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Abstract
Purpose
The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms
underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into
the relationship between obesity and BC as well as on the role of novel adipokines in BC development.
Recent Findings
Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC.
Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell
proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine
dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is
continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin,
and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally
decreased in BC and considered protective against breast carcinogenesis.
Summary
Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in
BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and
follow-up. Finally, novelmore effective and safer adipokine-centered therapeutic strategies could pave theway for targeted oncotherapy.
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AMPK 5′ AMP-activated protein kinase
APPL1 Adaptor protein phosphotyrosine interacting

with PH domain and leucine zipper 1
bax Bcl-2 associated X protein
BC breast cancer
bcl-xL B cell lymphoma-extra large
BMI Body mass index
CAP1 Adenylyl cyclase–associated protein 1
CPT1B Carnitine palmitoyltransferase 1B
CSC Cancer stem cell
c-Src Proto-oncogene tyrosine-proteine kinase Src
DM Diabetes mellitus
EMT Epithelial-mesenchymal transition
eNampt: Extracellular nicotinamide phosphoribosyl-

transferase (eNampt)
ER Estrogen receptor
ERK 1/2 Extracellular signal-regulated kinase 1/2
FAO Fatty acid b-oxidation
FASN Fatty acid synthase
GRP78 Glucose-regulated protein 78
GTP Guanosine-5′-triphosphate
HER Human epidermal growth factor receptor
HIF-1a Hypoxia-inducible factor-1a
HR Hormone receptor
HRT Hormone replacement therapy
hsCRP High-sensitive C-reactive protein
IL Interleukin
IARC International Agency for Research on Cancer
IGF Insulin-like growth factor
IRS Insulin receptor substrate
JAK Janus kinase
JNK Jun N-terminal kinase
MAPK Mitogen-activated protein kinase
MMTV Mammary tumor virus
Lcn2 Lipocalin 2
LEPR Leptin receptor
LIFR Leukemia inhibitory receptor
LKB1 else known as STK11

(serine/threonine kinase 11)
MCF-7 Michigan Cancer Foundation 7
miR Micro-RNA
MMP Matrix metalloproteinase
mTOR Mammalian target of rapamycin
MO25 Scaffolding mouse 25 protein
NAD Nicotinamide adenine dinucleotide
Nampt Nicotinamide phosphoribosyl-transferase
NF-κB nuclear factor-κB
NGAL Neutrophil gelatinase–associated lipocalin
NILCO Notch, IL-1, and leptin
OPN Osteopontin
OSM Oncostatin M
OSMR OSM receptor II
OR Odds ratio

PBEF pre-B cell colony–enhancing factor
PI3K Phosphatidylinositol 3-kinase
PPAR Peroxisome proliferator–activated receptors
PR Progesterone receptor
RBP-4 Retinol-binding protein
ROCK Rho-associated coiled coil-containing

protein kinase
SHBG Sex hormone–binding globulin
SIRT1 Sirtuin 1
SMD Standardized mean difference
STAT Signal transducer and activator

of transcription
STRA6 Stimulated by retinoic acid 6
STRAD STE20-related adaptor protein
TLR Toll-like receptor
TNF-α Tumor necrosis factor-α
VCAM-1 Vascular cellular adhesion molecule-1
VEGF Vascular endothelial growth factor
Wnt Wingless-related integration site
WC Waist circumference
WHR Waist-to hip ratio
WCRF/AICR World Cancer Research Fund/American

Institute for Cancer Research

Introduction

By 2030 cancer is expected to surpass cardiovascular disease
being the prevailing cause of death among all age categories,
contributing to a 45% increase in the number of malignancies
diagnosis during the next 10 years [1]. This is due to the
emergence of the increased prevalence of risk factors, mainly
diabesity (diabetes mellitus and obesity) in both developed
and developing countries [2].

As a result of the adoption of the Western lifestyle which
consists of decreased physical activity and consumption of
energy-dense, low-quality foods, the prevalence of excess
bodyweight encompassing overweight and obesity, character-
ized as a body mass index (BMI) between 25–29.9 and over
30 kg/m2 respectively, has been dramatically increased world-
wide with 18% of children and 40% of adults presenting ex-
cess body weight [3]. Moreover, obesity is more prevalent in
females than males [4].

Based on reports from the International Agency for
Research on Cancer (IARC) and the World Cancer Research
Fund/American Institute for Cancer Research (WCRF/AICR),
there is a causal association between excess body weight/
fatness and the risk of cancers in 15 anatomic positions: en-
dometrium, esophagus (adenocarcinoma), colon and rectum,
breast (postmenopausal), ovary, gallbladder, liver, kidney, thy-
roid, pancreas, stomach (cardia), meningioma, multiple mye-
loma, prostate (advanced cancer, probable evidence), and oro-
pharyngeal space and larynx (probable evidence) [3, 5].
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Across the world, breast cancer (BC) constitutes the most
commonly diagnosed malignancy as well as the leading cause
of cancer death in women [3, 6]. Furthermore, BC survivors
represent the biggest category of women living with cancer in
the USA and other developed countries [7]. The evidence for a
causal association between excess body weight and postmen-
opausal BC is sufficient with almost 7% of all postmenopausal
BC being attributed to overweight/obesity [8]. The patholog-
ical expansion of white adipose tissue in excess body weight,
characterized as adiposopathy, provokes fat cell hypertrophy
and/or hyperplasia; hypoxia and oxidative stress; perturbation
in the protein secretory pathway; metabolic, inflammatory,
immunologic, and epigenetic alterations promoting neoplastic
transformation and growth [9••, 10••].

The current review examines the role of adipokines in BC
pathogenesis summarizing the mechanisms underlying the as-
sociation between adipokines and malignancy. Special em-
phasis is given also on intriguing insights into the relationship
between obesity and BC as well as on the role of novel
adipokines in BC development. Hence, elucidating mecha-
nisms interconnecting excess body fatness with BC risk and
mortality is of paramount importance for cancer prevention,
diagnostics, and therapeutics.

Intriguing Insights into the Relationship
Between Obesity and Breast Cancer

The relationship between obesity and BC is complex depend-
ing on histologic subtype, menopausal status, and hormone
replacement therapy (HRT) [11]. In postmenopausal women,
obesity is associated with BC risk, particularly hormone re-
ceptor (HR)–positive tumors in the majority of studies [3, 12,
13••] but not HR-negative or triple negative BC [13••].
However, the association between BC and obesity is attenuat-
ed in postmenopausal women taking HRT [14]. Moreover,
there is robust epidemiological evidence for a dose-response
association between visceral obesity, expressed by the anthro-
pometric indices waist circumference (WC) and waist-to-hip
ratio (WHR), and postmenopausal BC [3, 5]. Adult weight
gain is also related to an increased risk of postmenopausal
BC while, paradoxically, elevated weight in young adulthood
(between 18 and 30 ages) is inversely related to postmeno-
pausal BC [3, 15]. Interestingly, women with higher body fat
levels, determined by dual-energy x-ray absorptionmetry, de-
spite being within the normal BMI range, are at increased risk
for invasive postmenopausal BC, underscoring the role of
dysregulated metabolic and inflammatory biomarkers associ-
ated with excess body fat, particularly trunk fat [16, 17]. More
importantly, obesity-associated metabolic disorders such as
metabolic syndrome, diabetes mellitus (DM) type 2, and hy-
percholesterolemia are associated with increased risk for post-
menopausal BC, particularly HR-positive tumors [11, 18].

In contrast to postmenopausal BC, obesity is linked to a
decreased risk of premenopausal BC [3, 5]. However, many
studies have highlighted that obesity is associated with an
elevated risk for HR-negative, basal-like and triple negative
BC in premenopausal women [11, 13••, 19]. Overall, regard-
ing histologic subtype, obesity could be a potential risk factor
of inflammatory and basal-like BC independently from men-
opausal status [13••, 20]. There is also preclinical evidence
from mouse mammary tumors for connections between diet-
induced obesity and both basal-like and luminal BC progres-
sion but not human epidermal growth factor receptor (HER)-2
and luminal B BC subtypes, despite the fact that these preclin-
ical models do not fully represent human BC subtypes [11, 21,
22].

In both premenopausal and postmenopausal women, obe-
sity is associated with decreased disease-free survival and in-
creased risk of recurrence and mortality, particularly in HR-
positive tumors [23, 24]. Besides, excess weight was correlat-
ed with increased tumor size and histopathological grade, and
positive lymph nodes [13••, 25••]. Postdiagnosis weight gain
is related to dismal prognosis especially in women with in-
creased adiposity and sarcopenia [26, 27]. Moreover, obesity
has been related with therapy-associated adverse effects com-
prising lymphedema, chemotherapy toxicity, and infections
[11].

Overall, based on the etiologic diversity of BC, more larger
prospective studies with sufficient power are required to ex-
plore the association between obesity and BC taking into ac-
count the menopausal status and the histologic subtype of BC.

