an antioxidant 
enzyme involved in the formation of prostaglandins [134], 
with a catalytic detoxification role through inactivating 
byproducts of oxidative stress [135]. Previous studies have 
reported the association between GSP1 and some metabolic 
disorders [136]. Moreover, a positive correlation between 
GSTP1 polymorphism and obesity was observed on young 
adults with obesity, revealing its significant role in the 
increase of susceptibility of obesity and cardiovascular risk 
in this population [137]. Individuals who carry less efficient 
alleles of detoxification enzymes GSTP1 are subject to lower 
production or inefficient activity of these detoxification 
enzymes, which favours the development of obesity [137]. 
These findings are consistent with Boden et al. who reported 
upregulation of GSTP1 in VAT of patients with obesity com-
pared to healthy controls [24]. In contrast, the abundance of 
GSTP1 was decreased in platelets from patients with obesity 
compared to individuals without obesity [55], which may 
also increase the production of oxidative agents and pro-
inflammatory mediator in some cases [138].

Lysozyme C

Lysozyme C (LYZ) is a component of the innate immune system 
that exerts anti-microbial effects through the hydrolysis of bac-
terial cell wall peptidoglycan [121]. It is considered as an impor-
tant contributor to chronic low-grade inflammatory state. How-
ever, although it is important for driving a pro-inflammatory  
response, LYZ also plays a role in limiting inflammation sys-
tem [139]. Decreased expression of LYZ was found in intes-
tine of subjects with obesity [140]. Moreover, LYZ levels in 
plasma were significantly increased in obesity in direct link 
with obesity-associated metabolic disturbances and inflamma-
tory parameters [121]. LYZ abundance was found decreased 
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in circulating samples including platelets or plasma of patients 
with obesity compared to lean control [15, 46]. In contrast, a 
recent proteomics approach in obesity included in systematic 
review showed an increased protein abundance of LYZ in VAT 
of subjects with obesity compared to VAT of normoweight 
patients [43].

Parkinson Disease Protein‑7

Parkinson disease protein-7 (PARK7) is a multifunctional 
protein that has been described as a modulator of adipo-
genic differentiation and as a modulator of immune and 
inflammatory regulatory functions in many tissues [141]. 
Moreover, PARK7 has been reported to protect cells from 
oxidative stress injury. Animal studies have shown that 
raised PARK7 is correlated with obesity [142]. Conversely, 
PARK7 knockout mice had protection from diet to become 
obese. However, their inherent metabolic propensities and 
experimental outcomes towards obesity were influenced by 
strain differences, age, the effects of different high-fat diet 
composition and feeding period [142]. In addition, some 
other proteomics studies in obesity suggests that PARK7 are 
a proper reference standard in obesity studies based on VAT 
[143]. PARK7 protein abundance was found increased on 
SAT and SKM of individuals with obesity [25, 26].

Enrichment Analysis Databases resources Gene ontol-
ogy (GO) and Kyoto Encyclopedia of Gene and Genom-
ics (KEGG) were employed for the enrichment analysis of 
identified proteins in obesity. A systematic research of gene 
functions, linking genomic information with higher order 
functional information of proteins was conducted, includ-
ing molecular function (MF), biological processes (BP) and 
cellular components (CC), as it is shown in online resource 
2. The most significant results from the enrichment analysis 
of BP reveal that oxidative stress and haemostasis, including 
coagulation and platelet activation, were the most prevalent 
process (Fig. 2). Moreover, the molecular function enrich-
ment analysis showed that the most relevant molecular func-
tions were related to oxidative stress, metabolism and struc-
tural and protein folding (Fig. 3).

