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Abstract

Purpose of Review In this review, we investigate the role of classic and novel adipocytokines in cancer pathogenesis synopsizing
the mechanisms underlying the association between adipocytokines and malignancy. Special emphasis is given on novel
adipocytokines as new evidence is emerging regarding their entanglement in neoplastic development.

Recent Findings Recent data have emphasized the role of the triad of overweight/obesity, insulin resistance and adipocytokines in
cancer. In the setting of obesity, classic and novel adipocytokines present independent and joint effects on activation of major
intracellular signaling pathways implicated in cell proliferation, expansion, survival, adhesion, invasion, and metastasis. Until
now, more than 15 adipocytokines have been associated with cancer, and this list continues to expand. While the plethora of
circulating pro-inflammatory adipocytokines, such as leptin, resistin, extracellular nicotinamide phosphoribosyl transferase, and
chemerin are elevated in malignancies, some adipocytokines such as adiponectin and omentin-1 are generally decreased in
cancers and are considered protective against carcinogenesis.

Summary Elucidating the intertwining of inflammation, cellular bioenergetics, and adiposopathy is significant for the develop-
ment of preventive, diagnostic, and therapeutic strategies against cancer. Novel more effective and safe adipocytokine-centered
therapeutic interventions may pave the way for targeted oncotherapy.

Keywords Adipocytokine - Adipokine - Adiponectin - Apelin - Cancer - Chemerin - Leptin - Nesfatin - Nicotinamide
phosphoribosyltransferase - Obesity -Omentin - Oncostatin - Osteopontin -Resistin - Retinol-binding protein4 - Vaspin - Visfatin

Abbreviations BC Breast cancer

AdipoR1/R2  Adiponectin receptor 1/2 BMI Body mass index

Akt v-Akt murine thymoma viral oncogene CVD Cardiovascular disease
homolog DM Diabetes mellitus

AMPK 5> AMP-activated protein kinase DNA Deoxyribonucleic acid
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ER Estrogen receptor

ERK 172 Extracellular signal-regulated kinase 1/2
GRP78 Glucose-regulated protein 78

GTP Guanosine-5'-triphosphate

HIF-1a Hypoxia-inducible factor-1a

IL Interleukin

IGF Insulin-like growth factor

IRS Insulin receptor substrate

JAK Janus kinase

INK Jun N-terminal kinase

MAPK Mitogen-activated protein kinase

LEPR Leptin receptor

LIFR«x Leukemia inhibitory receptor alpha
MMP Matrix metalloproteinase

mTOR Mammalian target of rapamycin

NAD Nicotinamide adenine dinucleotide
Nampt Nicotinamide phosphoribosyl transferase
NF-«B Nuclear factor-xB

NSCLC Non-small cell lung carcinoma

OSM Oncostatin M

PBEF Pre-B cell colony-enhancing factor
PCOS Polycystic ovary syndrome

PI3K Phosphatidylinositol 3-kinase

PPAR Peroxisome proliferator-activated receptors

PR Progesterone receptor

RBP4 Retinol-binding protein
ROCK Rho-associated coiled coil-containing
protein kinase
SNPs Single nucleotide polymorphisms
STAT Signal transducer and activator
of transcription
STRAG6 Stimulated by retinoic acid 6
TLR Toll-like receptor
TNF-oc Tumor necrosis factor-o
VCAM-1 Vascular cellular adhesion molecule-1
VEGF Vascular endothelial growth factor
WHR Waist-to-hip ratio
Introduction

Worldwide cancer constitutes the second leading cause of
death [1]. It is expected that cancer incidence will continue
to augment due to the increase in the prevalence of risk fac-
tors, mainly obesity and DM. In both developing and indus-
trialized countries, there is a dramatic increase in the preva-
lence of overweight and obesity, defined as excessive or ab-
normal fat tissue accumulation and characterized as a BMI
between 25 and 29.9 and over 30 kg/m? respectively [2].
Obesity is highly prevalent in females and in urban areas
[3]. Generally, obesity develops when there is an imbalance
between exceeding energy consumption from dietary intake
and energy expenditure from physical and metabolic activity.

