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Abstract
Purpose of Review Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with
rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER
stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two
pathways and the impact of ER stress and autophagy modulators on NAFLD treatment.
Recent Findings The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The
endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis
mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore,
disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is
underlined by the fact that they have recently emerged as promising targets of therapeutic interventions.
Summary There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress
pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their
interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which
can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized
by accumulation of fat inside hepatocytes in the absence of
excessive alcohol consumption [1]. NAFLD is strongly
associated with metabolic syndrome features, such as obe-
sity (particularly central), with increasing prevalence rates
in both developed and developing countries which follow
the corresponding rising prevalence of obesity and type 2
diabetes (T2DM) [1]. Currently, NAFLD constitutes the
second most common cause for liver transplantation in
the USA and is predicted to take the first place soon [1,
2]. Recently, a panel of international experts proposed that
NAFLD should be renamed to metabolic-dysfunction- as-
sociated fatty liver disease (MAFLD) in order to better
reflect the underlying pathophysiology [3]. NAFLD begins
with simple steatosis, where triacylglycerol (TAG) accu-
mulation is present in more than 5% of hepatocytes, while
it evolves to fatty infiltration with inflammation, leading to
the more severe form of NAFLD, namely nonalcoholic
steatohepatitis (NASH) which can further progress into
liver fibrosis and ultimately cirrhosis and hepatocellular
carcinoma (HCC) [4].

The liver is a highly secretory organ and one of the major
targets of insulin and glucagon [5•] and plays a fundamental
role in the lipid and carbohydrate metabolism. Of note, the
liver is characterized by the remarkable feature to proliferate
upon damage [5•].

Hepatocytes have large amounts of endoplasmic re-
ticulum (ER) that exert important liver metabolic func-
tions such as protein and lipid synthesis, transmembrane
protein folding and calcium homeostasis [6, 7].
Dysfunction of hepatic ER is implicated in the spectrum
of the NAFLD pathology via activation of ER stress
signaling [7, 8•].

Autophagy is another crucial process implicated in cellular
homeostasis delivering cytoplasmic content to the lysosomes
in order to degrade and/or recycle components to form mac-
romolecules [9]. The potential role of autophagy in hepatic
lipid metabolism has been recently recognized, while dysreg-
ulated autophagy has also been found to contribute to the
pathogenesis of NAFLD [10•].

ER stress and autophagy co-operate to stimulate the degra-
dation of intracellular lipid droplets (lipophagy) in liver.
However, under increased and sustained ER stress, an aber-
rant inflammation, along with reduced autophagic process can
lead to hepatocyte death [11, 12].

This review presents the current knowledge
supporting the impact of ER stress signaling and au-
tophagy and their interrelation on NAFLD, ranging from
simple steatosis to NASH and HCC, while summarizing
potential therapeutic interventions targeting these two
processes.

Obesity and NAFLD

Obesity has been linked to the development of metabolic syn-
drome and its comorbidities, such as T2DM and NAFLD, and
increases the risk of mortality in these individuals [13, 14].
Interestingly, obesity has emerged as an independent risk fac-
tor, increasing the risk of NAFLD incidence by 3.5-fold [15].
The global prevalence of NAFLD is estimated to be about
25.24% (over 2 billion people over the world) [16, 17], al-
though prevalence can vary according to the diagnostic meth-
od used. Characteristically, when magnetic resonance
spectroscopy—which is a highly sensitive method—was used
to measure hepatic triglyceride content in a US study popula-
tion, the prevalence of NAFLD was estimated to be 33.6%
[18]. Of note, there is a higher prevalence of NAFLD among
individuals with obesity compared to general population, al-
though the exact percentages vary due to the different diag-
nostic methods and the characteristics of each studied popu-
lation, such as nationality, age and predisposing factors, in-
cluding T2DM [13]. In Italy, the Dionysos study identified
that the prevalence of NAFLD was 75.8% in persons with
obesity [19], while NAFLD prevalence was 27.1% among
overweight Dutch and 81.7% among Dutch people with obe-
sity [20], and 67.5% in US persons with obesity [21]. A study
in a French population identified NAFLD with mild steatosis
(5–33%) in 53% and moderate steatosis (33–66%) in 20% of
patients with metabolically healthy obesity [22]. NAFLD has
a prevalence between 15% and 80% in people with obesity in
the Asia-Pacific region, with a prevalence ranged from 50 to
80% in Japanese people with obesity, between 70% and 80%
in Chinese with obesity, from 10 to 50% inKorean individuals
with obesity, between 15% and 20% in Indians with obesity
and a prevalence of about 47% in Indonesian people with
obesity [23]. Furthermore, the prevalence of obesity among
global NAFLD patients is 51.3% [17]. Obesity can cause en-
ergy imbalance, insulin insensitivity and lipolysis, and alter
metabolic functions such as insulin resistance and dyslipid-
emia, entities that can contribute to NAFLD occurrence [15,
16, 24]. Obesity can disturb the metabolism of the adipose
tissue and when the excess energy cannot be stored in this
tissue, then this role is taken over by other tissues, with the
hepatic being one of them [13, 25]. In this case, circulating
free fatty acids (FFAs) derived from increased hepatic de novo
lipogenesis or from diminished uptake in subcutaneous adi-
pose tissue can result in ectopic fat accumulation, in our case
in the liver, and multiorgan insulin resistance, which is con-
sidered a major contributor towards NAFLD development
[26, 27]. The high levels of lipids and carbohydrates that he-
patocytes are exposed to due to obesity can lead to hepatocel-
lular injury and consequently NAFLD due to ER stress, oxi-
dative stress and mitochondrial dysfunction [11]. The accu-
mulation of lipids in hepatocytes, if not appropriately man-
aged, can provoke the infiltration of immune cells in the liver
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and the initiation of an inflammatory process [13, 28]. During
this process the immune cells secrete inflammatory cytokines
and immunomodulatory mediators that can worsen the hepa-
tocyte dysfunction and lead to necrosis, hepatic steatosis and
liver fibrosis, leading to NAFLD and NASH [15, 29]. Obesity
can also affect the liver through hormones produced by the
adipose tissue, the so called adipokines, which are implicated
in the pathogenesis of NAFLD and its progression to NASH
and HCC through their contribution to the aforementioned
inflammation [30]. In particular, the adipokines are separated
in pro- and anti-inflammatory ones and while in normal met-
abolic status there is a balance between the two categories, in
obesity when the adipose tissue enlarges, the secreted
adipokines shift towards a pro-inflammatory, steatogenic
and fibrogenic profile [13, 31]. In addition, the interaction of
the adipokines with the immune cell-derived cytokines can
affect NAFLD pathogenesis and progression [13, 32].