Discussion

We have conducted an extensive systematic review of non-
targeted proteomics studies in human obesity, identifying 
common trends in protein abundance profiles across vari-
ous biological samples. A significant amount of knowl-
edge has been gained in the last 2 decades on the prot-
eomic profile of obesity. The application of proteomics 

Fig. 2  Enrichment analysis-GO: biological process
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represents a crucial approach in the management of obe-
sity. This methodology has the potential to identify pro-
teins involved in pathological processes and to evaluate 
changes in protein abundance during obesity development, 
contributing to the identification of early disease predis-
position, monitoring the effectiveness of interventions and 
improving disease management overall. Additionally, it 
holds significant importance in drug development as pro-
teomics identifies potential target molecules. Moreover, it 
can provide valuable insights into post-translational pro-
tein modifications, protein–protein interactions and sig-
nalling in obesity [144]. Proteomics can thus contribute 
significantly to our understanding of the complex interplay 
of proteins involved in obesity-related processes, offering 
potential targets for therapeutic interventions and person-
alized treatment strategies. The escalating global obesity 
epidemic represents one of the most serious public health 
challenges as the prevalence of obesity is increasing world-
wide [145]. According to the World Health Organization 
(WHO), five million people die each year as a result of 
excess weight [https:// www. who. int]. The alarming world-
wide incidence increase of obesity is also associated with 
an array of metabolic pathologies, including T2DM and 
cardiovascular disease, spurring intense research efforts 
to understand the mechanisms underlying these disorders. 

Although the results of such efforts have led to the devel-
opment of new treatment options, these conditions remain 
among the leading causes of global mortality and morbid-
ity, emphasizing the need for more effective therapeutic 
and preventive measures. Existing trends indicate that the 
scope of the problem is only likely to grow, especially in 
rapidly developing parts of the world. Many contributing 
agents have now been identified, including genetic, dietary 
and environmental factors. However, the mechanisms by 
which excess nutrients and adiposity can ultimately result 
in one or more of a large cluster of chronic diseases are 
still being elucidated. Understanding the role of proteins in 
the onset and progression of obesity is crucial in medical 
research. This knowledge could significantly contribute 
to the effective management of obesity, reducing asso-
ciated risks and improving overall health outcomes and 
quality of life of patients. It is essential to provide a fun-
damental basis for an accurate and comprehensive thera-
peutic approach to obesity. Such research can inform and 
enhance the efficacy of obesity management therapies. 
Our systematic review offers valuable insights into the 
proteomics field in obesity with significant implications 
for the understanding of protein regulation and biomarker 
discovery, and therefore contributing to open new path-
ways for personalized medicine of obesity.

Fig. 3  Enrichment analysis-GO: molecular functions altered in patients with obesity compared to normweight individuals
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One of the primary achievements of this systematic 
review is the integration of proteomics data from multiple 
samples and analytical platforms. Our approach has involved 
harmonizing the data to identify consistent patterns in pro-
tein abundance and variation across different studies. Such 
integration provides a framework for future studies. In order 
to obtain more robust results, we focused on those proteins 
that were found in at least 2 proteomics studies. Figure 4 
shows a comprehensive view of all the included proteins 
in the present systematic review, including functional pro-
cesses mediated by them and human samples where have 
been found altered. Those proteins, forty-one, were related 
to several functions such as coagulation, inflammation/
oxidative stress, metabolism, protein folding and structure/
organization. All these processes have been reported to be 
altered in obesity.

Our analysis has revealed that the most altered proteins in 
obesity were predominantly involved in various aspects of 
metabolism, reflecting the intricate dysregulation of meta-
bolic pathways associated with this condition. These find-
ings are further supported by the enrichment analysis, which 
suggests an alteration in catabolic and metabolic processes in 
obesity (Figs. 2 and 3) and underscore the multifaceted nature 
of metabolic dysregulation in this condition [16]. Specifi-
cally, 13 proteins related to metabolic pathways were found 
altered in subjects with obesity. These proteins play crucial 
roles in maintaining energy homeostasis and facilitating ATP 
generation, essential processes for cellular function and over-
all energy balance [24, 25]. Other notable pathways affected 
were lipogenesis, the synthesis of fatty acids and triglycerides, 