Obesity is associated with an increased risk of many chronic
comorbidities associated with premature mortality, including
DM type 2, hypertension, dyslipidemia, CVD, non-alcoholic
fatty liver disease, and cancer [4].

There is sufficient evidence from prospective studies and
meta-analyses that elevated body fatness, particularly visceral
obesity, is associated with an increased risk for many malig-
nancies including colorectal, postmenopausal breast, endome-
trial, gallbladder, thyroid, renal cell, ovarian, pancreatic, ad-
vanced prostate cancer, esophageal adenocarcinoma [5-8],
and lymphohematopoietic cancer [9-13]. Emerging evidence
associates higher body fatness in late adolescence and early
adulthood with cancer risk at an older age [14]. The patholog-
ical expansion of white adipose tissue in obesity, also de-
scribed as adiposopathy, is characterized by adipocyte hyper-
trophy and/or hyperplasia, hypoxia, oxidative stress response,
disruption in the protein secretory pathway, and induction of
angiogenesis [15]. Adiposopathy may provoke inflammatory,
metabolic and immunologic changes affecting cell mutation
rate, DNA repair, gene function, and induction of epigenetic
changes permitting neoplastic transformation and growth
[16°e, 17°].

In the current review, we investigate the role of classic and
novel adipocytokines in cancer pathogenesis synopsizing the
mechanisms underlying the association between
adipocytokines and malignancy. Special emphasis is given
on novel adipocytokines as new evidence is emerging regard-
ing their entanglement in neoplastic development. Elucidating
the intertwining of inflammation, cellular bioenergetics, and
adiposopathy is significant for the development of preventive,
diagnostic, and therapeutic strategies against cancer.

Adipocytokines at the Intersection of Obesity
and Cancer

Recent data have emphasized the role of the triad of over-
weight/obesity, insulin resistance and adipocytokines in
cancer. Although the role of obesity in cancer pathogenesis
is not fully elucidated, the main pathways connecting obe-
sity and adiposopathy to malignancies comprise (i)
hyperinsulinemia and insulin resistance; (ii) abnormalities
of the IGF-I system; (iii) chronic low-grade systemic in-
flammation and oxidative stress; (iv) impaired immune
function; (v) the impact of obesity/adiposopathy on sex
hormones biosynthesis; and (vi) abnormal variations in
the levels of adipocytokines (Fig. 1) [11, 17¢, 18-21].
Besides its mere energy-storage properties, white adipose
tissue is a dynamic endocrine organ secreting a constellation of
functional heterogeneous adipocytokines, a group of polypep-
tides that regulate several physiologic and pathologic processes
including insulin sensitivity, appetite, inflammation, innate and
adaptive immunity, hematopoiesis, and angiogenesis [22, 23].
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Fig. 1 Main variations of classic
and novel adipocytokine serum
concentrations in cancer

_—

Until now, more than 15 adipocytokines have been associated
with cancer, and this list is still expanding [24]. While the
plethora of circulating pro-inflammatory adipocytokines, such
as leptin, TNF-«, IL-6, resistin, and extracellular Nampt
(eNampt) are elevated in malignancies, some adipocytokines
such as adiponectin and omentin-1 are decreased in cancers
and are considered protective against carcinogenesis [16°e,
17¢, 25-27]. Classic adipocytokines, formerly discovered
adipocytokines such as leptin and adiponectin, have been suf-
ficiently studied in cancer. A well-established connection of
classic and novel adipocytokines with cancer risk and progres-
sion may include (1) altered plasma or serum concentrations in
cancer patients; (2) their differential expression in malignant
and benign tissues; (3) their upregulation in tumor tissues; (4)
their correlation with advanced stage and poor prognosis as
prognostic biomarkers; (5) their association with cancer thera-
py resistance as predictive biomarkers; (6) their association
with in vivo and in vitro models of cancer; and (7) the associ-
ation of genetic polymorphisms of adipocytokines genes with
susceptibility to certain cancer types. Table 1 presents a sum-
mary of the mechanism of action of adipocytokines in cancer.