ER Stress

The ER is responsible for proper folding of secreted and trans-
membrane proteins, and the accumulation of misfolded or
unfolded proteins leads to ER stress and the activation of the
unfolded protein response (UPR) to restore homeostasis [33,
34]. Activation of the UPR relies on the activation of three
transmembrane ER stress sensors: the inositol-requiring en-
zyme 1 (IRE1), the PKR [double-stranded RNA-activated
protein kinase]-like ER kinase (PERK) and the activating tran-
scription factor 6 (ATF6) [33, 34]. These three sensors are
maintained inactive through the binding of the ER chaperone
GRP78/Binding immunoglobulin protein (BiP) on their cyto-
solic domains [8•, 35].

IRE1α, which catalyzes the first and most conserved
branch of the ER stress response, is a transmembrane kinase/
endoribonuclease (RNAse) [8•, 34]. Its cytosolic domain
senses stress by binding unfolded proteins when GRP78/BiP
is dislocated from the chaperone Hsp47, leading to autophos-
phorylation and dimerization of IRE1α and activation of its
RNAse domain [8•, 34]. This domain cleaves the mRNA
encoding the X-box binding protein 1 (XBP1), creating the
spliced formXBP1s, that reinforces ER protein folding, secre-
tion and degradation (ER-associated degradation-ERAD)
[36]. Furthermore, the RNAse domain of IRE1α targets other
ER-related mRNAs as well, through regulated IRE1α-
dependent decay (RIDD) [37], which leads to pro-apoptotic
signaling through destruction of specific microRNAs that
block pro-apoptotic caspase-2 translation [38].

PERK is also transmembrane with an external domain that
senses stress and a cytosolic kinase domain that preferentially
phosphorylates the translation elongation factor elf2α which
halts translation while at the same time it increases the amount
of specific mRNAs, such as ATF4 [8•, 39]. ATF4 activates

downstream genes, is implicated in restoring homeostasis and
regulates the expression of the DNA damage-inducible tran-
script 3 (DDIT3, or growth arrest and DNA damage 153
(GADD153) or best known as CCAAT/enhancer-binding
protein (C/EBP) homologous protein (CHOP) [39], and sub-
sequent growth arrest and DNA damage-inducible 34
(GADD34) [40].

ATF6 is a basic leucine zipper protein (bZIP) functioning
as an ER stress response element, which promotes transcrip-
tion of ER-resident chaperones [41]. Upon ER stress, ATF6α
is translocated from the ER to the Golgi apparatus, where it is
cleaved from the 90-kDA to the active 50-kDa protein by Site-
1 protease (S1P) and Site-2 protease (S2P) [41, 42]. The active
form is then transported to the nucleus [42] where it activates
the transcription of ER chaperone genes, as well as of the
transcription factors CHOP and XBP-1 [43].

Of note, apart from its role in protein processing, ER is also
critically implicated in lipid synthesis in hepatocytes, thus it is
implicated in lipid disorders, including hepatic steatosis [44].
Indeed, 59% of accumulated hepatic TAG causing NAFLD
comes from non-esterified fatty acids, 26% from de novo li-
pogenesis, and only 15% from the diet [45], underlying the
important role of lipogenesis in NAFLD pathophysiology.

ER Stress and NAFLD

The IRE1α/XBP1 Axis

The significance of IRE1α/XBP1 axis in the pathogenesis of
NAFLD has been proven mostly by genetic ablation studies.
Whenmolecules of the three sensing pathways are deleted, the
response to ER stress is compromised leading to hepatic
steatosis [46]. Hepatocyte-specific deletion of IRE1α in mice
led to defective protein transport from the ER to the Golgi
apparatus, defective oxidative protein folding, and ER-
associated degradation of misfolded proteins, factors that in-
duce ER stress and activate the UPR [47]. These mice devel-
oped modest hepatosteatosis in the absence of ER stress,
which was worsened after its induction [47]. IRE1α represses
the expression of metabolic transcriptional regulators, includ-
ing CCAAT/enhancer-binding protein (C/EBP)β, C/EBPδ,
peroxisome proliferator-activated receptor γ (PPARγ) and
enzymes involved in triglyceride biosynthesis, while is also
necessary for apolipoprotein secretion when ER homeostasis
is disrupted [47]. Furthermore, liver-specific XBP1 disruption
is related to decreased hepatic l ipogenesis [48].
Overexpression of Bax inhibitor-1 (BI-1) and concomitant
inhibition of IRE1α endonuclease activity leads to downreg-
ulation of lipogenesis genes, such as stearoyl-CoA desaturase
1 (Scd-1) [48]. XBP-1 deficiency leads to a feedback activa-
tion of IRE1α and mRNA degradation of lipid metabolism
genes, such as Dgat2, Acacb, Pcsk9, Angptl3, and Ces1 [49].
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Apart from sensing the unfolded proteins, studies in yeast and
mammalian cells have shown that the ER stress cytosolic (or
transmembrane, in mammalian cells) sensing domain of
IRE1α is sensitive tomembrane lipid composition, suggesting
a lipid sensing mechanism as well which can activate the UPR
[50, 51]. Changes in membrane lipid composition can lead to
IRE1α and PERK activation by enhanced dimerization via
their transmembrane domain which proved to be the important
domain for both—albeit especially for IRE1α—in terms of
XBP1 splicing [51]. On the other hand, small heterodimer
partner (SHP; also known as nuclear receptor subfamily 0,
group B, member 2, NR0B2) deficiency downregulates
XBP1s protein level and transcriptional activity, compromis-
ing the ER stress response [52]. Apart from the role of splicing
in the formation of XBP1s which mediates key functions of
the ER stress response, its post-translational modification
plays an equally important role [53•]. In particular,
deacetylation of XBP1s by sirtuin 6 (Sirt6) protects against
hepatic steatosis, since in Sirt6 knockout and obese mice the
acetylated XBP1s levels and hepatic steatosis were increased,
while these phenomena were decreased after genetic overex-
pression and pharmacological activation of Sirt6 [53•]. The
results linking acetylated XBP1s positively with NAFLD ac-
tivity score (NAS) and negatively with Sirt6 level were also
confirmed in liver biopsies from NAFLD patients [53•].