Obesity Fat Tissue Promotes
a Pro-inflammatory and Pro-oncogenic
Environment

Recent evidence has underscored the contribution of the triad
of overweight/obesity, insulin resistance, and adipokines in
BC, particularly in postmenopausal women.Although the role
of obesity in BC pathogenesis is not fully elucidated, the main
mechanisms linking obesity and adiposopathy to BC com-
prise the following: (i) alterations in hormonal systems includ-
ing both steroid hormones and their bioavailability as well as
peptide metabolic hormones such as insulin and the insulin-
like growth factor (IGF)-1 system; (ii) chronic low-grade sys-
temic inflammation and oxidative stress; (iii) abnormal varia-
tions in the levels of adipokines; and (iv) intra-breast fat accu-
mulation [3, 9••, 10••, 28].

As an endocrine tissue, adipose tissue regulates the produc-
tion and bioavailability of sex hormones, which are consid-
ered to mediate the association of adiposity with BC risk by
the following: (i) expressing aromatase enzymes, which trans-
form androgens to estrogens, and less active (androstenedi-
one, estrone) to more potent hormonal forms (testosterone,
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estradiol) and (ii) by increasing the bioavailability of free es-
tradiol and testosterone, through hyperinsulinemia, elevated
IGF-1 bioavailability, and decreased hepatic secretion of sex
hormone–binding globulin (SHBG) [3, 29]. In postmenopaus-
al women, the rate of transformation of androgens to estrogens
is higher amid obese women [29].

Besides its energy-storage properties, white adipose tissue
represents a metabolically dynamic secretory organ producing
by a variety of cells (including adipocytes and macrophages) a
wide range of functional heterogeneous adipokines, which
regulate numerous physiologic and pathologic pathways com-
prising insulin sensitivity, appetite, inflammation, innate and
adaptive immunity, hematopoiesis, and angiogenesis [10••,
30–32]. To date, more than 10 adipokines have been linked
to BC, and this catalog is continuously increasing [9••,
33–37]. As fat tissue expands in excess weight, more pre-
adipocytes produce leptin. Hypoxia promotes alterations in
the gene expression of adipocytes, particularly in pro-
inflammatory adipokines, and the immune environment
[13••]. Chronic inflammation in obese adipose tissue is stim-
ulated and sustained by the nuclear factor-κΒ (NF-κΒ) [38].
Therefore, obese fat tissue promotes a pro-inflammatory and
pro-oncogenic environment. Interestingly, emerging evidence
from epidemiologic and translational studies has shown that
the local ectopic breast adipose tissue presents deleterious and
tumorigenic effects for the development and progression of
BC, being associated with a more pronounced hormonal and
inflammatory milieu impacting on tumor promotion and pro-
gression [10••, 39]. The breast adipose tissue, mostly occupied
by adipocytes, represents the breast stroma which secretes
adipokines participating in the crosstalk with BC cells and
contributing to increased BC cell proliferation, invasion, and
resistance to therapy [40]. Cancer-associated adipocytes,
which are mainly characterized by their small size and the
modification of lipid droplets, are situated in the invasive front
of BC cells and represent cardinal mediators of tumor progres-
sion via their paracrine and endocrine actions [41].

Whilst the constellation of circulating pro-inflammatory
adipokines and cytokines, such as leptin, tumor necrosis factor
(TNF)-α, interleukin (IL)-6, resistin, and extracellular nicotin-
amide phosphoribosyl-transferase (eNampt) is increased in
BC, few adipokines such as adiponectin are decreased in BC
and are considered protective against breast carcinogenesis
[42, 43]. Classic adipokines, including leptin and adiponectin,
have been sufficiently examined in BC [30, 44, 45]. Figure 1
shows the main variations of plasma adipokine concentrations
and implicated mechanisms in BC.

The connection of adipokines with BC risk and progression
is based on the following: (1) altered plasma concentrations in
BC patients compared with controls as shown in meta-
analyses; (2) their association with advanced stage and dismal
prognosis in BC (prognostic biomarkers); (3) their differential
expression in malignant and benign breast tissues and their

upregulation in breast tumor tissues; (4) their association with
cancer therapy resistance (predictive biomarkers); (5) their
association with in vivo and in vitro models of BC; (6) the
association of genetic polymorphisms of adipokines genes
and their receptor genes with BC [9••]. Table 1 depicts meta-
analyses examining the association between main adipokines
and BC. Table 2 summarizes the main mechanisms of actions
of adipokines in BC.

Adipokines and Breast Cancer

Adiponectin and Breast Cancer

Adiponectin is a polypeptide composed of 244 amino acids
belonging to the C1q/TNF family of proteins [30]. It was
discovered almost simultaneously by four different research
groups in the 1990s [30]. Adiponectin is secreted into the
circulation mainly by adipocytes and, to a lesser extent, by
the skeletal muscle, heart, liver, bone marrow, and central
nervous system [30, 46]. Αdiponectin affects its target tissues
through its receptors: AdipoR1 (specific for skeletal muscle
and endothelial cells), AdipoR2 (specific for liver), and T-
cadherin [47]. Adiponectin receptors are ubiquitously
expressed in healthy as well as in cancerous tissue [30].
Other growth factors such as platelet-derived growth factor,
basic fibroblast growth factor, and heparin-binding epidermal
growth factor-like growth factor, are also bound by
adiponectin [48]. The circulating levels of adiponectin exhibit
an inverse association with adipose tissue mass and have been
shown to exert protective roles against the development of
obesity-related disorders, such as metabolic syndrome, diabe-
tes, cardiovascular diseases, and malignancies [30].

Besides its other properties, adiponectin exhibits anti-pro-
liferative, anti-migratory, and pro-apoptotic actions [9••, 49].
A large but heterogeneous body of data has shown that
adiponectin negatively influences carcinogenesis [30]. The
principal pathway that is activated by adiponectin is the
AMPK/LKB1, a pathway involved in the regulation of cell
proliferation, apoptosis, angiogenesis, and cellular metabo-
lism. When adiponectin binds to its receptor, it facilitates the
translocation of LKB1/STE20-related adaptor protein
(STRAD)/scaffolding mouse 25 protein (MO25) from the cell
nucleus to the cytoplasm and promotes the phosphorylation of
LKB1. Simultaneously, it activates AMPK that, in turn, in-
hibits MAPK, PI3K/Akt, WNT-β-catenin, NF-κB, and
JAK2/STAT3 pathways [50, 51].

Although the effects of adiponectin on carcinogenesis have
been extensively studied, the exact mechanism of its action
has not been fully elucidated in the context of BC.

Adiponectin’s effects on BC cells depend on their estrogen
receptor status. In ER-negative BC cells, it suppresses cell
growth and apoptosis, and inhibits proliferation, invasion,
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and migration [49]. On the other hand, results are contradic-
tory when examining its effects on ER-positive BC cells
[52–56]. In ER-positive BC cells, low adiponectin levels per-
mit the interaction of adaptor protein phosphotyrosine
interacting with PH domain and leucine zipper 1 (APPL1)
with AdipoR1, ERα, insulin-like growth factor (IGF-IR),
and c-Src [57]. This complex activates MAPK signaling that
promotes BC cell growth [57]. Moreover, adiponectin has a
differential influence on cyclin D1 expression and tumor pro-
gression depending on ER status [58]. Cyclin is downregulat-
ed in ERα-negative cells and upregulated in ERα-positive
cells, events that correspond to tumor reduction and growth
respectively [58]. Studies have shown that ER status may
modulate the effect of adiponectin on cell metabolism.
Cancer cells rely mainly on aerobic glycolysis (Warburg ef-
fect), a property that is largely sustained by regulators such as
fatty acid synthase (FASN) and Acetyl-coA carboxylase
(ACC) [59, 60]. LKB1/AMPK is also a crucial pathway in
regulating energy homeostasis, such as glucose uptake, gly-
colysis, fatty acid oxidation, and mitochondrial biogenesis
[59, 61, 62]. In ERα-negative BC, adiponectin may inhibit
fatty acid synthesis through activation of AMPK/ACC, while

in ERα-positive BC, it cannot intervene in this process [58,
63].

Adiponectin has also been found in adipocyte exosomes—
the lipid bilayer vesicles secreted by adipocytes [64], which
constitute mediators of cell-to-cell signaling in the complex
tumor microenvironment. Exosomes from human adipose-
derived mesenchymal stem cells (ADSCs) and pre-
adipocytes promote proliferation and migration of BC cells
and BC stem cells respectively. Exosomes secreted by pre-
adipocytes also regulate breast tumor stem cell formation
and migration [65, 66]. More research is needed to explore
the role of exosomic adiponectin in BC.