which is altered in obesity due to excessive nutrient intake and 
adipose tissue expansion [51, 52]. Additionally, our research 
highlighted alterations in proteins involved in the metabolism 
and transport of lipoproteins, critical for lipid transport and 
cholesterol homeostasis [15, 25]. Proteins involved in glu-
coneogenesis, the synthesis of glucose from non-carbohydrate  
precursors, are also dysregulated in obesity, being the result 
or contributing to disturbances in glucose metabolism and 
insulin resistance in this pathology [51, 52]. Moreover, 
there are advances in pharmacological therapies targeting 
metabolic proteins. Studies have shown that some metabolic 
proteins could have a potential use as biomarkers of weight 
regain [146], as well as pharmacological therapy for meta-
bolic diseases [147]. Therapies that modulate the activity of 
ATP synthase have been explored to treat metabolic disorders 
[148]. On the other hand, it has been studied the increase of 
creatine kinase B (CKB), known to promote thermogenesis, 
has been investigated as a potential approach to counteract 
obesity [41, 149]. Enzymes of gluconeogenesis and glycoly-
sis (such as glucose-3-phosphate dehydrogenase or pyruvate 
kinase [PK]) have been considered as potential targets for the 
treatment of metabolic disorders such as T2DM [150]. One 
important drug, metformin, which is an inhibitor of one iso-
form of PK, has been widely used to counteract glucose levels 
in diabetic patients [151]. Furthermore, there are also therapies 
that modify the levels or functions of apolipoproteins with the 
aim of treating cardiovascular diseases and cholesterol-related 
metabolic disorders [152].

Oxidative stress constitutes a distinctive hallmark of 
obesity [153]. Our systematic review reveals several altered 

Fig. 4  A summary of proteins altered in individuals with obesity compared to normweight patients
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antioxidants, key proteins associated with oxidative stress, 
in the proteome of individuals with obesity. These proteins 
consistently display a decrease in antioxidant activity in 
most of the studies. It is well-known that obesity promotes 
oxidative stress by producing oxidants and reducing anti-
oxidant levels, contributing to the development of obesity-
related complications, such as cardiovascular disease, insu-
lin resistance and metabolic syndrome, among others [122]. 
Moreover, the enrichment analysis showed that many of the 
proteins reported in the present review are also involved in 
oxidative stress in several processes, such as process and 
response to hydrogen peroxide and reactive oxygen species, 
and cellular oxidant detoxification (Figs. 2 and 3). Further-
more, obesity is considered as a chronic low-grade systemic 
inflammation associated with increased inflammatory mark-
ers [154]. This inflammation also contributes to associ-
ated alterations in obesity. We found 4 proteins involved 
in inflammation altered in obesity, where most of the stud-
ies reported an increased abundance and the enrichment 
analysis showed some proteins involved in the regulation of 
acute inflammatory response. Establishing an inflammatory 
phenotype could be useful in classifying individuals at risk. 
Cross-sectional studies have consistently demonstrated that 
anti-inflammatory nutrients are associated with lower levels 
of inflammatory markers [155] and pharmaceutical agents 
have targeted inflammatory pathways as potential therapeu-
tic avenues for T2DM [155]. Numerous studies have evalu-
ated the positive effect of antioxidant supplements in obesity 
and associated metabolic disease by improving glycaemic 
control and lipid profile, oxidative stress and inflammation 
[156]. Moreover, there are several antioxidant enzyme mim-
ics currently under exploration, with some actively undergo-
ing clinical trials [157].