Upon ER stress and concomitant UPR activation, activated
IRE1α can lead to subsequent activation of several down-
stream molecules, such as the pro-inflammatory and pro-
apoptotic c-Jun-NH2-terminal kinases (JNKs) which lead to
inflammation and cell death, as well as the nuclear factor-κB
(NF-κB) [8•]. NF-κB in the liver acts as a link between hepatic
injury and fibrosis—and even progress to hepatocellular
carcinoma—with a double role, mediating both pro-
inflammatory and anti-apoptotic responses to protect cells
from death while inflammatory or immune responses are ini-
tiated [54]. This is necessary since these responses are respon-
sible for protecting against pathogens/infections, but should
also be tightly regulated to prevent liver injury from the toxic
pathogen products [54]. Indeed, NF-κB can act as a “two-
edged sword” in NAFLD, since balance between its two roles
is needed: normal or slightly elevated NF-κB activity can
protect hepatocytes from death, but exaggerated activity can
lead to fibrosis and NASH through facilitating excessive in-
flammation [8•, 54]. Data from cell culture experiments sug-
gest that free fatty acids induce the UPR which when
prolonged leads to cell death through CHOP-mediated activa-
tion of NF-κB signaling [55]. Furthermore, in mice deficient
for BI-1, the unrestrained action of IRE1α RNAse leads to
NOD-like receptor family pyrin domain containing 3
(NLRP3) inflammasome activation, increased thioredoxin-
interacting protein (TXNIP) levels and enhanced NASH
[56]. Indeed, hyper-activated IRE1α increases TNXIP
mRNA stability and protein expression leading to

programmed cell death through NLRP3 inflammasome induc-
tion [57], and possibly to NASH occurrence. However, it
seems that, not only IRE1α hyper-activation, but also its
downregulation can exacerbate hepatic steatosis progression.
Data from cultured hepatocytes, which were also confirmed in
high-fat diet (HFD) fed mice and human liver biopsies, sug-
gest that the inactivation of the RNAse activity of IRE1α
caused by a HFD disrupts the RIDD-mediated degradation
of its microRNA targets [58]. The latter includes the miR-
200 and miR-34 families, and, in turn, was shown to lead to
decreased abundance of their targets, peroxisome proliferator-
activated receptor α (PPARα) and deacetylase sirtuin 1
(SIRT1), that are implicated in lipid homeostasis [58]. As a
result, lipids accumulate and progression towards hepatic
steatosis is noted [58]. Furthermore, studies on liver biopsies
from patients with metabolic syndrome with or without
NAFLD or NASH found that NASH is associated with failure
to splice XBP-1 and generate XBP-1s [59]. Palmitate which
contains palmitic acid -a saturated fatty acid- has been found
to activate the IRE1α pathway, which activates CHOP and
JNK proteins leading to enhanced expression of the BH3-only
proteins PUMA and Bim which activate the apoptosis regula-
tor BAX and lead to hepatocyte death [60].

In HCC, IRE1α signaling has been associated with
tumor initiation [61]. XBP-1s expression levels have
been found elevated in HCC human biopsies [62].
Studies in mice revealed that primary tumors display in-
creased XBP-1 expression which correlated with height-
ened aggressiveness, namely faster doubling times of the
tumor [63].

The PERK-eIF2a-ATF4 Axis

The PERK-eIF2a-ATF4 axis has been found to be primarily
implicated in lipogenesis and steatosis regulation [8•].
Enforced overexpression of the GADD34 phosphatase in the
liver, which selectively dephosphorylates elf2α, leads to
downregulation of phosphorylated elf2α and subsequent at-
tenuation of the adipogenic nuclear receptor PPARγ and the
metabolic transcriptional regulators C/EBPα and C/EBPβ
[64]. This sequence of events has been linked to enhanced
glucose tolerance and insulin sensitivity, as well as with lower
incidence of hepatic steatosis in HFD fed mice compared to
normal diet fed counterparts [64]. However, complete dephos-
phorylation of elf2α leads to hepatic steatosis in mice, under-
pinning the importance of a basal elf2α phosphorylation level
in order to avoid fat accumulation when ER stress is chal-
lenged [46]. Liver biopsies from nondiabetic patients with
obesity revealed that elf2α phosphorylation increased with
worsening insulin resistance [65]. Similar to IRE1α, PERK
lacking its luminal unfolded protein sensing domain, can
sense aberrations in lipid composition through its transmem-
brane domain and activate the UPR [51]. Moreover, ATF4
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was found to play a significant role in regulating hepatic lipid
metabolism since its deficiency protected mice from hypertri-
glyceridemia and steatosis in response to high fructose diet, by
attenuating hepatic lipogenesis [66]. ATF4-null mice are lean,
protected from age-induced and diet-induced obesity and they
are also protected from diet-induced diabetes, hyperlipidemia
and hepatosteatosis [67]. CD154 (CD40 ligand) is a key play-
er in inflammatory processes and CD154 knock-out mice fed
a diet rich in olive oil were found to develop hepatic steatosis
[68]. These mice also displayed reduced apolipoprotein B100
(apoB100) expression and secretion of very low-density lipo-
proteins, associated with modified UPR, reduced XBP-1s and
phosphorylated elf2α, thereby providing another link between
inflammation and the UPR [68]. ATF4 was also found to
functionally promote lipid biosynthesis, while overexpressed
ATF4 stimulated the UPR and led to liver steatosis in
zebrafish model system as well [69]. Interestingly, ATF4 is
suppressed by microRNA-214 (miR-214) and this suppres-
sion is reversed by the long noncoding RNA maternally
expressed gene 3 (MEG3) [70]. Studies in primary hepato-
cytes, as well as in HFD fed mice and ob/ob mice, revealed
this interaction and highlighted the role of MEG3 in hepatic
insulin resistance promotion [70], a role that may be also im-
plicated in NAFLD. As mentioned above, excessive NF-κB
activation can cause NASH development. Indeed, data from
cultured mouse fibroblasts show that the phosphorylation of
elf2α by PERK inhibits the synthesis of IκB, an inhibitor of
NF-κB, leading consequently to NF-κB activation [71].
PERK activation phosphorylates and, in turn, activates the
transcription factor NF-E2-related factor-2 (Nrf2), which con-
trols the amount of reactive oxygen species (ROS) through
regulating glutathione levels during UPR [72]. Thus, PERK-
mediated Nrf2 activation during ER stress alleviates the oxi-
dative stress, thereby increasing cell survival [72]. The signif-
icant protective role of Nrf2 against steatohepatitis has also
been proven in animal models. Specifically, Nrf2 null mice
fed a methionine- and choline-deficient diet for 13 weeks
displayed deteriorating NASH compared to wild-type mice,
in terms of increased oxidative stress, iron accumulation, fatty
change, inflammation and fibrosis [73]. On the other hand,
although activation of Nrf2 had no effect in fat accumulation,
oxidative stress and iron deposition, it significantly decreased
inflammation and fibrosis [73]. Moreover, Nrf2 activation via
PERK can lead to downregulation of TNXIP transcription,
which links oxidative stress to inflammasome activation,
and, thereby, protects hepatic cells from pyroptosis [74]. In
addition, the farnesoid X receptor (FXR) inhibits the ER
stress-induced NLRP3 inflammasome activation that leads
to hepatocyte death, inflammation and progression of liver
fibrosis by inhibiting TXNIP activity [75]. FXR exerts these
protective effects against NASH progression through the
PERK pathway, and specifically through the downstream
transcriptional regulator CHOP [75].