The most recent meta-analysis by Gu and colleagues inves-
tigated the association of serum adiponectin levels and BC
finding that serum adiponectin was lower in BC patients irre-
spective of menopausal status [67•]. Interestingly, two other
meta-analyses have found a significant association between
adiponectin levels and postmenopausal BC patients but not
premenopausal [68, 69]. Macis et al. compared Bhigh^ vs
Blow^ adiponectin groups and found a 34% reduction in BC
risk favoring the Bhigh^ adiponectin group while a subgroup
analysis for menopausal status confirmed the association only

Fig. 1 Important variations of plasma adipokine concentrations and
implicated mechanisms in breast cancer. BC, breast cancer; ERs,
estrogen receptors; MMP, matrix metalloproteinase. (Both images of
breast tissue and images of cancerous cell, angiogenesis, metastatic

dissemination, and cell invasion are derived from the free medical site
http://smart.servier.com/ by Servier licensed under a Creative Commons
Attribution 3.0 Unported License)

417Curr Obes Rep (2019) 8:413–433

http://smart.servier.com/


Ta
bl
e
1

L
is
to

f
re
ce
nt

m
et
a-
an
al
ys
es

ex
am

in
in
g
th
e
as
so
ci
at
io
n
be
tw
ee
n
m
ai
n
ad
ip
ok
in
es

an
d
br
ea
st
ca
nc
er

M
et
a-
an
al
ys
is
(s
tu
dy
)

N
um

be
r
of

st
ud
ie
s

N
um

be
r
of

pa
rt
ic
ip
an
ts

St
ud
y
ou
tc
om

es
C
om

m
en
ts

A
di
po
ne
ct
in

G
u
L
et
al
.S

er
um

ad
ip
on
ec
tin

in
br
ea
st
ca
nc
er
:A

m
et
a-
an
al
ys
is
.M

ed
ic
in
e
(B
al
tim

or
e)

20
18
;9

7:
e1
14
33
.

31
ca
se
-c
on
tr
ol

st
ud
ie
s

73
88

br
ea
st
ca
nc
er
ca
se
s
an
d

84
91

co
nt
ro
ls

SM
D
:0

.3
3

(P
<
0.
00
1)

L
ow

er
se
ru
m

ad
ip
on
ec
tin

le
ve
ls
in

B
C

ca
se
s

Su
bg
ro
up

an
al
ys
is
:

L
ow

er
ad
ip
on
ec
tin

le
ve
ls
in

pr
em

en
op
au
sa
la
nd

po
st
m
en
op
au
sa
l

B
C

G
ui

Y
et
al
.T

he
as
so
ci
at
io
n
be
tw
ee
n
ob
es
ity

re
la
te
d

ad
ip
ok
in
es

an
d
ri
sk

of
br
ea
st
ca
nc
er
:a

m
et
a-
an
al
ys
is
.

O
nc
ot
ar
ge
t2

01
7;

8:
75
38
9–
99
.

23
ca
se
-c
on
tr
ol

st
ud
ie
s
an
d
3

cr
os
s-
se
ct
io
na
ls
tu
di
es

37
87

br
ea
st
ca
nc
er

pa
tie
nt
s

an
d
52
31

he
al
th
y
co
nt
ro
ls

S
M
D
:−

0.
64

(9
5%

C
I:

−
0.
81
,−

0.
46
;

P
<
0.
00
1)

L
ow

er
se
ru
m

ad
ip
on
ec
tin

in
br
ea
st

ca
nc
er

pa
tie
nt
s

Ν
o
si
gn
if
ic
an
ta
ss
oc
ia
tio

n
be
tw
ee
n

ad
ip
on
ec
tin

le
ve
ls
an
d
m
en
op
au
sa
l

st
at
us

M
ac
is
D
et
al
.C

ir
cu
la
tin

g
ad
ip
on
ec
tin

an
d
br
ea
st
ca
nc
er

ri
sk
:a

sy
st
em

at
ic
re
vi
ew

an
d
m
et
a-
an
al
ys
is
.I
nt

J
E
pi
de
m
io
l2

01
4;

43
:1
22
6–
36
.

15
ca
se
-c
on
tr
ol

an
d
co
ho
rt
st
ud
ie
s

42
49

br
ea
st
ca
nc
er

ca
se
s
an
d

52
77
co
nt
ro
ls

SR
R
:3

4%
(9
5%

C
I:

13
–5
0%

)

In
cr
ea
se

of
3
m
g/
m
lo

f
ad
ip
on
ec
tin

co
rr
es
po
nd
ed

to
5%

ri
sk

re
du
ct
io
n

(9
5%

C
I:
1–
9%

)

BH
ig
he
st
^
vs

Bl
ow

es
t^

ad
ip
on
ec
tin

le
ve
ls
ri
sk

re
du
ct
io
n
in

br
ea
st
ca
nc
er

ri
sk

Su
bg
ro
up

an
al
ys
is
:

R
em

ai
ne
d
si
gn
if
ic
an
to

nl
y
in

po
st
m
en
op
au
sa
lw

om
en

L
iu

L
et
al
.T

he
R
ol
e
of

A
di
po
ne
ct
in

in
B
re
as
tC

an
ce
r:

A
M
et
a-
A
na
ly
si
s.
P
L
oS

O
ne

20
13
;e
73
18
3.

13
ca
se
-c
on
tr
ol

an
d
co
ho
rt
st
ud
ie
s

35
78

br
ea
st
ca
nc
er

ca
se
s
an
d

43
63

co
nt
ro
ls

O
R
:0

.9
02

(9
5%

C
I:

0.
77
3–
1.
05
3)

H
ig
he
r
ad
ip
on
ec
tin

le
ve
ls
di
d
no
t

si
gn
if
ic
an
tly

af
fe
ct
br
ea
st
ca
nc
er

ri
sk

L
ep
tin

Pa
n
H
et
al
.A

ss
oc
ia
tio

n
be
tw
ee
n
se
ru
m

le
pt
in

le
ve
ls
an
d

br
ea
st
ca
nc
er

ri
sk
:A

n
up
da
te
d
sy
st
em

at
ic
re
vi
ew

an
d

m
et
a-
an
al
ys
is
.M

ed
ic
in
e
(B
al
tim

or
e)

20
18
;9

7:
e1
13
45
.

35
ca
se
-c
on
tr
ol

an
d
co
ho
rt
st
ud
ie
s

60
86

br
ea
st
ca
nc
er

pa
tie
nt
s

an
d
71
58

he
al
th
y
co
nt
ro
ls

SM
D
:0

.4
6
(9
5%

C
I:

0.
31
–0
.6
0)

H
ig
he
r
le
pt
in

le
ve
ls
in

br
ea
st
ca
nc
er

pa
tie
nt
s

Su
bg
ro
up

an
al
ys
is
:S

ig
ni
fi
ca
nt
ly

hi
gh
er

le
pt
in

le
ve
ls
in

ov
er
w
ei
gh
t,
ob
es
e,

po
st
m
en
op
au
sa
l,
C
hi
ne
se

w
om

en

G
ui

Y
et
al
.T

he
as
so
ci
at
io
n
be
tw
ee
n
ob
es
ity

re
la
te
d

ad
ip
ok
in
es

an
d
ri
sk

of
br
ea
st
ca
nc
er
:a

m
et
a-
an
al
ys
is
.

O
nc
ot
ar
ge
t2

01
7;

8:
75
38
9–
99
.

23
ca
se
-c
on
tr
ol

st
ud
ie
s
an
d
3

cr
os
s-
se
ct
io
na
ls
tu
di
es

37
87

br
ea
st
ca
nc
er

pa
tie
nt
s

an
d
52
31

he
al
th
y
co
nt
ro
ls

SM
D
:0

.9
6
(9
5%

C
I:

0.
74
,1
.1
8;

P
<
0.
00
00
1)

H
ig
he
r
le
pt
in

le
ve
ls
w
er
e
as
so
ci
at
ed

w
ith

br
ea
st
ca
nc
er

E
R
+
an
d
po
st
m
en
op
au
sa
lc
as
es

ha
d

si
gn
if
ic
an
tly

hi
gh
er

le
pt
in

le
ve
ls
th
an

E
R
−
an
d
pr
em

en
op
au
sa
lc
as
es

N
iu

J
et
al
.T

he
A
ss
oc
ia
tio

n
be
tw
ee
n
L
ep
tin

L
ev
el
an
d

B
re
as
tC

an
ce
r:
A
M
et
a-
A
na
ly
si
s.
PL

oS
O
ne

20
13
;

8:
e6
73
49
.

23
ca
se
-c
on
tr
ol

an
d
co
ho
rt
st
ud
ie
s

20
58

br
ea
st
ca
nc
er

pa
tie
nt
s,

20
78

he
al
th
y
co
nt
ro
ls
an
d

28
5
br
ea
st
be
ni
gn

co
nt
ro
ls

C
om

bi
ne
d
ef
fe
ct
:0

.5
8

(9
5%

C
I:
0.
48
–0
.6
8)

H
ig
he
r
le
pt
in

le
ve
ls
in

br
ea
st
ca
nc
er

pa
tie
nt
s

Su
bg
ro
up

an
al
ys
is
:H

ig
he
r
le
pt
in

le
ve
ls

in
br
ea
st
ca
nc
er

pa
tie
nt
s

in
de
pe
nd
en
tly

of
m
en
op
au
sa
ls
ta
tu
s

R
es
is
tin

G
ui

Y
et
al
.T

he
as
so
ci
at
io
n
be
tw
ee
n
ob
es
ity

re
la
te
d

ad
ip
ok
in
es

an
d
ri
sk

of
br
ea
st
ca
nc
er
:a

m
et
a-
an
al
ys
is
.