Our analysis identified 6 proteins involved in protein fold-
ing that were altered in obesity and the enrichment analy-
sis showed that protein folding was a prevalent function 
performed by the identified proteins. Protein folding is a 
process that usually takes place in the endoplasmic reticu-
lum, eliciting proper forming of proteins [70], and actively 
participating in the protein homeostasis of the cells. It is 
considered as a vital cellular process because proteins must 
be correctly folded into specific, three-dimensional shapes 
in order to function correctly [158]. Unfolded or misfolded 
proteins contribute to the pathology of many diseases, 
such as obesity and cardiometabolic related disease [159]. 
Moreover, previous studies have reported strong correla-
tions between chaperones with greater food intake or weight 
regain percentage [146, 160]. In addition, human and animal 
studies have shown that pharmaceutical chaperones, which 
are small molecules designed to stabilize the folding of pro-
teins, improve insulin sensitivity in subjects with obesity 
[161]. Therefore, future studies on the six proteins involved 
in protein folding reported in this systematic review could 

contribute to elucidate mechanism of action in obesity devel-
opment and to progress in the therapeutic avenue of it.

Several structural proteins have been reported to be 
altered in obesity. It is well-known that obesity is charac-
terized by the induction of several tissue remodelling and, 
therefore, it is not surprising to find altered structural pro-
teins in different tissues, such as AT and SKM from patients 
with obesity. Moreover, structural proteins were found 
altered in platelets. Obesity alters platelet number, mor-
phology and activity [162], and altered structural proteins 
could be part of as a result of these processes. Platelets are a 
pivotal component of the physiologic haemostatic balance, 
which is also maintained through coagulation pathway. It 
has been found that regulating platelet function is beneficial. 
For individuals with obesity, exercising can help regulate 
platelet function and haemostasis. When engaged in mod-
erate-intensity exercise, platelet aggregation and clotting 
factors are reduced, which can potentially decrease the risk 
of thrombosis [163]. The proteins described in this context 
could be used to design monitoring panels for platelet mod-
ulation. Furthermore, obesity exerts significant effects on 
the coagulation system. Seven proteins with pivotal roles in 
coagulation processes were altered in individuals with obe-
sity. Derangements of blood coagulation has been reported 
previously in obesity several times [164], describing obe-
sity as a promoter of coagulation. The enrichment analysis 
showed a high prevalence of proteins involved in haemosta-
sis, coagulation and platelet aggregation and activation. As 
circulating proteins involved in haemostasis, coagulation and 
platelet aggregation are indicative of the underlying patho-
logical mechanisms occurring in obesity, their concentra-
tions could serve as potential biomarkers for stratifying the 
risk of comorbidities associated with obesity. Utilizing these 
proteins in predictive mathematical models may enable the 
development of risk stratification tools applicable in high-
performance clinical settings.

Many of the identified proteomic biomarkers of obesity 
have also been reported to be dysregulated in obesity-related 
disease, such as T2DM, MAFLD, CVD and metabolic syn-
drome, among others (Fig. 5). Seven proteins have been 
reported to be altered in the four selected obesity comorbidi-
ties. These proteins belong to metabolic pathways (aldehyde 
dehydrogenase X and apolipoprotein A1), the chaperone 
family (albumin, heat shock protein beta 1, protein disulfide-
isomerase A3), and oxidative stress and inflammation pro-
teins (catalase and complement C3). These proteins could 
potentially serve as biomarkers for the progression of obesity 
and the development of comorbidities, thereby contribut-
ing to personalized medicine within the field of obesity. In 
proteomics, relying on a single biomarker may not provide 
a complete understanding of the complexity of the picture. 
Furthermore, certain biomarkers consistently appear, indi-
cating a significant potential beyond their individual roles 
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and pointing to common pathways of metabolic dysfunction 
response. Developing comprehensive panels for analysing 
the progression of obesity and enabling early detection of its 
comorbidities is becoming increasingly crucial in biomedi-
cal research.

Our analysis has revealed substantial variations in pro-
tein profiles across various human samples, spotlighting 
how obesity impacts tissue function at the molecular level. 
Higher number of altered proteins were found in AT and 
blood (platelets, plasma or EVs) from patients with obesity 
and those proteins were involved in the 6 reported biologi-
cal processes. In obesity, the most relevant tissue is the AT 
as obesity is the result of AT expansion. Moreover, adipose 
tissue becomes dysfunctional in obesity and compromise 
global metabolic and health homeostasis. Blood, the circu-
latory system, transport not only nutrients and by-products 
of cells but also transport mediators of intercellular com-
munication. Therefore, both tissues are relevant in obesity 
and proteins found on them can be important to understand 
obesity pathology and can represent new treatment avenues.