On the contrary, PERK activation as well as IRE1α acti-
vation induced CHOP overexpression that leads to hepatocyte
death through pyroptosis and apoptosis [76]. The PERK-
CHOP branch of ER stress, in particular, has been found to
upregulate dual-specificity phosphatase 5 (DUSP5) expres-
sion in liver fibrosis—both in human and animal models—
which in turn contributes to hepatocyte death [77].
Interestingly, liver biopsies from patients with metabolic syn-
drome with or without NAFLD or NASH revealed that phos-
phorylated elf2α was increased in NAFLD and NASH pa-
tients with metabolic syndrome compared to those with nor-
mal liver histology, although levels of the downstream effec-
tors ATF4, CHOP and GADD34 remained unchanged [59].

Regarding the role of PERK-eIF2a-ATF4 axis in HCC, the
PERK pathway is activated during tumor progression [61].
Experiments with transformed mouse embryonic fibroblasts
and their tumorigenic effects in mice revealed that PERK
plays a role in tumor adaptation to hypoxic conditions by
regulating the translation of proangiogenic genes implicated
in cell-cell matrix remodeling, adhesion and extracellular ma-
trix proteolysis [78].

The ATF6α Axis

There are data indicative of a protective role of ATF6α path-
way in hepatic steatosis [8•]. ATF6α knockout mice when
challenged with tunicamycin, an ER stress inducing agent,
display CHOP upregulation, liver dysfunction and steatosis
due to lipid accumulation [46, 79]. ATF6 has been found to
bind and suppress the sterol regulatory element-binding pro-
tein 2 (SREBP2) and diminishes its lipogenic effect [80].
Additionally, ATF6 physically interacts with PPARα in he-
patocytes, upregulates its transcriptional activity, promotes
fatty acid oxidation and protects against hepatic steatosis
[81]. ATF6α reduces hepatic glucose output [82] and im-
proves insulin signaling, reducing hyperglycemia and
hyperinsulinemia when overexpressed in livers of obese mice
[83], pointing towards a positive effect of ATF6α in regulat-
ing insulin signaling. However, more recent data have impli-
cated the activation of ATF6 signaling pathway in NAFLD
progression [84]. Indeed, the downregulation of ATF6 path-
way attenuated NAFLD progression by reducing the ER
stress-induced inflammation and apoptosis in liver cells of
HFD-fed NAFLD mice [84] . Regarding NASH,
empagliflozin found to attenuate steatosis, hepatocellular bal-
looning and lobular inflammation by—among others—reduc-
ing ATF6 expression, in HFD-fed Apo(-/-) mice [85••].

Moreover, the ATF6α pathway seems to be the last to
operate in HCC compared to IRE1α and PERK pathways,
and it is modestly activated only after tumor initiation [61].
ATF6α has been also identified as a regulator in HCC. Indeed,
ATF6 mRNA levels have been found increased and the acti-
vated ATF6 product has displayed high nuclear localization in
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HCC biopsies [62]. Furthermore, ATF6α upregulated 18
genes specifically expressed in an ATF6α-transfected HCC
cell line and HCC tissues in comparison to a vector transfected
cell line and non-cancerous liver tissues [86]. Finally, ATF6α
is necessary for the adaptation of dormant cancer cells to che-
motherapy, nutrient starvation, and changes in the in vivo mi-
croenvironment, promoting their survival [87]. ATF6 has
been recognized as a potential activator of CHOP in the tumor
environment with both molecules being elevated in HCC in-
duced by the carcinogen N-diethylnitrosamine (DEN) [88].
CHOP overexpression in HCC tumors did not lead to apopto-
sis, suggesting a change in CHOP function from pro-apoptotic
to tumorigenic [88]. CHOP’s role as a promoting factor for
HCC has been identified from other studies as well. More
specifically, CHOP null mice display reduced apoptosis, cel-
lular proliferation and fibrosis, key factors for HCC develop-
ment [89]. In human liver biopsies, CHOP expression in-
creased in parallel to NAFLD progression, from steatosis to
NASH to HCC [89]. The ATF6 and IRE1/XBP-1 pathways
lead to the transformation-associated expression of the GRP78
gene in HCC [62]. Interestingly, autoantibodies against
GRP78 were significantly higher in the serum of patients with
HCC compared to control groups and could possibly serve as
potential diagnostic markers [90].

Autophagy

Autophagy is an evolutionary conserved process in which cellu-
lar components are enclosed in membrane vesicles and
transported to lysosomes for degradation [91]. However, the
purpose of autophagy is not only the degradation of unnecessary
material, but mainly the recycling of simple components, like
amino acids or monosaccharides, which can then be reused in
the formation of their more complex macromolecules, and there-
by maintain cellular homeostasis and survival in periods of star-
vation [91]. Macro-autophagy, the major type of autophagy,
involves the enclosure of cytosolic material, including proteins
and degraded organelles, into an isolation membrane named
phagophore, which forms the autophagosome [92]. The latter
then fuses with lysosomes (with or without previously fusing
with endosomes) to form the autolysosome and degrade its con-
tents [92]. The mammalian target of rapamycin (mTOR) func-
tions as a nutrient sensor that can activate or not the autophagy
mechanism through regulation of the ULK1 complex consisting
of unc-51-like kinase 1/2 (ULK1/2), Atg13 and focal adhesion
kinase family interacting protein of 200 kDa (FIP200) [92, 93•].
The ULK1 complex is suppressed under nutrient-rich conditions
and is activated translocating to the ER under starvation and
autophagy-inducing conditions [92, 93•]. Apart from the
mTOR complex which is responsible mainly for short-term reg-
ulation of autophagy [94], long-term regulation can be accom-
plished by the transcription factors class O of forkhead box