Classic Adipocytokines and Cancer
Adiponectin and Cancer
Adiponectin is a protein composed of 244 amino acids be-

longing to the C1q/TNF family of proteins [17¢]. It was dis-
covered almost simultaneously by four different research

@ Springer

!,' o i

i | 4
\ / ( ;
3 / Cellular events that initiate 3 J;

oncogenous phenotype

Release to target tissues

|

/"‘\.\

groups, in mid-1990s [17+¢]. Adiponectin is secreted into cir-
culation mainly by adipocytes [28]. Several receptors have
been identified as binding sites for adiponectin: AdipoR1
(mainly expressed in skeletal muscles and endothelial cells),
AdipoR2 (mainly expressed in liver), and T-cadherin [29, 30].
Adiponectin receptors are expressed in almost any tissue as
well as in cancer cells [17¢¢, 28]. Several growth factors such
as platelet-derived growth factor, basic fibroblast growth fac-
tor, and heparin-binding epidermal growth factor-like growth
factor are also bound by adiponectin [31].

A plethora of physiologic effects are exerted by
adiponectin [32]. Adiponectin increases sensitivity to insulin
and has anti-inflammatory and anti-atherogenic properties
[32-34]. It also acts as cardioprotectant being involved in lipid
metabolism [32—34]. Serum adiponectin levels correlate with
various disease states [17]. Hypoadiponectinemia, which is
the result of both genetic and/or environmental factors, is as-
sociated with insulin resistance, DM type 2, gestational DM,
hypertension, metabolic syndrome, CVD, liver disease, and
several malignancies [33—42]. On the other hand, increased
adiponectin levels have been associated with anorexia
nervosa, rheumatoid arthritis, and increased amount of pro-
teinuria in chronic kidney disease [43—46]. In addition, there
is evidence that high adiponectin levels are also associated
with low risk for CVD in men, better glucose and lipid control
in women [47-49], and lower risk for DM type 2 [50].

Besides its other properties, adiponectin exhibits anti-
proliferative, anti-migratory, and pro-apoptotic actions
[24, 51¢]. Recombinant adiponectin has demonstrated
anti-tumor effect when used in forms of leukemia, breast
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adenocarcinoma, and fibrosarcoma [52]. In addition to its
direct anti-tumor effect on cells, adiponectin results in
lower bioavailability of various growth factors [31]. On
the other hand, hypoadiponectinemia correlates with car-
cinogenesis, both directly and indirectly [17¢, 53].
Specifically, low adiponectin levels promote fatty acid
and protein synthesis and, thus, cell growth, proliferation,
and DNA mutagenesis [54]. Furthermore,
hypoadiponectinemia supports tumor proliferation via the
increase of anabolic hormones (insulin and IGF-1) and
pro-inflammatory cytokines (TNF-a, IL-6) [54]. Recent
meta-analyses have shown that decreased serum
adiponectin levels are associated with cancers such as
breast, prostate, endometrial, colorectal, tongue gastro-
esophageal, and also multiple myeloma and acute leuke-
mias [55, 56]. In colorectal, gastric, and prostate cancer,
low adiponectin levels are associated with cancer grade
and stage. Interestingly, hypoadiponectinemia may serve
as a useful biomarker for early cancer detection and prog-
nosis [57, 58]. The combination of high BMI and
hypoadiponectinemia is associated with more than sixfold
the risk for endometrial cancer [59-61]. Regarding breast
cancer, there is evidence that hypoadiponectinemia is an
independent risk factor for disease regardless of age, men-
opause status, lymph nodes metastases, and hormone re-
ceptor status [62]. Adiponectin levels may also give infor-
mation about the invasiveness of breast cancer [63]. The
recent discovery of a novel adiponectin receptor 1 agonist
as a therapeutic approach for DM may open analogous
therapeutic avenues for anti-cancer treatment [64e¢]. With
a deeper understanding of the role of adiponectin in onco-
genesis, safe drugs that modulate its downstream cellular
pathways may emerge as an important therapeutic strategy
in oncology.