The application of proteomics techniques in the study of 
obesity has limitations and presents significant challenges. 
Current challenges include the multifactorial pathophysi-
ology of obesity, the standardisation operating conditions 
and procedures, the sample selection and sample size, the 
heterogeneity of the proteins detected based on protocols/
platforms, the need for computational tools to assess the 
biological significance of detected proteins, the validation 
of proteomic findings and the translation of experimental 
data to clinical practice.

Obesity is influenced by genetic predispositions, environ-
mental factors and lifestyle choices, making it challenging to 
attribute to specific proteins. Additionally, proteomic studies 
face challenges related to the type of sample and processing, 
the invasive nature of obtaining tissue samples and the lim-
ited availability of tissue specimens. Moreover, limitations 
in current proteomic technologies include the inability to 
detect proteins of very low abundance and quantify small-
fold changes in abundance accurately. Different experimen-
tal platforms are used in proteomics, each with advantages 
and limitations. No single method can detect and identify the 
whole proteome, so different techniques should be seen as 
complementary, not exclusive. Bioinformatics plays a criti-
cal role in interpreting proteomic results, utilizing various 
techniques for managing, analysing and interpreting large 
datasets. Of note, only when submitted to appropriate bio-
informatics tools, proteomic results serve to approach and 

solve biological problems. Finally, proteomics studies were 
limited by the possibility of a selection bias derived from the 
recruitment of both patients and controls in clinical-based 
population and by their relatively small sample sizes. Over-
coming current limitations and advancing our understanding 
of obesity pathophysiology requires standardisation efforts, 
technological advancements and integration with other 
omics approaches. While we have made diligent efforts to 
account for these limitations, they remain potential sources 
of bias within the analysis. Therefore, future studies would 
benefit from standardized reporting and improved data shar-
ing practices. Current standardisation efforts, such as the 
Human Proteome Organization (HUPO) Proteomics Initia-
tive (PSI), aim to facilitate data comparison, exchange and 
verification of proteomics data. The development of more 
effective tools for data analysis and interpretation, and the 
improvements in the sensitivity of mass spectrometry instru-
mentation can help overcome the limitations and advance 
our understanding of obesity pathophysiology.

This systematic proteomics review presents several 
strengths that contribute to its significance in the field of 
obesity and associated metabolic diseases. First, the compre-
hensive nature of our analysis, selecting those altered pro-
teins that were reported in at least 2 studies, encompassing 
a multitude of proteomic studies, allows us to draw conclu-
sions about protein profiles across diverse human biologi-
cal samples. This data integration enhances the robustness 
of our findings and provides a holistic perspective on the 
intricate interplay between proteins and the pathophysiology 
of obesity. Additionally, our incorporation of enrichment 
analyses reinforces the underlying molecular processes and 
metabolic pathways associated with obesity, further enrich-
ing our comprehension of the subject.

Proteomics offers a comprehensive overview of variations 
in protein abundance. One of the proteome’s strengths lies in 
its dynamic responsiveness to environmental stimuli, includ-
ing dietary factors and chemical exposures. Moreover, due 
to translational processes and post-translational modifica-
tions, direct correlation with the transcriptome is not always 
observed. Therefore, proteomic approaches are one layer of 
omics information and must be complemented and inte-
grated with data obtained from genomics, epigenomics, tran-
scriptomics, metabolomics and metagenomics approaches, 
to unravel the complex molecular and cellular modifications 
resulting in obesity. Obesity is driven by a combination of 
an underlying genetic predisposition, and environmental 
factors. Genomics identifies genetic variations that may be 
associated with diseases and prognosis, while epigenomics 
studies the heritable changes and chemical modifications 
that occur in our DNA. Transcriptomics examines messenger 
RNAs (mRNAs) and non-coding RNA (ncRNAs) to under-
stand gene expression, while metabolomics studies the small 
molecules involved in metabolic pathways to understand the 