transcription factors (FoxO) and transcription factor EB
(TFEB), which under starvation and in the absence of insulin
signaling translocate to the nucleus and transactivate their target
autophagic genes [95]. Beclin 1 is also a central player in au-
tophagy functioning more downstream, and is starvation-
sensitive (interacting with Bcl-2 under nutrient-rich conditions
and dissociating from Bcl-2 under nutrient limitations) [92, 93•].
Light chain 3 (LC3), an autophagy-related protein 8 (Atg8)
ortholog, is another major player in autophagy, with its
membrane-bound LC3II form being required for
autophagosome formation, in contrast to the cytosolic LC3I form
[93•, 96]. Finally, important players in autophagosome forma-
tion are the autophagy-related (Atg) proteins. Although 31 Atg
genes have been identified, only 15 have been characterized as
core Atg genes necessary for the biogenesis of autophagy-related
membranes, namely Atg1-10, 12-14, 16 and 18 [97]. A charac-
teristic autophagy substrate whose levels are commonly used as
an indicator of autophagy activation and autophagic flux is p62/
sequestosome 1 (SQSTM1), an autophagy adaptor protein
which controls the formation of protein aggregates and inclusion
bodies, links ubiquitinated proteins to LC3 and transfers them to
autophagosomes for autophagic turnover [98]. Autophagy is
necessary for the degradation of p62/SQSTM1, which is an ac-
tivator of NF-κB and of the oxidative-stress responsive transcrip-
tion factor Nrf2, which as previously mentioned is implicated in
UPR as well [93•, 99, 100].

Autophagy and NAFLD

In the context of NAFLD, autophagy is related to lipid metab-
olism, insulin resistance, hepatocellular injury and inflamma-
tion [93•]. Overall, autophagy has been generally found re-
duced in NAFLD [101••]. Lipid droplets, where excess free
fatty acids and glucose are converted to triglycerides and
stored, need a conjugation system of LC3 and Atg7 for their
formation [102]. Atg7 deficiency, which leads to suppression
of Atg5, results in ER stress induction and severe insulin re-
sistance [103]. Furthermore, pharmacological induction of au-
tophagy by carbamazepine and rapamycin mitigated hepatic
steatosis and improved insulin sensitivity in a HFD-induced
mouse model of NAFLD [104]. Aggregation of the autopha-
gic substrate p62 (SQSTM1) in hepatocytes was found in 68%
or 88% of patients with NAFLD according to two clinical
studies, while absence of p62 expression was identified in
the control groups consisting of patients with normal liver
function or with liver metastatic tumors without markers of
infection for hepatitis or HIV [105, 106]. Moreover, liver-
specific overexpression of p62 induced steatosis in regular
chow fed mice [107]. Hepatic autophagy was suppressed in
HFD-fed mice which displayed insulin resistance and
hyperinsulinemia, while it has been shown that insulin inhibits
the expression of key autophagy genes in a FoxO1-dependent
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manner [108]. Furthermore, mTOR mRNA and protein ex-
pression levels were significantly increased in rats fed a
HFD which exhibited mild and severe steatosis compared to
rats fed a standard diet, indicating that mTOR contributes to
NAFLD development and progression [109]. Wang et al. ex-
ploring the underlying mechanisms found that mTOR regu-
lates insulin resistance and chronic liver inflammation [109],
while in vitro and animal studies showed that mTOR activa-
tion accompanied with inflammation aggravated NAFLD
through disrupting low density lipoprotein receptor (LDLR)
expression [110].

Autophagy impairment has also been linked to NASH de-
velopment. The expression levels of Beclin-1 were found sig-
nificantly higher in patients with NASH compared to patients
with simple steatosis [111]. Protein levels of p62 were also
elevated in patients with NASH compared to patients with
steatosis and individuals with normal liver, along with the
ratio of LC3II/L3-I proteins which was significantly increased
in patients with NASH and steatosis compared to normal liver
subjects [111]. These data indicate decreased autophagy in
patients with hepatic steatosis and NASH [111]. However, a
study performing Western blot analysis in liver tissues identi-
fied no difference in p62 protein levels between NAFLD,
NASH patients and normal controls [112]. In line with the
clinical data, increased phosphorylated (activated) mTOR
and its downstream target S6K1 proteins were observed in
mice with steatosis and NASH compared to control mice fed
a regular chow diet, indicating autophagy suppression [111].
Indeed, p62 protein and LC3II/LC3I ratio were increased in
steatosis and NASH-model mice compared to control, and
correlated with prolonged and terminal ER stress [111].
Liver-specific overexpression of p62 in mice exacerbated
NASH-induced fibrosis in the methionine-choline deficient
diet model of NASH [107]. LC3B has also been found elevat-
ed in another NASH mouse model [113]. However, as men-
tioned elsewhere, evaluation of autophagic flux via p62 levels
and LC3II/LC3I ratio, although initially interpreted as a reli-
able index of macro-autophagy [114], should always be con-
ducted carefully, since the LC3I levels can display naturally
occurring fluctuations and p62 levels can be elevated due to
other factors, independently of autophagy [94].

Regarding HCC, the role of autophagy remains controversial
and seems to be dual [115]. As such, autophagy can limit chro-
mosomal instability and suppress tumor initiation by eliminating
senescent and “defected” cells, whereas can also promote cancer
cell survival by providing energy and milestones for them
through recycling damaged organelles, DNA and proteins [94].
Emerging evidence points towards a tumor suppressive role of
autophagy. Mice with heterozygous disruption of Beclin-1 gene
display reduced autophagy and increased cellular proliferation,
and develop HCC among other types of tumors [116]. In terms
of mRNA expression [117] and protein expression assessed by
immunohistochemistry [118, 119] and Western blot analysis