Leptin and Cancer

Leptin, a hormone produced mainly from the adipose tissue,
was discovered by Friedman and colleagues in 1994 [65].
Leptin secretion is proportionate to the adipose tissue mass
and serves as a message of satiety and energy adequacy
inhibiting appetite [66]. Leptin exerts its effects through the
LEPR, which is a single transmembrane protein, expressed in
most tissues. In turn, the receptor affects multiple intracellular
signaling pathways including JAK/STAT3, MAPK,
PI3K/Akt, ERK1/2, AMPK, and IRS pathways [66, 67]. In
the context of cancer, JAK2 activates STAT3 and 5 that up-
regulate the transcription of genes crucial to mechanisms of
oncogenesis, such as cell proliferation, invasion, angiogene-
sis, and inflammation [28]. Furthermore, leptin increases the
expression of anti-apoptotic proteins, inflammatory markers
(TNF-a, IL-6), angiogenic factors (VEGF), and the HIF-1a
[68, 69]. The ERK phosphorylation results in downstream
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activation of transcription factors that activate response ele-
ments of the c-fos gene promoting cell division [70]. Also,
following JAK?2 activation, PI3K and Akt are phosphorylated,
and, as a result, glucose utilization, cell growth, cell prolifer-
ation, and apoptosis are induced [71]. Leptin has been shown
to correlate with breast cancer depending on the menopausal
status, showing a positive and negative correlation in post-
menopausal and premenopausal women, respectively [72,
73]. The underlying oncogenic mechanism in mammary tis-
sue involves mainly the JAK/STAT3 and PI3K pathways [74].
Moreover, leptin can inhibit apoptosis of BC cells favoring the
expression of anti-apoptotic genes (bcl-xL, bak, and bax) and
induce angiogenesis by stimulation of VEGF production [75].
Leptin displays an interesting interplay with ERs. Leptin can
lead to stimulation of ERa, enhancement of aromatase expres-
sion, and suppression of p53 in ER-positive cancer cell lines
[76, 77]. In the opposite direction, estradiol enhances the ex-
pression of leptin and LEPR in MCF7 BC cell lines [74]. The
role of leptin on ER negative BC is not clear. In prostate
cancer, leptin has been shown to promote oncogenicity in
androgen insensitive prostate cancer cell lines [28] but not in
androgen sensitive cell lines [78]. This is in accordance with
hyperleptinemia observed in advanced prostate cancer which
is more androgen refractory [67]. Also, leptin may promote
oncogenesis in the gastrointestinal tract [67]. This has been
shown in experimental settings in colon and gastric cancer. In
patients with gastric cancer, leptin promoted invasiveness
through the Rho/ROCK pathway [79] and correlated with
aggressiveness of colorectal cancer [80].

However, in contrast to many in vitro studies where
supraphysiologic levels of leptin were used, observational ep-
idemiological studies have reported inconsistent associations
between serum leptin levels and risk of several malignancies
[26, 27, 81, 82]. Moreover, any associations of leptin with
cancers reported in these studies may be due to the uncon-
trolled confounding via fat mass since all epidemiologic stud-
ies adjust for BMI which does not fully account for fat mass as
a surrogate marker. Meta-analyses have shown positive asso-
ciations of leptinemia with breast cancer, especially in over-
weight and obese women, a higher risk for endometrial cancer
and inconclusive results for lung cancer [83, 84, 85¢]. Our
research group, which has studied extensively adipocytokines
in malignancies, has shown that hypoleptinemia and not
hyperleptinemia was associated to pancreatic cancer indepen-
dently from BMI and weight loss [86, 87], to B cell chronic
lymphocytic leukemia [88] and to low-risk myelodysplastic
syndrome after adjustment for BMI and other risk factors
[89-91]. Therefore, although basic research studies have
shown positive effects of leptin on cancer cells using higher
doses of leptin levels, this may not have relevance to humans
and cannot be translated into clinical applicability. Overall, the
evidence has shown that leptin in normal physiological circu-
lating levels is not associated with cancer risk.
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Novel Adipocytokines and Cancer
Resistin and Cancer

Resistin is a small adipocytokine of 12.5 kDa, secreted by
mononuclear inflammatory cells and adipose cells [25]. It
was discovered in 2001 and was considered to be a linking
hormone between obesity and diabetes (the name “resistin”
implies resistance to insulin) [92]. Resistin binds TLR4
resulting in activation of the PI3K, p38 MAPK, and NF-kB
pathways [26]. The main effect of TLR4 binding is the secre-
tion of pro-inflammatory cytokines such as TNF-a and 1L-12
[26]. Additional effects include increased cell proliferation,
migration, and adhesion [25].