O
nc
ot
ar
ge
t2

01
7;

8:
75
38
9–
99
.

23
ca
se
-c
on
tr
ol

st
ud
ie
s
an
d
3

cr
os
s-
se
ct
io
na
ls
tu
di
es

37
87

br
ea
st
ca
nc
er

pa
tie
nt
s

an
d
52
31

he
al
th
y
co
nt
ro
ls

SM
D
:1

.7
0
(9
5%

C
I:

1.
10
,2
.3
0;

P
<
0.
00
1)

H
ig
he
r
re
si
st
in

le
ve
ls
w
er
e
as
so
ci
at
ed

w
ith

br
ea
st
ca
nc
er

Ν
o
si
gn
if
ic
an
ta
ss
oc
ia
tio

n
be
tw
ee
n

re
si
st
in

le
ve
ls
an
d
m
en
op
au
sa
ls
ta
tu
s

418 Curr Obes Rep (2019) 8:413–433



T
ab

le
1

(c
on
tin

ue
d)

M
et
a-
an
al
ys
is
(s
tu
dy
)

N
um

be
r
of

st
ud
ie
s

N
um

be
r
of

pa
rt
ic
ip
an
ts

St
ud
y
ou
tc
om

es
C
om

m
en
ts

V
is
fa
tin

(e
N
am

pt
)

G
ui

Y
et
al
.T

he
as
so
ci
at
io
n
be
tw
ee
n
ob
es
ity

re
la
te
d

ad
ip
ok
in
es

an
d
ri
sk

of
br
ea
st
ca
nc
er
:a

m
et
a-
an
al
ys
is
.

O
nc
ot
ar
ge
t2

01
7;

8:
75
38
9–
99
.

23
ca
se
-c
on
tr
ol

st
ud
ie
s
an
d
3

cr
os
s-
se
ct
io
na
ls
tu
di
es

37
87

br
ea
st
ca
nc
er

pa
tie
nt
s

an
d
52
31

he
al
th
y
co
nt
ro
ls

SM
D
:1

.0
6
(9
5%

C
I:

0.
20
,1
.9
3;

P
=
0.
02
)

H
ig
he
r
vi
sf
at
in

le
ve
ls
w
er
e
as
so
ci
at
ed

w
ith

br
ea
st
ca
nc
er

N
o
an
al
ys
is
in
cl
ud
in
g
E
R
or

m
en
op
au
sa
ls
ta
tu
s

L
ip
oc
al
in

2
(L
C
N
2)

W
an
g
Y
et
al
..
N
eu
tr
op
hi
lg

el
at
in
as
e-
as
so
ci
at
ed

lip
oc
al
in

pr
ot
ei
n
as

a
bi
om

ar
ke
r
in

th
e
di
ag
no
si
s
of

br
ea
st
ca
nc
er
:

A
m
et
a-
an
al
ys
is
.B

io
m
ed

R
ep

20
13
;1
:4
79
-8
3

4
ca
se
-c
on
tr
ol
,s
in
gl
e-
ce
nt
er

tr
ia
ls

33
2
br
ea
st
ca
nc
er

pa
tie
nt
s/
14
2
co
nt
ro
ls

S
en
si
tiv

ity
:6

4%
(9
5%

C
I:
0.
59
–0
.6
9)
,

Sp
ec
if
ic
ity

:8
7%

(9
5%

C
I:
0.
81
–0
.9
2)
,

PL
R
:5

.6
3
(9
5%

C
I:

3.
63
–8
.7
4)
,

N
L
R
:0

.3
2
(9
5%

C
I:

0.
14
–0
.7
1)
,

D
ia
gn
os
tic

O
R
:1

8.
02

(9
5%

C
I:
9.
84
–3
2.
98
)

R
O
C
cu
rv
e
an
al
ys
is
(A

U
C
:0
.9
00
8)

sh
ow

ed
th
at
L
C
N
2
is
a
po
te
nt
ia
l

bi
om

ar
ke
r
fo
r
th
e
di
ag
no
si
s
of

br
ea
st

ca
nc
er

O
st
eo
po
nt
in

(O
P
N
)

H
ao

C
et
al
.P

ro
gn
os
tic

V
al
ue

of
O
st
eo
po
nt
in

Sp
lic
e

V
ar
ia
nt
-c

E
xp
re
ss
io
n
in

B
re
as
tC

an
ce
rs
:A

M
et
a-
A
na
ly
si
s.
B
io
m
ed

R
es

In
t2

01
6;

20
16
:7

31
06
94
.

10
su
rv
iv
al
-a
na
ly
si
s
st
ud
ie
s

15
67

br
ea
st
ca
nc
er

pa
tie
nt
s

H
R
:2

.2
2
(9
5%

C
I:

1.
23
–4
.0
0;

P
=
0.
00
8)

H
R
:2

.1
4
(9
5%

C
I:

1.
51
–3
.0
4;

P
<
0.
00
01
)

H
ig
h
le
ve
lo

f
O
PN

ex
pr
es
si
on

in
di
ca
te
d

a
po
or

ou
tc
om

e
in
th
e
ov
er
al
ls
ur
vi
va
l

H
ig
h
le
ve
lo

f
O
P
N
sp
lic
e
va
ri
an
t-
c

ex
pr
es
si
on

ap
pe
ar
ed

to
be

m
or
e

si
gn
if
ic
an
tly

as
so
ci
at
ed

w
ith

po
or

su
rv
iv
al

O
PN

an
d
O
PN

-c
ca
n
be

co
ns
id
er
ed

as
pr
og
no
st
ic
m
ar
ke
rs
fo
r
br
ea
st
ca
nc
er

X
u
Y
Y
et
al
.P
ro
gn
os
tic

va
lu
e
of

os
te
op
on
tin

ex
pr
es
si
on

in
br
ea
st
ca
nc
er
:A

m
et
a-
an
al
ys
is
.M

ol
C
lin

O
nc
ol

20
15
;

3:
35
7-
62
.

8
st
ud
ie
s
ex
am

in
in
g
th
e
as
so
ci
at
io
n
of

O
PN

w
ith

cl
in
ic
op
at
ho
lο
gi
ca
l

ch
ar
ac
te
ri
st
ic
s
an
d/
or

ov
er
al
ls
ur
vi
va
l

in
B
C

15
59

br
ea
st
ca
nc
er

pa
tie
nt
s

po
ol
ed

O
R
:2

.0
26

(9
5%

C
I:
1.
19
9–
3.
42
5;

P
=
0.
00
8)

H
R
;3

.6
9
(9
5%

C
I:

1.
45
–9
.4
2;

P
=
0.
00
0)

H
R
=
2.
40

(9
5%

C
I:

1.
27
–4
.5
6;

P
=
0.
00
7)

O
PN

ex
pr
es
si
on

w
as

po
si
tiv

el
y

as
so
ci
at
ed

w
ith

ly
m
ph

no
de

m
et
as
ta
si
s

O
PN

ex
pr
es
si
on

w
as

po
si
tiv

el
y

as
so
ci
at
ed

w
ith

ov
er
al
ls
ur
vi
va
la
nd

di
se
as
e-
fr
ee

su
rv
iv
al

O
PN

ov
er
ex
pr
es
si
on

is
a
po
si
tiv

e
pr
og
no
st
ic
bi
om

ar
ke
r
in
br
ea
st
ca
nc
er

A
U
C
ar
ea

un
de
rt
he

cu
rv
e,
E
R
es
tr
og
en

re
ce
pt
or
,H

R
ha
za
rd

ra
tio

,N
LR

ne
ga
tiv

e
lik

el
ih
oo
d
ra
tio

,O
R
od
ds

ra
tio

,P
LR

po
si
tiv

e
lik

el
ih
oo
d
ra
tio

,R
O
C
re
ce
iv
er
op
er
at
or

ch
ar
ac
te
ri
st
ic
,S
M
D
st
an
da
rd
iz
ed

m
ea
n

di
ff
er
en
ce
,S
R
R
su
m
m
ar
y
re
la
tiv

e
ri
sk

419Curr Obes Rep (2019) 8:413–433



Ta
bl
e
2

M
ai
n
m
ec
ha
ni
sm

s
of

ac
tio

ns
of

ad
ip
ok
in
es

in
br
ea
st
ca
nc
er

A
di
po
ki
ne

Ph
ys
io
lo
gi
c
fu
nc
tio

n
A
ct
io
ns

in
B
C
tu
m
or
ig
en
es
is

M
ec
ha
ni
sm

of
ac
tio

n/
ce
ll
si
gn
al
in
g

Α
di
po
ne
ct
in

↓i
nf
la
m
m
at
io
n,
in
su
lin

se
ns
iti
ze
r,
re
gu
la
te
s
lip

id
m
et
ab
ol
is
m

↓p
ro
lif
er
at
io
n,
↓m

ig
ra
tio

n,
↑a
po
pt
os
is
,↓
bi
oa
va
ila
bi
lit
y
of

se
ve
ra
l

gr
ow

th
fa
ct
or
s

E
R
-n
eg
at
iv
e
B
C
:↓

gr
ow

th
,p
ro
lif
er
at
io
n,
an
d
in
va
si
on

L
K
B
1/
A
M
P
K
,m

T
O
R
,N

F
-κ
B
,

JN
K
,S

TA
T
3,
cy
cl
in

D
1

L
ep
tin

ac
tio

ns
in

th
e
br
ai
n:

sa
tie
ty

si
gn
al
in
g,
co
un
te
rb
al
an
ce
s
gh
re
lin

,↑
G
H
an
d

T
R
H
,↑
IG

F-
1
bi
nd
in
g
ca
pa
ci
ty
,L

H
se
cr
et
io
n
an
d
se
x
st
er
oi
d
le
ve
ls

re
gu
la
tio

n,
pu
be
rt
y
re
gu
la
tio

n,
ac
tio

ns
in

th
e
pe
ri
ph
er
y:

↓l
ip
id

st
or
ag
e
in

no
n-
ad
ip
os
e
tis
su
es
,↑
gl
uc
os
e
co
ns
um

pt
io
n
an
d
ox
id
at
io
n,
gl
yc
og
en

sy
nt
he
si
s,
an
d
la
ct
at
e
pr
od
uc
tio

n
in

sk
el
et
al
m
us
cl
e,
↓h
ep
at
ic

gl
uc
on
eo
ge
ne
si
s,
↓g
lu
co
se
,g
al
ac
to
se
,a
m
in
o
ac
id

ab
so
rp
tio

n,
an
d

↑f
ru
ct
os
e
an
d
bu
ty
ra
te
ab
so
rp
tio

n
in

sm
al
li
nt
es
tin

e

an
ti-
ap
op
to
tic
,p
ro
-i
nf
la
m
m
at
or
y,
↑a
ng
io
ge
ne
si
s,
up
re
gu
la
tio

n
of

ar
om

at
as
e,
ac
tiv

at
io
n
of

E
R
α
,s
up
pr
es
si
on

of
p5
3
in

E
R
-p
os
iti
ve

ce
lls

JA
K
/S
TA

T
3,
M
A
P
K
,P

I3
K
/A
kt
,

E
R
K
1/
2,
A
M
P
K
pa
th
w
ay
s,
an
d

IR
S
ac
tiv

at
io
n

R
es
is
tin

↑i
ns
ul
in

re
si
st
an
ce
,↑
in
fl
am

m
at
io
n

↑c
el
lp

ro
lif
er
at
io
n,
m
ig
ra
tio

n
an
d
ad
he
si
on
,p
ro
m
ot
io
n
of

E
M
T
an
d

st
em

ne
ss

M
A
PK

,P
I3
K
,N

F
-κ
B
pa
th
w
ay
s,

ph
os
ph
or
yl
at
io
n
of

th
e
ez
ri
n,

ra
di
xi
n,
an
d
m
oe
si
n
(E
R
M
)