[119], Beclin-1 was also found lower in human HCC tissues in
comparison to non-cancerous tissues. Interestingly, lower
Beclin-1 protein expression was associated with poorer survival
in patients with HCC [118], and could serve as a marker for
HCC prognosis [119]. However, a discrepancy exists here, since
an older study had identified increased Beclin-1 mRNA and
protein expression in HCC [120]. LC3 protein can also serve
as a prognostic marker [121] for predicting survival and recur-
rence after HCC surgical removal; low levels or absence of LC3
from adjacent non-tumor tissues were found to be predictive of
immediate mortality [121, 122]. Furthermore, low LC3 expres-
sion in tumor and adjacent non-tumor tissues was associated
with repeated recurrence after surgical resection of HCC [121,
123]. By contrast, divergent findings come from other studies
indicating that high expression of LC3B was correlated with
vascular invasion, metastasis and poor prognosis and survival
in HCC patients [124]. In line with the aforementioned, LC3
was highly expressed in HCC compared to non-cancerous tis-
sues, while, in correlation to hypoxia-induced factor 1α
(HIF1α), it was significantly associated with tumor size, serving
as a predictor of HCC recurrence after surgery, albeit only in
large tumors [125]. Several tumor suppressors, such as protein
tyrosine phosphatase receptor type O (PTPRO) [126], and
TGFβ-activated kinase 1 (TAK1) [127], induce autophagy by
increasing LC3 expression [126] and decreasing p62 expression
[126] and mTOR complex 1 (mTORC1) formation [127] and
thus suppressing proliferation of human HCC cell lines [126] or
hepatic carcinogenesis in mice [127]. According to the role of
mTORC1 as a consistent autophagy inhibitor [128], activation of
mTOR signaling has been identified in patients with HCC, while
inhibition of mTOR decreased tumor growth and extended sur-
vival in experimental HCC xenograft models [129].
Interestingly, mTOR activation has been found to occur selec-
tively in human andmice HCCswith a background of metabolic
syndrome and NASH, unlike tumors derived from other etiolo-
gies, such as those related to hepatitis viral infection [130].
Additionally, activation of mTORC1 specifically in mice livers
leads to spontaneous HCC development [131]. Deletion of Atg5
and Atg7 in the liver leads to development of benign liver ade-
nomas, originating from autophagy-deficient hepatocytes as
shown by p62 autophagy substrate accumulation [132].
Expression levels of Atg5, Beclin 1, and Atg7 mRNA were
downregulated in HCC cell lines compared to normal cell lines,
while Beclin 1 gene expression was also decreased in HCC
tissue samples compared to non-tumor samples [133].
Accumulation of the autophagy substrate p62 is also linked to
hepatic carcinogenesis, since p62 was originally discovered in
HCC cell inclusions, while it was undetectable in non-neoplastic
liver tissue [134–136]. Further studies revealed that high p62
expression predisposes to rapid recurrence after surgical treat-
ment of HCC [137]. Moreover, p62 is needed for activation of
NRF2 and mTORC1 and protects HCC-initiating cells from cell
death caused by oxidative stress [137]. Overexpression of p62 in
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human hepatoma cell lines caused anti-apoptotic effects [135]. In
addition, young transgenic mice that overexpress p62 display a
steatotic phenotype in the absence of inflammation or liver dam-
age [138], suggesting that p62 promotes the progression of
NAFLD towards HCC [139].

Notably, there is also evidence that autophagy promotes
cancer survival. In a study by Lage et al., immunohistochemi-
cal analysis of p62 revealed reduced content in HCC specimens
compared to non-cancerous liver tissue, with p62 levels being
decreased as HCC cells were differentiated further [140].
Contradicting data exist also for mTOR, since pharmacological
mTOR inhibition promoted HCC development, at least in mice
with hepatocyte-specific ablation of the specific mTORC1 sub-
unit Raptor [141]. It should be highlighted that, autophagy
seems to inhibit tumor suppressors further promoting HCC
development once hepatic carcinogenesis has initiated.
Indeed, it has been demonstrated that autophagy inhibition by
Atg5 deletion in mice led to the appearance of only benign
tumors instead of hepatic carcinogenesis, even after treatment
with HCC-inducing agents [142]. Of interest, inhibition of au-
tophagy by pharmacological inhibitors or siRNA against Atg5
and Atg7 was found to sensitize HCC cells to the multikinase
inhibitor linifanib [143]. Furthermore, reducedAtg7 expression
by the micro-RNA miR-375 was shown to reduce viability of
cancer cells under hypoxic conditions [144].

Recent data suggest that the balance of activation of
autophagy-related molecules is crucial to preserve the normal
physiology of the liver, while an imbalance in either direction
can result in harmful effects. For instance, in autophagy-
deficient mice both hyper- and hypo-activation ofmTORmol-
ecules was found to be linked to the development of hepatic
tumors, including HCC [145••]. This underlines the potential
detrimental effects that can occur by the chronic use of mTOR
inhibitors due to disruption of the mTOR balance [145••].

ER Stress and Autophagy Interaction

Summarizing the current knowledge, it is evident that ER
stress and autophagy play an important role in NAFLD/
NASH initiation and progression.

Hyperglycemia, insulin resistance, and lipid accumulation
(from dietary lipid influx and de novo lipogenesis) can induce
proteostasis and trigger ER stress in hepatic cells [11] so that
the UPR adaptive signaling pathway is activated to restore it,
by promoting autophagy. Autophagy stimulates also the deg-
radation of intracellular lipid droplets (lipophagy).

Of interest, there is an interplay between ER stress and
autophagy, as ER stress is a well-established positive regulator
of autophagy via mainly ATF4 and Xbp1 [12], while autoph-
agy can reduce ER stress, so that it can act protectively by
inhibiting apoptosis through caspase inactivation [146].

Nevertheless, under chronic stress, the UPR turns from adap-
tive to terminal, reduces autophagic process, and activates pro-
apoptotic pathways, leading thus to hepatocyte death [12].

AMPK is a known positive regulator of autophagy. Zhou
et al. demonstrated that the inhibition of a key enzyme in lipid
metabolism (Scd-1) increased AMPK activity and autophagy,
attenuating thus hepatic steatosis, in HFD-fed mice [147].
Moreover, in line with the aforementioned, we showed that a
sodium-glucose cotransporter-2 (SGLT-2) inhibitor (SGLT-2i)
can increase autophagy through AMPK phosphorylation, and
reduce the HFD-induced ER stress and hepatic cell apoptosis in
ApoE(-/-) mice, alleviating the progression of NAFLD [85••].

However, it should be noted that in HCC, the ER stress and
autophagy are differentially regulated and interact, probably
under the influence of other critical oncogenic signaling
pathways.