The most notable physiological effects of resistin include
potential pro-diabetic and pro-inflammatory activity [25].
There is evidence that hyperresistinemia is associated with
many disease states comprising visceral obesity, coronary ar-
tery disease, lung disease, various malignancies, and critical
illness [25, 93, 94]. Resistin may trigger tumorigenesis via
inflammation (PI3K and NF-kB pathways), immune cell ex-
travasation (MAPK pathway), expression of cardinal mole-
cules for adhesion of cancerous cells (NF-kB pathway), and
promotion of survival and invasiveness of tumor cells (PI3K
and MAPK pathways) [24].

In a recent meta-analysis, hyperresistinemia was linked
to an increased incidence of obesity-related cancers such as
breast, endometrial, and colorectal cancer [95]. Some epi-
demiological studies, mainly case-control studies, have al-
so linked high resistin levels to non-obesity-related cancers
(such as esophageal, gastric and lung cancer) [25].
Additionally, increased resistin levels have been associated
with lymphohematopoietic cancer [25]. However, despite
its strong association to various types of cancers, resistin
presents a limited diagnostic or predictive ability as a can-
cer biomarker [95].

Visfatin/eNampt and Cancer

Visfatin, also known as Nampt or PBEF, is a 52-kDa protein,
the product of the NAMPT gene, that acts as an enzyme,
adipocytokine, and a growth factor [96-98]. Nampt can be
found in two forms, the intracellular-iNampt, and the
extracellular-eNampt [16+¢]. iNampt participates in NAD bio-
synthesis, an important electron carrier, representing thereby a
crucial function in cell metabolism. eNampt is excreted by a
variety of tissues such as adipose, liver, and heart, and the
mechanism that this is accomplished is thought to be cell lysis
[97]. eNampt has been associated with various pathologies
including diabetes, obesity, aging, atherosclerosis, cardiac hy-
pertrophy, and autoimmune diseases [99—101]. Regarding on-
cogenesis, eNampt displays pro-inflammatory, proliferative,
anti-apoptotic, and pro-angiogenic effects [102]. It induces

inflammation through the activation of NF-kB and promotes
proliferation through the upregulation of Notch-1, cyclin D1,
cyclin dependent kinase 2, MAPKs, ERK-1/2, and p38 sig-
naling pathways [7, 103—105]. Moreover, eNampt may func-
tion as an endocrine mediator in some cancers and can con-
tribute through its immunosuppressive properties to the char-
acteristic immune-evasive properties of malignancies [106].
Serum eNampt is elevated in many cancers and is generally
correlated with worse prognosis and advanced stage [102,
107]. Specifically, it has been associated not only with the risk
of obesity-associated malignancies, such as breast, endometri-
al, and colorectal cancer [16+¢] but also with the risk of male
oral squamous cell, gastric and hepatocellular carcinoma,
bladder and prostate cancer, non-small cell lung cancer, brain
tumors, and hematologic malignancies [16°, 24]. Molecules
that inhibit Nampt are being investigated in clinical trials,
either as a monotherapy or as a part of combination therapy
that enhances chemotherapy effects by triggering depletion of
energy in cancer cells [16°¢].

Chemerin and Cancer

Chemerin is a small protein of 16 kDa, expressed in lung,
liver, and white adipose tissue [108]. It is involved in innate
and adaptive immunity by binding protein-coupled receptor
chemokine-like receptor 1 (CMLR1) [109]. Apart from im-
munity, chemerin plays a role in adipogenesis and adipocyte
metabolism [108, 110].