co
m
pl
ex

V
is
fa
tin

N
A
D
bi
os
yn
th
es
is
,i
nt
ra
ce
llu

la
r
m
et
ab
ol
is
m
,c
el
lg

ro
w
th

pr
o-
in
fl
am

m
at
or
y,
↑c
el
lp

ro
lif
er
at
io
n,
↑i
nf
la
m
m
at
io
n,
↓a
po
pt
os
is
,

im
m
un
os
up
pr
es
si
on
,↑
an
gi
og
en
es
is

M
A
PK

,E
R
K
1/
2,
N
F-
kB

,S
TA

T
3,

PI
3K

-A
kt
,S

IR
T
1,
an
d
p5
3

de
ac
et
yl
at
io
n

A
pe
lin

re
gu
la
tio

n
of

in
su
lin

se
cr
et
io
n
an
d
se
ns
iti
vi
ty
,b
lo
od

pr
es
su
re
,a
nd

fl
ui
d

ho
m
eo
st
as
is

ly
m
ph
an
gi
og
en
es
is
,t
um

or
ne
oa
ng
io
ge
ne
si
s,
pr
om

ot
io
n
of

ce
ll

pr
ol
if
er
at
io
n
an
d
in
va
si
on

E
R
K
1/
2,
P
I3
K
/A
kt

pa
th
w
ay
s

C
he
m
er
in

im
pl
ic
at
io
n
in

ad
ip
og
en
es
is
,i
m
m
un
ity
,a
nd

m
et
ab
ol
ic
ac
tiv

ity
tu
m
or

an
d
an
tit
um

or
ef
fe
ct
s,
re
cr
ui
tm

en
to

f
N
K
ce
lls
,a
nd

T
ce
lls

in
th
e

tu
m
or

m
ic
ro
en
vi
ro
nm

en
t,
po
ss
ib
le
pr
om

ot
io
n
of

an
gi
og
en
es
is
,

in
fl
am

m
at
io
n,
an
d
m
at
ri
x
m
et
al
lo
pr
ot
ei
na
se

ac
tiv

ity

M
A
PK

,E
R
K
pa
th
w
ay
s

Ir
is
in

m
od
ul
at
io
n
of

th
e
ad
ip
os
e
ph
en
ot
yp
e,
en
er
gy

ex
pe
nd
itu

re
an
d
sy
st
em

ic
m
et
ab
ol
is
m

an
tit
um

or
ef
fe
ct
,s
up
pr
es
si
ve

ef
fe
ct
on

nu
m
be
r,
m
ig
ra
tio

n
an
d
vi
ab
ili
ty
of

B
C
ce
lls
,i
nd
uc
tio

n
of

ap
op
to
si
s

su
pp
re
ss
io
n
of

N
F-
κB

ac
tiv

ity

L
ip
oc
al
in

2
tr
an
sp
or
ta
tio

n
of

sm
al
lh

yd
ro
ph
ob
ic
m
ol
ec
ul
es

an
d
im

m
un
e
re
sp
on
se

pr
om

ot
io
n
of

ep
ith

el
ia
l-
to
-m

es
en
ch
ym

al
tr
an
si
tio

n,
ce
ll
m
ig
ra
tio

n
an
d

in
va
si
on
,V

E
G
F
pr
od
uc
tio

n
an
d
an
gi
og
en
es
is

P
I3
K
/A
kt
/N
F
-κ
B
an
d
H
IF
-1
a/
E
R
K

pa
th
w
ay
s,
fo
rm

at
io
n
of

th
e

M
M
P9

/L
C
N
2
co
m
pl
ex

O
nc
os
ta
tin

M
in
fl
am

m
at
io
n,
he
m
at
op
oi
es
is
,a
nd

bo
ne

fo
rm

at
io
n

pr
om

ot
io
n
of

B
C
pr
og
re
ss
io
n
an
d
m
et
as
ta
si
s,
in
cr
ea
se

in
ci
rc
ul
at
in
g

tu
m
or

ce
lls
,m

es
en
ch
ym

al
an
d
st
em

ce
ll–

lik
e
di
ff
er
en
tia
tio

n,
es
tr
og
en

re
ce
pt
or

do
w
nr
eg
ul
at
io
n

JA
K
/S
TA

T
3,
M
A
P
K
,P

I3
K

pa
th
w
ay
s

O
st
eo
po
nt
in

bi
om

in
er
al
iz
at
io
n,
in
fl
am

m
at
io
n,
bo
ne

re
m
od
el
in
g

↑a
ng
io
ge
ne
si
s,
m
et
as
ta
si
s,
su
pp
re
ss
io
n
of

ap
op
to
si
s

in
te
gr
in
-m

ed
ia
te
d
pa
th
w
ay
s

A
kt
v-
A
kt
m
ur
in
e
th
ym

om
a
vi
ra
lo
nc
og
en
e
ho
m
ol
og
,A

M
P
K
5′
A
M
P
-a
ct
iv
at
ed

pr
ot
ei
n
ki
na
se
,E

R
es
tr
og
en

re
ce
pt
or
,E

R
K
1/
2
ex
tr
ac
el
lu
la
rs
ig
na
l-
re
gu
la
te
d
ki
na
se

1/
2,
H
IF
-1
α
hy
po
xi
a-
in
du
ci
bl
e
fa
ct
or
-1
a,

IG
F
in
su
lin

-l
ik
e
gr
ow

th
fa
ct
or
,I
R
S
in
su
lin

re
ce
pt
or

su
bs
tr
at
e,
JA

K
Ja
nu
s
ki
na
se
,J
N
K
Ju
n
N
-t
er
m
in
al
ki
na
se
,L

C
N
2
lip

oc
al
in
2,
LK

B
1
el
se

kn
ow

n
as

S
T
K
11
(s
er
in
e/
th
re
on
in
e
ki
na
se

11
),
M
A
P
K
m
ito

ge
n-

ac
tiv

at
ed

pr
ot
ei
n
ki
na
se
,M

M
P
m
at
ri
x
m
et
al
lo
pr
ot
ei
na
se
,m

TO
R
m
am

m
al
ia
n
ta
rg
et
of

ra
pa
m
yc
in
,N

F
-κ
B
nu
cl
ea
rf
ac
to
r-
κB

,N
K
na
tu
ra
lk
ill
er
,P

I3
K
ph
os
ph
oi
no
si
tid

e-
3-
ki
na
se
,S
IR
T1

si
rt
ui
n
1,
ST
AT

si
gn
al

tr
an
sd
uc
er

an
d
ac
tiv

at
or

of
tr
an
sc
ri
pt
io
n,
V
E
G
F
va
sc
ul
ar

en
do
th
el
ia
lg

ro
w
th

fa
ct
or

420 Curr Obes Rep (2019) 8:413–433



for postmenopausal women [70]. Overall, based on meta-
analyses examining the relation of serum adiponectin and
BC, a common pattern emerges: when all women are included
in the analysis, elevated adiponectin is associated with re-
duced BC risk but this association is more pronounced in
postmenopausal women. More larger prospective studies are
required to delineate the potentially mediating role of
adiponectin in BC.

Leptin and Breast Cancer

Leptin, a 16-kDa polypeptide produced mainly from the adi-
pose tissue, was discovered by Friedman and colleagues in
1994 [71]. It is the product of the Ob gene and after its secre-
tion, it circulates in a free and a bound form [72]. Leptin
affects its target tissues through the leptin receptor (LEPR), a
single transmembrane protein that is ubiquitously expressed
[71]. Leptin secretion is in proportion to the adipose tissue
mass and serves as a message of satiety and energy adequacy
suppressing appetite [73]. LEPR can affect multiple intracel-
lular pathways including Janus kinase/signal transducer and
activator of transcription (JAK/STAT3), mitogen-activated
protein kinase (MAPK), phosphatidylinositol 3-kinase/v-Akt
murine thymoma viral oncogene homolog (PI3K/Akt), extra-
cellular signal-regulated kinase 1/ 2 (ERK1/2), 5′ AMP-
activated protein kinase (AMPK), and insulin receptor sub-
strate (IRS) [73, 74].

In the context of cancer, JAK2 activates STAT3 and 5 pro-
moting the expression of genes crucial to tumorigenesis, af-
fecting cell proliferation, invasion, angiogenesis, and inflam-
mation [46]. In addition, leptin upregulates the expression of
anti-apoptotic proteins, inflammatorymarkers (tumor necrosis
factor-α/TNF-a, IL-6), angiogenic factors (VEGF), and the
hypoxia-inducible factor-1a (HIF-1a) [75, 76]. The ERK sig-
naling promotes the activation of transcription factors that
induce cell division [77]. Moreover, after JAK2 stimulation,
PI3K and Akt are activated affecting glucose metabolism, cell
growth, proliferation, and apoptosis [78].

The oncogenic mechanism of leptin in breast tissue in-
volves the stimulation of JAK/STAT3 and PI3K pathways
[79]. Leptin can inhibit apoptosis of BC cells favoring the
expression of anti-apoptotic genes (bcl-xL, bax) and induce
angiogenesis by stimulation of VEGF production [80].
Leptin displays an interesting relationship with estrogen sig-
naling. Leptin can potentiate estrogen signaling through three
mechanisms: (1) upregulation of aromatase, (2) direct activa-
tion of ERα, and (3) suppression of p53 [81–83]. In vivo,
leptin administration was found to double tumor size after
13 weeks when compared with estradiol treatment [84]. A
study that assessed the possible synergistic effect of estrogen
and leptin in BC development revealed that ER signaling pro-
motes leptin-induced autophagy that in turn contributes to BC
growth [85].

In vivo studies have shown that elimination of peripheral
tissue leptin signaling with concurrent preservation of leptin
receptor signaling can decrease BC development and progres-
sion [86]. When leptin signaling was inhibited in mammary
tumor virus-Wnt-1 mice (MMTV-Wnt-1), tumor growth was
reduced and BC stem cell (CSC) population was suppressed
[87]. Moreover, Western diet–induced obese rats exhibited
increased BC incidence and aggressiveness as well as upreg-
ulated leptin and LEPR expression and signaling [88].

Interestingly, recent evidence has shown that leptin can
render BC cells less susceptible to treatment with tamoxifen,
an effect probably mediated by induction of the membrane
tyrosine kinase HER2 receptor expression [89]. Moreover,
leptin may promote CSC proliferation, migration, and angio-
genesis through a complex signaling combination between
Notch, IL-1, and leptin, termed NILCO [90, 91]. Chang and
colleagues have demonstrated that leptin can further promote
the formation of breast CSC by epigenetic downregulation of
miR-200c [88]. Additionally, leptin signaling may activate
fatty acid b-oxidation (FAO), through upregulation of carni-
tine palmitoyltransferase 1B (CPT1B), inducing BC stemness
and resistance to chemotherapy, phenomena reversed by FAO
and/or leptin signaling inhibition [92]. Leptin is considered a
mediator molecule between stromal cells and tumor
microenvironment.

Clinical data have confirmed the correlation of serum leptin
and BC. The most recent meta-analysis investigating the rela-
tionship of leptin levels with BC concluded that BC patients
exhibited higher serum leptin levels. Subgroup analysis for
BMI and menopausal status revealed that the association
was significant only in overweight and obese postmenopausal
women [93•]. In another meta-analysis, Niu and colleagues
have demonstrated that serum leptin levels were escalating
from healthy controls to benign breast tumor, local BC, and
lymph node–positive BC subgroups [94].

Resistin and Breast Cancer

Resistin is an adipokine of 12.5 kDa that is secreted by mono-
nuclear cells and adipocytes [95]. Discovered in 2001, it was
regarded as the mediator between obesity and diabetes (the
name Bresistin^ stems from the property of insulin resistance
amplification) [96]. Resistin exerts its effects through binding
to Toll-like receptor 4 (TLR4), resulting in activation of the
PI3K, p38, MAPK, and NF-kB pathways [97].

High levels of resistin have been associated with many
disease states, such as visceral obesity, coronary artery dis-
ease, lung disease, various malignancies, and critical illness
[9••].

Resistin may trigger tumorigenesis via inflammation (PI3K
and NF-kB pathways), immune cell extravasation (MAPK
pathway), expression of cardinal molecules for adhesion of
cancerous cells (NF-κB pathway), and promotion of survival
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and invasiveness of tumor cells (PI3K and MAPK pathways)
[9••].

In the context of BC, researchers using MCF-7 BC cell
lines discovered that resistin enhances the metastatic potential
of BC cells by promotion of epithelial-to-mesenchymal transi-
tion (EMT) and stemness, and these effects were largely attrib-
uted to adenylyl cyclase–associated protein 1 (CAP1) [98]. In
line with this, resistin was shown to promote metastasis in
MDA-MB-231 human BC cells through phosphorylation of
the ezrin, radixin, and moesin (ERM) complex [99].

Interestingly, two groups have indicated that resistin may
confer chemoresistance properties to BC cells [100, 101]. One
group proposed that the stimulation of AMPK/mTOR/ULK1
and c-Jun N-terminal kinase (JNK) signaling induces autoph-
agy bypassing doxorubicin-induced apoptosis [100], whereas
another found that chemoresistance was mediated through
STAT3 activation [101].

Clinical data linking resistin to BC have been heteroge-
neous with some studies highlighting its association with post-
menopausal BC [33, 35, 102]. Independent groups have found
that elevated resistin expression in BC tissue is associatedwith
adverse clinical and pathological characteristics as well as
poor patient survival [35, 103].

In a recent meta-analysis of 13 studies, resistin levels were
associated with an increased incidence of obesity-related can-
cers (breast, endometrial, and colorectal cancer) but despite its
association with BC, resistin levels were found to be of limited
diagnostic and predictive value [104]. Another very recent
meta-analysis which evaluated the association of several
adipokines with BC has shown significantly higher resistin
in BC patients without a significant association between
resistin levels and menopausal status [25••].

Visfatin/Nampt and Breast Cancer

Visfatin, also known as Nampt or pre-B cell colony–
enhancing factor (PBEF), is a 52-kDa protein, that is produced
by the NAMPT gene. It exhibits a multi-faceted role acting
concurrently as an enzyme, adipokine, and a growth factor
[105, 106]. Nampt exists in two forms, the intracellular-
iNampt and the extracellular-eNampt [42]. iNampt partici-
pates in NAD biosynthesis that functions as an important
electron carrier, and exerts a crucial function in cell metabo-
lism. eNampt is excreted by a multitude of tissues such as
adipose, liver, and heart, and the mechanism of excretion is
thought to be cell lysis [107]. eNampt has been implicated in
several diseases including diabetes, obesity, aging, atheroscle-
rosis, cardiac hypertrophy, and autoimmune diseases [9••].