Treatment

Both genetic and lifestyle factors appear to contribute to the
pathogenesis of NAFLD, and, at least at the early stages of the
disease, lifestyle changes—namely improved diet, weight
management, and increased physical activity—can be an ef-
fective strategy to manage NAFLD [148]. Although further
research is clearly required, this beneficial effect appears to
involve autophagy-related mechanisms. Indeed, a study on
rats showed that exercise can reduce NASH effects on mito-
chondrial permeability transition pore and promote autophagy
and mitochondrial fusion towards a protective direction [149].
Furthermore, exercise can be beneficial in NAFLD by pro-
moting autophagy in the liver which could protect from he-
patic fat accumulation, as shown in HFD-fed mice [150, 151].
Recent data also confirmed that physical activity, even with-
out dietary changes, can diminish the progression of NAFLD
to NASH and tumorigenesis by activating liver autophagy
[152•]. However, apart from the changes in lifestyle, in many
cases pharmacological intervention is further needed.

Current guidelines on the management of NAFLD do not
recommend any drug treatment; however, given the strong
association between T2DM, obesity and NAFLD, various
anti-diabetic and anti-obesity drugs have been assessed re-
garding their usefulness in the treatment of NAFLD (Table 1).

Among the main categories of the anti-diabetic drugs that
have been tested in clinical trials are insulin sensitizers (metfor-
min and glitazones), glucagon-like peptide-1 (GLP-1)analogues,
dipeptidyl-peptidase-4 (DPP-4) inhibitors, and SGLT-2i.

Jalali et al. conducted a meta-analysis of clinical trials eval-
uating the role of metformin in NAFLD. They included six
randomized controlled studies with 307 individuals and their
results emphasized the importance of metformin administra-
tion for improving liver function in non-diabetic NAFLD pa-
tients [157].
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A recent meta-analysis assessed the efficacy of pioglita-
zone, DPP-4 inhibitors, GLP-1 analogues and SGLT-2i
agents. Of note, according to their findings, pioglitazone dem-
onstrates significant improvements in liver enzymes and in
liver steatosis, fibrosis and parenchymal inflammation in
NAFLD/NASH patients with diabetes as well as without dia-
betes [158]. Regarding the effects of the other three drug clas-
ses, there are findings suggesting possible improvement in
liver enzymes in NAFLD subjects without diabetes; however,
current data in this area are still very limited, especially for

DPP-4i and SGLT2-i in NAFLD patients without diabetes and
in NASH patients.

Anti-obesity treatment with orlistat has also been evaluated
for its effectiveness to improve NAFLD. Two small prospec-
tive studies have yielded contradictory results, showing either
improvement or no effect of orlistat in decreasing liver en-
zymes and liver fat as estimated by ultrasound [161, 165,
168]. Of note, a recent open-label, 24-week, randomized clin-
ical trial identified orlistat treatment as an independent predic-
tor of steatosis improvement [166].

Table 1 Effects of anti-diabetic drugs and anti-obesity treatments on NAFLD in humans

Anti-diabetic drugs and anti-obesity treatments

Family/ Drug name Effects NAFLD entity with
therapeutic potential

Reference(s)

Antidiabetic drugs

Metformin Reduction in concentrations of liver enzymes (transaminases),
improvement in insulin sensitivity and decrease in liver
volume as detected by ultrasound, improvement in liver
function, insulin resistance and body mass index (BMI) to
some extent, but no impact on histological response in
NAFLD patients, reduced risk of progression to HCC

NAFLD, NASH [153–157]

Pioglitazone
[a thiazolidinedione (TZD)]

Increase in BMI, reduction in the levels of the liver enzymes
alanine aminotransferase (ALT), aspartate aminotransferase
(AST) and gamma glutamyl transferase (γGT), reduction in
alkaline phosphatase levels, reduction in liver fibrosis,
steatosis and inflammation, reduction in hepatocellular injury,
ballooning and lobular inflammation, reduction in the activity
score for NAFLD, significant improvement in insulin
resistance

NAFLD, NASH [158–161]

Rosiglitazone
[a thiazolidinedione (TZD)]

Decrease in the levels of the liver enzymes ALT, AST, γGT
and alkaline phosphatase, reduction in liver steatosis

NASH [161–164]

SGLT-2 inhibitors (SGLT-2i) Decrease in BMI, reduction in the levels of the liver enzymes
ALT and γGT, no significant change in the levels of the liver
enzyme AST, no significant change in liver fibrosis and steatosis,
inadequate data for the estimation of the change in inflammation

NAFLD [158]

Dipeptidyl-peptidase-4 (DPP4)
inhibitors

No significant change in BMI, significant reduction in the levels
of the liver enzyme ALT, no significant changes in the levels of
the liver enzymes AST and γGT, no significant change in liver
fibrosis and steatosis, inadequate data for the estimation of the
change in inflammation

NAFLD [158]

Glucagon-like peptide-1
(GLP-1) agonists

Decrease in BMI, reduction in the levels of the liver enzymes ALT
and γGT, no significant change in the levels of the liver enzyme
AST, reduction in liver steatosis, inadequate data for the estimation
of the change in liver fibrosis and inflammation

NAFLD [158]

Anti-obesity treatments

Orlistat Decrease in the levels of the liver enzyme ALT, reduction in serum
insulin level, reduction in fatty liver as assessed by ultrasound,
amelioration of steatosis.

However was not confirmed by all studies

NAFLD, NASH [161, 165, 166]

Bariatric surgery Improvement in the levels of the liver enzymes aminotransferases
and γGT, improvement in histology, steatosis, steatohepatitis and
fibrosis, decrease in lobular inflammation, reduction in BMI

NAFLD, NASH [161]

Liraglutide (3mg daily) Reduction in weight, hepatic steatosis, hepatocyte damage and
apoptosis, as well as insulin resistance, although the reductions in
weight and liver fat were not sustained after liraglutide was
discontinued

NAFLD [167]
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Of great interest, several compounds have been identified
to modulate ER stress or autophagy levels as a therapeutic
strategy to attenuate the progression of NAFLD. To this
aim, several natural compounds, hormones, and drugs have
been evaluated in NAFLD animal models and human studies

regarding attenuating NAFLD progression through modulat-
ing ER stress and autophagy. Tables 2 and 3 summarize se-
lected key modulators of the ER stress pathway and autopha-
gy, respectively, and their corresponding targets/mecha-
nism(s) of action for the treatment of NAFLD.