Chemerin levels are positively correlated with BMI and
components of the metabolic syndrome [24, 111, 112].
Increased chemerin levels have been associated with neuro-
blastoma, NSCLC, and tongue, esophageal, gastric, and colo-
rectal cancer [113, 114]. Interestingly, chemerin levels may
serve as an important prognostic factor for gastric cancer pa-
tients’ post-operative survival [115]. The mechanisms by
which chemerin is promoting tumorigenesis comprise inflam-
mation, angiogenesis, and induction of matrix metalloprotein-
ases [24, 116]. It has recently been suggested that the
chemerin/CMLR1 pathway may also serve as a potential ther-
apeutic target for malignancies such as neuroblastoma [117].

On the contrary, a recent study in mice hepatocellular can-
cer (HCC) showed that chemerin may have tumor-inhibitory
effects, by suppressing the inflammatory microenvironment
of the tumor [118¢]. This fact may underscore a potential ther-
apeutic role of chemerin against inflammation-associated tu-
mors such as HCC [118¢]. It also implies that chemerin may
present differential effects on different types of cancers.

Omentin-1 and Cancer
Omentin-1, discovered in 2006 and originally recognized as

intelectin-1, is secreted from the adipose tissue, mainly from
the visceral fat [119]. It has been considered as one of the
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missing links explaining the higher burden of DM type 2 and
cardiovascular disease attributed to visceral obesity compared
to subcutaneous obesity [67]. Omentin-1 is produced by stro-
mal vascular cells of the adipose tissue exerting its actions in
an endocrine, autocrine, and paracrine manner [119].
Omentin-1 enhances insulin’s effects by stimulating insulin-
mediated glucose uptake by subcutaneous and visceral adipo-
cytes in vitro via the Akt signaling [119]. Besides the inverse
correlation of omentin-1 levels with obesity, its levels are de-
creased under the spectrum of altered metabolic parameters
including increased waist circumference, dyslipidemia, and
hypertension [120]. As a result, omentin-1 may function as a
marker of cardiovascular risk [121]. In HEPG2 cell lines,
omentin-1 exerted anti-oncogenic effects through promotion
of apoptosis via upregulating p21 that, in turn, increased p53,
bax/bcl2 ratio and activated caspase 3 system [122]. Elevated
levels of omentin-1 were detected in patients with malignant
mesothelioma and prostate cancer [123¢]. On the contrary,
omentin-1 was markedly decreased in renal cancer patients
[124]. Omentin-1 was associated with better outcomes in pa-
tients with gastric and stage IV colorectal cancer [123].
Baseline omentin-1 levels have been correlated with colorec-
tal cancer risk, presenting a potential interaction with the ad-
iposity state of the patients [125]. This contradictory finding to
the tumor suppressive properties of omentin-1 was attributed
to its potential correlation with intestinal inflammation and the
enhancement of the Akt pathway [125]. Furthermore,
omentin-1 was elevated in stage III colorectal cancer patients
in comparison to healthy controls [126]. Pancreatic cancer
patients displayed higher levels of omentin-1 as a compensa-
tory response to the inflammation and/or weight loss due to
cancer cachexia, a complex metabolic state characterized by
loss of muscle and adipose tissue [127]. Omentin-1 correlated
with pancreatic tumor size but failed to predict survival [127].
Finally, omentin-1 effectively inhibited the growth, invasion,
and metastasis of neuroblastoma cells in vitro and in vivo via
stimulation of the N-myc downstream-regulated gene 2 ex-
pression [128].

Apelin and Cancer

Apelin is a 9-kDa peptide identified in 1998. It is expressed in
various different tissues such as the brain, liver, kidney, heart,
lung, gastrointestinal tract, adrenal gland, adipose tissue, and
endothelium [24, 129]. Apelin binds a G protein-coupled re-
ceptor which results in the activation of the ERK and
PI3K/Akt pathways [129].

The physiologic functions of apelin include blood pressure
control, insulin and histamine release regulation, angiogene-
sis, and hypothalamic regulation of fluid and food intake
[130]. There is no clear association between BMI and circu-
lating apelin levels [131] while there is a strong correlation of
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this adipocytokine with hyperinsulinemia and pathogenesis of
DM type 2 [132].

Higher apelin levels have been associated with cholangio-
carcinoma, prostate, oral, ovarian, colon, endometrial, lung,
and gastroesophageal cancers [133], serving as a potential
marker for cancer progression [134]. Apelin may promote
metastasis through enhanced proliferation, migration, inva-
sion, and resistance to apoptosis [133] .