With respect to cancer development, visfatin displays pro-
inflammatory, proliferative, anti-apoptotic, and pro-
angiogenic effects [108]. It has been shown to promote in-
flammatory processes through the activation of NF-kB and
induce cell proliferation through the upregulation of Notch-

1, cyclin D1, cyclin-dependent kinase 2, MAPK, ERK-1/2,
and p38 signaling pathways [109–111]. eNampt may also
function in an endocrine manner contributing through its im-
munosuppressive properties to the surviving strategies of can-
cer that take advantage of immune evasion [112]. Serum
eNampt is elevated in many cancers, and is generally correlat-
ed with worse prognosis and aggressive behavior [9••].

Preclinical and clinical studies have implicated visfatin/
Nampt in BC pathogenesis. In MCF-7 BC cells, eNampt me-
diated the upregulation of SIRT1 and p53 deacetylation, con-
tributing to BC progression [113]. These mechanisms were
confirmed in BC cell lines where eNampt induced BC cell
proliferation and suppressed apoptosis through AKT/PI3K
and ERK/MAPK activation [114].

Higher visfatin expression in BC tissue correlated with
more malignant tumor behavior as well as poor patient surviv-
al [115], tumor size, ER negativity, progesterone receptor (PR)
negativity, and decreased recurrence rate after hormone ther-
apy [115]. Visfatin expression alone was associated with poor
disease-free and overall survival, and this association was
more pronounced in combination with ER- and PR-negative
status [115]. Another group has confirmed the association of
visfatin with tumor aggressiveness, but also tried to elucidate
the underlying mechanism. They found that phosphorylation
of c-Abl and STAT3 in breast tumor tissues was associated
with high serum visfatin levels. Inhibiting c-Abl and STAT3
reversed eNampt-induced cell viability and metastatic poten-
tial [116].

Several studies have indicated that serum visfatin levels are
elevated in BC [34, 36, 37]. Interestingly, serum visfatin levels
when integrated in a multi-factorial ROC analysis may predict
BC progression [117]. A recent meta-analysis has shown that
higher visfatin levels were associated with cancer risk [118]
while another meta-analysis of BC patients revealed that mean
concentration of visfatin was higher in BC patients than con-
trols without taking into account menopausal status [25••].

Novel Adipokines and Breast Cancer

Apelin, a 9-kDa peptide identified in 1998 and encoded by the
APLN gene, is the endogenous ligand of the G-protein-
coupled receptor APJ and exerts its action through the activa-
tion of the ERK and PI3K/Akt pathways [119]. Increased
apelin levels are found in mammary gland and its secretion
in the milk is abundant. Apelin possesses various metabolic
functions, such as regulation of insulin secretion and sensitiv-
ity, blood pressure, and fluid homeostasis while it plays a role
in lymphangiogenesis and neoangiogenesis [120–122].
Notably, in MCF-7 BC cells, apelin induced cell proliferation
and invasion via the ERK1/2 pathway [123], whereas it acti-
vated tumor neoangiogenesis in TS/A mammary carcinoma
cells [124], demonstrating potent angiogenic properties.
Several immunohistochemical studies have shown higher
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apelin expression in humanBC [125, 126], while Salman et al.
found increased circulating serum levels of apelin in postmen-
opausal BC patients compared with controls and a significant
reduction after treatment with an aromatase inhibitor [127].
Moreover, recent data have revealed a strong association of
apelin with lymph node metastasis and TNM staging in BC
showing that this adipokine can be used as an independent
prognostic factor for BC [125].

Chemerin is a 14-kDa protein which acts through binding
to G-protein-coupled receptors and plays a multifunctional
role in adipogenesis, immunity, and metabolic activity [128,
129]. Its implication in cancer is conflicting as it can trigger
tumorigenesis by promoting angiogenesis, inflammation, and
matrix metalloproteinase (MMP) activity, whilst it also ex-
hibits antitumor properties depending on its concentration
[130, 131]. Chemerin’s main receptor, ChemR23, is found in
breast tissue. Chemerin expression is downregulated in BC
samples compared with normal controls and seems to be cor-
related with poor survival outcome [132]. However, it has
been shown that induction of chemerin overexpression in the
EMT6 BC model suppressed tumor growth by recruiting im-
mune cells into the tumor microenvironment [133•]. There is
conflicting evidence regarding the clinical utility of chemerin
as a prognostic factor in BC. El-Sagheer et al. showed that
chemerin expression in breast tissue correlated with poor
prognosis and unfavorable clinical and pathological parame-
ters [132]. However, in another study, serum chemerin levels
were not associated with BC stage, as there was no difference
in patients with metastatic and non-metastatic BC [134].

Encoded by the FNDC5 gene, irisin is a newly discovered
adipo-myokine that is involved in the browning of white ad-
ipose tissue regulating energy expenditure and systemic me-
tabolism [135–137]. This 12-kDa protein is predominantly
secreted from skeletal muscle but immunohistochemical stud-
ies have also revealed local production in various central and
peripheral tissues [138, 139]. The antitumor effect of irisin has
been shown in a recent in vitro study where a considerable
tumor suppressive result was noted on the number, migration,
and viability of malignant BC cell lines, with the induction of
cell apoptosis and the suppression of NF-κB activity [140].
Few clinicoepidemiologic studies have examined circulating
irisin in BC. Serum concentration of irisin in patients with BC
was significantly lower than in healthy participants and was
correlated with tumor stage [141]. In line with the previous
findings, lower serum levels of irisin were observed in BC
patients with spinal metastasis than BC patients without spinal
metastasis, where irisin emerged as an independent prognostic
factor in BC after adjustment for age and BMI [142].

Lipocalin 2 (Lcn2), also known as neutrophil gelatinase–
associated lipocalin (NGAL), is a 25-kDa secretory peptide,
member of the lipocalin family which is involved in transpor-
tation of small hydrophobic molecules and immune response
[143]. Lcn2 was recently recognized as an adipokine that is

also secreted from adipose tissue of both mice and humans.
Upregulated expression levels of Lcn2 have been reported in
tissue, serum, and urine of BC patients [144••]. A growing
body of evidence from in vitro and in vivo studies have shown
that Lcn2-tumorigenic and metastatic potential is induced via
the promotion of EMT, cell migration and invasion, VEGF
production, and angiogenesis [145–148]. The mechanisms
explaining and supporting the Lcn2-oncogenic and metastatic
potential comprise the activation of multiple signal pathways,
including PI3K/Akt/NF-κB, HIF-1a/ERK, and the protective
formation of the MMP-9/Lcn2 complex [144••]. Of note,
Lcn2 silencing or inhibition in BC cells or mouse models
destabilizes MMP-9/Lcn2 complex, reduces MMP-9 activity,
cell migration, and invasion, decreases VEGF and angiogen-
esis, and may lessen tumor progression [144••]. A meta-
analysis of four single-centered trials has highlighted the di-
agnostic potential of Lcn2 in BC [149]. Additionally, various
studies have shown that Lcn2 correlated with histological
grade, BC relapse, metastasis, and poor prognosis, including
estrogen receptor (ER)– negative status [147, 150–154], sug-
gesting that Lcn2 may serve as a promising noninvasive diag-
nostic and prognostic biomarker in BC.

Oncostatin M (OSM), a 24-kDa protein identified in 1986
and encoded by the OSM gene, is a pleiotropic cytokine that
belongs to the IL-6 family being involved in inflammation,
hematopoiesis, and bone formation [155, 156]. OSM interacts
with the gp130 complex with either OSM receptor type I
(known as LIFR) or OSM receptor II (known as OSMR),
stimulating several signaling pathways such as JAK/STAT3
and PI3K [157, 158]. In vitro studies have shown that OSM
expression correlated not only with tumor progression in BC
cell lines via a JAK/STAT3-dependent mechanism [159], but
also with phenotypic changes associated with mesenchymal
and stem cell–like differentiation via the PI3K pathway up-
regulation [160]. The ability of OSM to facilitate metastasis in
BC has also been shown in a mouse BC model where OSM
potentiated pre-intravasation events, increased circulating tu-
mor cells, and promoted lung metastasis [161]. Moreover,
recent accumulating clinical and experimental evidence have
associated elevated expression of OSM with decreased BC
survival and a worse clinical outcome mediated by estrogen
receptor downregulation [162–164], suggesting a potential
role of OSM in BC prognosis.