Fig. 5  Relevant obesity proteomics biomarkers associated with obe-
sity-related diseases. Colour-code represent their molecular function 
chaperon binding (green), coagulation cascades (light blue inflam-
mation and oxidative stress (orange), metabolic pathways (red)) and 
structural constituent of cytoskeleton (yellow)

◂
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biochemical processes. Human metagenomics examines the 
complete set of genes and genomes of the microbiota (bacte-
ria, archaea, eukaryotes, and viruses) that reside in and on a 
person. Integrating multi-omics approaches in data analysis 
provides a more comprehensive view of molecular pathways 
underlying the development of obesity and comorbidities. It 
can lead to a significant shift from a generalized approach to 
a precise obesity management strategy. This includes precise 
prevention methods for obesity onset, tailored medicine for 
treating obesity, and targeted risk reduction strategies for 
preventing secondary diseases associated with obesity.

After the extensive research conducted in the proteomics 
analysis of individuals with obesity, the research faces a sig-
nificant challenge in verifying the role of the identified pro-
teins proposed in this systematic review. These proteins are 
being considered as potential indicators predicting suscepti-
bility to obesity or its associated complications. Addressing 
this substantial challenge will require large cohorts com-
prising healthy and/or individuals with obesity to evaluate 
the significance of these proteins as biomarkers—a task not 
without considerable complexity.

The extensive research conducted in the proteomics analy-
sis of individuals with obesity have shown proteins with sig-
nificant potential as indicators for predicting susceptibility to 
obesity or its associated complications, enabling early detec-
tion screening, patient stratification, progression monitoring 
and identification of novel pharmaceutical targets for obesity 
and related diseases. Nevertheless, as the studies analysed in 
the present meta-analysis are cross-sectional, the research 
faces a significant challenge in verifying the causality and 
the role of the identified proteins proposed in this system-
atic review. Addressing this substantial challenge will require 
large prospective cohort studies comprising healthy and/or 
individuals with obesity to evaluate the significance of these 
proteins as biomarkers—a task not without considerable com-
plexity. Therefore, future studies could focus on the evaluation 
of these proteins in subjects without obesity and observe if 
those with altered proteins are more prone to become obese. 
Similarly, a biomarker that elucidates the potential compli-
cations in patients with obesity, such as cardiovascular or 
hepatic diseases, is also of interest. To verify this, a cohort of 
individuals with obesity could be selected, examining those 
with additional complications and assessing whether these 
are associated with specific proteins. This could serve as a 
biomarker for obesity-related complications, some of which 
are challenging to diagnose early, like atherosclerosis before 
a heart attack or stroke. Alternatively, examining individuals 
with obesity without existing complications and monitoring 
the development of complications could provide insights into 
whether these proteins function as predictive biomarkers for 
obesity-related diseases. In addition, monitoring these identi-
fied proteins after obesity treatment, whether through surgery 

or nutritional pharmaceutical interventions, could provide 
physicians with real time functional insights regarding the 
efficacy of the administered treatments.

In conclusion, our systematic proteomics review repre-
sents a substantial step forward in unravelling the complex-
ities of obesity-related protein changes, offering valuable 
insights into the pathophysiological mechanisms, unlocking 
potential avenues for biomarker discovery and personalized 
medicine. Several proteomic biomarkers of obesity involved 
in metabolic pathways, the chaperone family and oxidative 
stress and inflammation proteins have also been reported 
to be dysregulated in obesity-related disease, which could 
potentially serve as biomarkers for the progression of obe-
sity and the development of comorbidities, contributing to 
personalized medicine in the field of obesity. However, it is 
crucial to emphasize the need for validation studies in larger 
patient cohorts to enhance the robustness of these findings to 
build a stronger basis for this research in obesity.
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