Retinol-Binding Protein 4 and Cancer

Retinol-binding protein 4 (RBP4), a soluble 21-kDa polypep-
tide, is mainly produced by the liver [135]. It functions as a
vitamin A carrier that transports it to the periphery, throughout
the body [136]. Adipose tissue is a secondary site of RBP4
synthesis; hence, RBP4 is classified as an adipocytokine.
When it reaches its target tissues, RBP4 possibly acts by bind-
ing to cell surface receptors or through retinoic acid and
retinoic acid-X receptors [136]. Although RBP-4 has been
implicated in insulin resistance, epidemiological evidence
has not been conclusive [137, 138]. RBP4 has been positively
associated with triglycerides, total cholesterol, LDL-cholester-
ol, and high blood pressure [135]. Regarding oncogenesis,
RBP4 promotes JAK/STAT signaling via its receptor
STRAG. In culture with RBP-4, breast and colon carcinoma
cells as well as fibroblasts acquired oncogenic properties such
as cell proliferation, migration, and invasion [135]. However,
proliferation of colon tumor cells was significantly inhibited
after knocking down STRAG6 receptor [135]. Upregulation of
STRA6 and RBP4 has been documented in colorectal and
breast cancer [135]. In ovarian cancer cell lines, RBP4 stimu-
lated cancer cell migration and proliferation through the
RhoA/Rockl and ERK pathways, suggesting a potential on-
cogenic role [139]. Observational studies associating RBP4
and cancer have been inconclusive. In a case-control study,
elevated RBP4 levels were found in BC patients, especially
those who were PR and ER receptor negative [140]. On the
contrary, in a cross-sectional study, lower RBP4 levels were
found in patients with CRC [141].

Vaspin and Cancer

Vaspin was first identified in the Otsuka Long-Evans
Tokushima fatty rat and is a protease inhibitor [24, 142]. It is
mainly secreted by visceral adipose tissue [24]. Other sites of
production are the stomach, liver, pancreas, and hypothalamus
[24].

Despite its unclear mechanism of action, vaspin binds
GRP78 and activates Akt and AMPK which regulate glucose
and lipid metabolism [24]. Through these pathways, vaspin
may improve obesity-related metabolism dysfunction [24].
Vaspin increases insulin sensitivity and presents anti-
inflammatory and apoptotic properties [142, 143]. Vaspin
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may play a role in various diseases such as diabetes, obesity,
metabolic syndrome, PCOS, and coronary artery disease [144,
145]. The potential connection of vaspin with cancer needs
further investigation [22]. From observational studies, it has
been shown that decreased vaspin levels are associated with
endometrial cancer, while increased levels are associated with
CRC [146, 147]. In a recent study, it is suggested that vaspin,
like leptin, may be a helpful assessment tool for the clinical
staging of endometrial cancer [148].

Nesfatin and Cancer

Nesfatin-1, discovered in 2006, was identified as an anorexi-
genic peptide with a role in appetite control and body weight
[149, 150]. It is the N-terminal part of nucleobindin 2
(NUCB2) and is expressed in brain loci pertaining to feeding
regulation [149]. Besides its brain expression, nesfatin-1 is
mainly produced by the subcutaneous adipose tissue but also
the gastric endocrine cells and the pancreatic beta cells [151].
Cytokines that promote inflammation, such as TNF-a and IL-
6, induce the secretion of nesfatin [24]. As per its oncogenic-
ity, nesfatin inhibited cell proliferation by altering elements of
the cell cycle in HO-8910 ovarian epithelial carcinoma cells,
an effect reversed by the RhoA/ROCK signaling pathway
[152]. Among other mechanisms, apoptosis is dependent on
the GTPase RhoA and its downstream effector, ROCK, a fur-
ther downstream molecule [153]. Nesfatin-1 increased RhoA
activity, as well as the activity of ROCK, thus triggering apo-
ptosis of HO-9010 cells [152]. Moreover, nesfatin-1 induced
apoptosis in HO-9010 cells by modulating the mTOR path-
way [152]. Serum nesfatin has been found significantly lower
in lung cancer patients, mainly attributed to cachexia [154].