Fig. 1 Cross-talk between ER stress and autophagy. The ER stress
pathway is induced by hypeglycemia, the ER stress response is initiated
upon accumulation of misfolded and unfolded proteins in the ER lumen.
Dissociation of Bip from the ER stress sensors (PERK, IRE1, and ATF6)
leads to subsequent activation of 3-arms of UPR signaling.
Phosphorylation of PERK results in activation of the downstream
translation factor eIF2α, leading to the activation of ATF4 transcription
factor and over-expression of CHOP. Both ATF-4 and CHOP can
regulate the expression of a number of Bcl-2 family proteins and
autophagy regulatory proteins such Atg5 and p62. The ATF6α, upon
UPR activation, is transported to the Golgi apparatus where is
processed by Site-1 protease (S1P) and S2P and becomes activated.
Activation of IRE1 induces XBP1 splicing to generate active XBP1s.
XBP1s enters the nucleus to transcribe proteins involved in ER
associated degradation (ERAD). Activation of IRE1 also activates the
JNK signaling cascade which in turn increases both phosphorylation of
Bcl-2 as well as the formation of LC3II. Phosphorylation of Bcl-2
disrupts the Bcl-2/Beclin1 interaction and therefore induces activation
of autophagy. All three transcription factors (XBP1s, ATF4, and ATF6)
are translocated to the nucleus where they induce the expression of target

genes including genes related with autophagosome formation. The
autophagy pathway is mainly controlled by the AMPK/mTOR-
signaling axis. AMPK inhibits mTORC1 leading to initiation of
autophagy. AMPK activation induces the phosphorylation of FoxO
transcription factor and its translocation into the nucleus where it can
bind to the promoter of autophagy genes and elevate their expression.
AMPK activation is also the essential step towards activation of ULK1
complex which in turn leads to the activation of the class III PI3K
complex (Atg14/Beclin 1/Vps34/p150) by phosphorylating Beclin 1.
These steps are required for the formation of autophagosome which is
then transformed into a double-membranous vesicle by recruitment of the
Atg (12, 5, 16) complex and the lipidation of LC3I into
phosphatidylethanolamine-conjugated(PE) LC3II. The LC3II
participates in the formation and expansion of phagophore along with
Atg8 and Atg7 and ubiquitinated proteins such as p62. The mature
autophagosome undergoes fusion with a lysosome to form
autolysosome. Activation of autophagy can induce cell survival by
clearing damaged organelles and inhibit apoptosis though inhibition of
caspase-8 activation
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Table 2 shows that focusing on the implication of ER stress
as a mediating mechanism, most of the chemical compounds
that exert favourable effects on NAFLD/NASH have been
tested in animal models. Only selonsertib, an ASK1 inhibitor,
was assessed in patients with nonalcoholic steatohepatitis and
demonstrated reduction of liver fibrosis [174].

Moreover, the effect of natural compounds on ER stress path-
way has been evaluated mainly in hepatocarcinoma cell lines.

It is of great interest that although almost all the categories
of anti-diabetic drugs have been assessed for their usefulness
in NAFLD in clinical trials, the ER-stress as target mechanism
have been studied only for SGLT2-i, and only in animal
models [85, 181].

In contrast, autophagy has been found to be involved in the
favorable effects of four anti-diabetic drug classes (GLP-1,
glitazones, metformin and SGLT2-i) on NAFLD/NASH pro-
gression albeit again only in animal studies [85, 182,
220–222, 225, 226].

As in the case of ER stress, Table 3 shows that an important
number of natural and chemical compounds have been tested
for their efficacy to modulate the autophagy process only in
hepatocarcnoma cell lines. Interestingly, not even one clinical
study has investigated the implication of autophagy as target
mechanism that mediates the favorable effect of any com-
pound or drug on NAFLD.

Conclusion and Perspectives

The incidence of NAFLD spectrum is rising and is estimated to
affect more than 130 million patients worldwide by 2030 [231•].

The involvement of ER stress and autophagy in the pathogen-
esis and progression of NAFLD is gaining increasing interest.

Herein, we reviewed in vitro, animal and human studies on
the deterioration of the aforementionedmechanisms in hepatic
cells leading to NAFLD, NASH and HCC.

It is evident from the existing evidence that the complex
etiology and pathophysiology of NAFLDwith the implication
of genetic and environmental factors make it difficult to ex-
trapolate from in vitro and animal research on humans, and
this is reflected in the divergent results that emerged from
various studies.

Undoubtedly, the plethora of genetically engineered mouse
models, diets or synthetic compounds that are now available
can further facilitate the research of NAFLD.

However, it still remains a challenge to create ideal animal
models reproducing the whole spectrum of the NAFLD, in
order to fully clarify the disease pathophysiology and ascer-
tain effective treatments. Realizing that the “humanizing” of
NAFLD animal models can become possible to a limited ex-
tent, humanizing of computational models derived from ani-
mal experiments could further aid the attempts of translating
relevant research findings from animal to humans [232].

Most studies—especially focusing on diet-induced NAFLD
progression—indicate that there is a counterbalance between ER
stress and autophagy, where ER stress induces autophagy which
sequentially attenuates ER stress and apoptosis of hepatic cells
(Fig. 1). It appears that a shift of this balance to the side of ER
stress, due to either sustained terminal ER stress or diminished
autophagy, can result to hepatic cell apoptosis and liver injury.

Taking into account that other than hepatic cells can also con-
tribute to the pathogenesis of steatohepatitis and tumorigenesis
such as Kupffer, endothelial, epithelial and immune cells, studies
on the role of ER stress and autophagy should be expanded to
these cells which also shape the milieu in the spectrum of
NAFLD. To this direction, a recent study showed that a
myeloid-specific IRE1α deletion results in an altered transcrip-
tional profile of hepaticmacrophages and diminishes the diabetes-
induced NASH, as well as HCC development [233]. Moreover,
recent data suggest that cell-type-specific reprogramming of the
liver cell transcriptomes is linked to NASH pathogenesis [234•].
Multi-omics approaches could offer a new strategy to investigate
the interactive processes of ER stress and autophagy from the
perspective of NAFLD and its progression.

Better understanding of the interrelations between ER
stress and autophagy, and how both these pathways can inter-
act with inflammation and apoptotic mechanisms is expected
to further aid the development of new therapeutic options
which can better target and reprogram these underlying path-
ways. Indeed, both these processes are now intensively ex-
plored as targets of various compounds and drugs aiming to
attenuate NAFLD progression.
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