Osteopontin (OPN), also called bone sialoprotein 1, is a 44-
kDa cytokine-like, calcium binding, and multifunctional pro-
tein involved in biomineralization, inflammation, and tissue
remodeling [165, 166]. OPN interacts with a plethora of cell
surface receptors, including several integrins and CD44 [167].
Particularly in BC, OPN has been shown to preferentially bind
to specific integrins, such as ανβ1, ανβ3, ανβe, and ανβ5
receptors which are associated with different signaling path-
ways, resulting in an increase in cell adhesion, migration, and
invasion [168–170]. Elevated OPN expression in tissue,
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plasma, or serum in BC has been found in many studies, with
higher OPN concentrations being associated with higher tu-
mor grade [171–174], while a number of studies have demon-
strated that OPN may be correlated with BC progression and
metastasis [175–177]. Interestingly, OPN downregulation via
the miR-181c inhibited cell proliferation and enhanced
chemosensitivity in resistant BC cells [178•]. A growing body
of evidence has highlighted the prognostic value of OPN in
BC, as shown in a recent meta-analysis where high OPN and
particularly OPN splice variant-c levels were correlated with
poor survival [179]. Moreover, in another meta-analysis, OPN
overexpression was positively associated with lymph node
metastasis as well as overall and disease-free survival in BC
[180].

Implications in Public Health
and Therapeutics

A small but considerable percentage of BC cases could be
preventable through maintaining a healthy weight, adopting
a diet with fruits, nuts, vegetables, whole grains, and olive oil,
reducing unhealthy diet (consumption of sugar, trans-fats and
saturated fats, refined grains, red and processedmeat), increas-
ing physical exercise, and decreasing alcohol intake [3, 181,
182]. Figure 2 presents potential therapeutic strategies in post-
menopausal BC, which is associated with obesity. The
American Society of Clinical Oncology has highlighted that
obesity is one of the most cardinal preventable lifestyle risk
factor for cancer mortality [183]. Based on IARC and
WCRF/AICR reports, physical activity may decrease both
postmenopausal and premenopausal (vigorous activity) BC

risk and BC mortality [13••, 182, 184] through modulation
of insulin resistance, chronic inflammation, and circulation
of sex steroid hormones and adipokines. In the SHAPE study
of postmenopausal women with BC, a significant reduction of
circulating leptin was observed with a physical activity pro-
gram yielding a weight decrease of more than 5% [185].

Intentional weight loss is related with a significant decrease
in the risk of postmenopausal BC [186] contributing to a better
life expectancy [187]. Ongoing, large, weight loss interven-
tion randomized trials will explore the effects on BC outcomes
[13••]. However, the current state of knowledge corroborates
the daily incorporation of weight loss intervention in the man-
agement of BC. Regarding all-cause mortality in BC patients,
a beneficial effect of the Mediterranean diet was observed but
no positive effect from other diets such as low-carbohydrate,
ketogenic, or vegetarian/vegan diets was found [188]. Based
on two very recent meta-analyses, bariatric surgery for mor-
bidly obese women has been shown to reduce the incidence of
BC [189, 190]. Due to underpowered and heterogenous stud-
ies, limited follow-up, and difficulty in identifying proper con-
trols, larger RCTs are needed to explore the effect of bariatric
surgery on BC incidence and outcomes.

In the setting of obesity, which is considered a systemic
endocrine dysfunction characterized by chronic inflammation,
adipokines exert independent and joint effects on activation of
major intracellular signal networks implicated in cell prolifer-
ation, growth, survival, invasion, and metastasis [9••].
Circulating levels of adipokines could be modifiable by
weight loss, adoption of a balanced diet, and physical activity
[30, 42, 95]. Αlthough many adipokines are not only adipo-
cyte-derived, they are responsive to adiposity alterations.
Bariatric surgery, which is related to BC risk reduction via

Fig. 2 Potential therapeutic
strategies in postmenopausal
breast cancer. Nampt,
nicotinamide phosphoribosyl-
transferase; PPAR-γ, peroxisome
proliferator–activated receptors-
γ. (Image of breast cancer tissue
is derived from the free medical
site http://smart.servier.com/ by
Servier licensed under a Creative
Commons Attribution 3.0
Unported License)
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regulation of the adipokine profile, may increase levels of
adiponectin and decrease levels of leptin, resistin, visfatin/
eNampt, and chemerin [191–193].

Glycemic control may restore adipokine levels [194]. Anti-
diabetic drugs such as metformin or PPAR-γ agonists that
elevate adiponectin and decrease resistin and visfatin concen-
trations in both humans and mice may be at the forefront of
therapeutic strategies for BC [195]. Besides its role as an ac-
tivator of AMP-kinase, metformin potentiates non-AMPK-
dependent protective networks such as decreases in leptin,
insulin signaling, IGF-1, and inflammatory pathways and in-
creases in adiponectin [195]. Although data regarding met-
formin and BC incidence and mortality are inconclusive
showing, however, a tendency of protective effects on BC
particularly in HR-positive and diabetic patients [40,
195–197], recent meta-analyses have indicated significant re-
ductions in leptin and other metabolic parameters (hsCRP,
glucose, insulin, BMI) in BC patients receiving metformin
[196, 198]. More RCTs are awaited to determine the role of
metformin in BC risk decrease and prognosis in diabetic and
non-diabetic patients as well as an adjuvant therapy in BC
reversing chemotherapy resistance [199]. On the other hand,
in vitro and in vivo studies have shown that PPAR-γ agonists
as well as high-affinity PPAR-γ agonists, which upregulate
adiponectin expression and decrease inflammatory cytokines,
have the potential to suppress the proliferation and invasion of
BC cells through the inhibition of leptin signaling [40, 200].
Nevertheless, PPAR-γ agonists do not seem to affect BC risk
when employed as a single agent or in combination with hor-
mone therapy or chemotherapy [40, 201].

Whilst some preclinical and epidemiologic studies have
suggested a protective role for statins, aspirin, and other
non-steroidal anti-inflammatory drugs in BC (particularly
postmenopausal and HR-positive tumors) risk and mortality,
other studies did not support these findings, and further large-
scale evidence from RCTs is required [202–207]. Although
calcium channel blockers, folic acid, oleic acid, and vitamin C
and D supplementation could significantly restore adipokine
levels [9••, 42, 208], controversy exists between the potential
association of those agents with BC risk and progression
[209–213]. Some phytochemicals such as curcumin and res-
veratrol as well as dietary flavonoids such as catechin and
genistein, which may regulate mRNA and protein levels of
adiponectin, resistin, and visfatin [42], have been reported to
present anti-neoplastic and chemoprevention effects on BC in
experimental studies [214, 215].

Several adipokine-oriented therapeutic approaches have
been developed and used in preclinical studies for BC with
promising results. Antagonists of the leptin receptor that can
suppress leptin signaling as well as adiponectin agonists mim-
icking adiponectin action have been shown to inhibit the pro-
liferation of BC cells [216, 217]. Indeed, pegylated leptin
receptor antagonist 2 as well as other leptin receptor

antagonists based onmutants of the full leptin protein or leptin
peptide fragments have decreased the proliferation and angio-
genesis of ER-positive or ER-negative BC cells in xenograft
mice models [216–218]. Peptide-based adiponectin receptor
agonists such as ADP-355, which is an adiponectin mimetic
binding to both AdipoR1 and AdipoR2, have been reported to
suppress the growth of BC cell lines and orthotopic xenograft
BC models [219]. Nampt inhibitors, which limit NAD pro-
duction in BC cells, have demonstrated significant in vitro and
in vivo antitumor efficacy in an orthotopic MDA-MB-231
triple negative BC xenograft tumor model [220]. Therefore,
continued research is necessary to explore whether adipokines
may be potential therapeutic targets for both BC and obesity.
The research of the role of novel adipokines merits further
attention in future studies in obesity and BC.

Adipokines could be useful diagnostic, prognostic, and
predictive biomarkers, reflecting BC advanced stage, adverse
prognosis, and inflammatory state. However, large-scale pro-
spective and longitudinal studies are required to investigate
the diagnostic, prognostic, and predictive utility of adipokines
as BC biomarkers and to exclude a potential Bepiphenome-
non^ effect of adipokines variation in the context of BC sys-
temic inflammatory response [9••]. Additional challenges en-
compass the lack of standardization of adipokine immunoas-
say procedures and the development of reliable, Buser
friendly,^ and practical automated laboratory technique such
as multiplexing technology to explore the physiologic and
pathophysiological relevance of adipokines in BC and their
clinical utility. To investigate the potential relationship of
adipokines and BC risk, adequately powered Mendelian ran-
domization studies using genetic determinants of adipokines
derived from genome-wide associations studies are necessary
because they circumvent confounding of lifestyle variables
and reverse causation improving causal inference in the asso-
ciation of obesity-related biomarkers with cancer risk [221].

Conclusions

In summary, this review shows evidence for an association
between adipokines and BC. High throughput technologies
such as proteomics and metabolomics will discover novel
adipokines. Further evidence from basic and translational re-
search is necessary to delineate the ontological role of
adipokines and their interplay in BC pathogenesis. More stud-
ies are needed to explore the epigenetic regulation of
adipokine genes and to map out their receptors and critical
signaling pathways. More large-scale clinical and longitudinal
studies are awaited to assess their clinical utility in BC prog-
nosis and follow-up. Finally, novel more effective and safer
adipokine-centered therapeutic strategies could pave the way
for targeted oncotherapy.
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