Osteopontin and Cancer

Osteopontin is a pro-inflammatory adipocytokine that was
first described as a protein of bone calcified matrix [155]. It
is expressed in a plethora of different cell types such as adi-
pocytes, immune system cells, hepatocytes, smooth and skel-
etal muscle cells, endothelial cells, osteoblasts, osteocytes,
chondrocytes, and fibroblasts [148]. It is also found in tissues
such as the brain, placenta, mammary glands, and kidneys
[156]. It induces the activation of MMP-2 and MMP-9 [157,
158]. Osteopontin is involved in biomineralization, inflamma-
tion and remodeling [156]. It is linked to disease states such as
obesity, DM, non-alcoholic steatohepatitis, and cancer [156,
159]. An overexpression of osteopontin is present in various
types of cancer, such as stomach, lung, breast, and ovarian
cancer and melanoma [158, 160]. Osteopontin may be used
as a biomarker characterizing cancer aggression, especially
grade [161]. The mechanisms connecting osteopontin with
tumorigenesis include angiogenesis, metastasis, and evasion
of apoptosis [159, 162]. Several strategies such as blocking

osteopontin activity with antibodies/small molecule inhibitors
and osteopontin silencing via the use of RNAi technology, are
suggested as therapeutic approaches in cancer [161].
However, further investigation on these novel targeted thera-
pies is needed [161].

Oncostatin and Cancer

Oncostatin M (OSM) was discovered in 1986, as a molecule
that can effectively inhibit the proliferation of melanoma cell
lines as well as other cancer cell lines, exhibiting oncostatic
properties [163]. OSM belongs to the IL-6 family being se-
creted by activated T cells and macrophages and involved in
the inflammatory response [164]. OSM interacts with the cell
signaling molecule gp130, requiring a second receptor to join
the complex for the signal to be transduced [165]. It binds to
the gp130 complex with either LIFR, termed as OSM recep-
tor type I, or OSMRf3 complex termed as the OSM receptor
type II [165]. Several signaling pathways including JAK/
STAT3, MAPK, and PI3K can be stimulated by gp130 cyto-
kines, although their spectrum depends on the target tissue
[165]. OSM stimulates growth of Kaposi sarcoma cells
through the ERK-2 and PI3K pathways [166, 167]. Recent
evidence has shown that the adipose tissue can secrete OSM
promoting BC progression through JAK/STAT3 pathway up-
regulation [168]. Moreover, OSM may promote cell invasion
and angiogenesis in osteosarcoma cell lines facilitating matrix
degradation and angiogenesis in prostate cancer cells [169,
170]. In a mouse breast cancer model, OSM promoted metas-
tasis, increased circulating tumor cells, and decreased survival
[171¢]. Oncostatin levels have been associated with a poor
outcome in breast cancer patients, an effect possibly mediated
by estrogen receptor downregulation [172].

Preventive and Clinical Implications

Based on current epidemiological evidence, a considerable
percentage of cancer cases may be preventable through main-
taining a healthy weight, following a diet with fruits, vegeta-
bles, and olive oil, increasing physical exercise and reducing
alcohol intake [173]. The American Society of Clinical
Oncology has underscored that obesity is one of the most
important preventable lifestyle risk factor for cancer mortality
[174], overtaking smoking.

Besides expansion of fat mass, obesity is considered a sys-
temic endocrine dysfunction characterized by chronic inflam-
mation. Adipocytes support tumor metabolism while their
products, adipocytokines, are cardinal mediators of tumor pro-
gression via their paracrine and endocrine actions. In the set-
ting of obesity, classic and novel adipocytokines present inde-
pendent and joint effects on activation of major intracellular
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signaling pathways implicated in cell proliferation, expansion,
survival, adhesion, invasion, and metastasis.

Plasma levels of classic (adiponectin and leptin) and novel
adipocytokines such as resistin, eNampt, and chemerin may
be modifiable by weight control, adoption of a balanced diet,
and physical activity [16e, 25, 175, 176]. Bariatric surgery is
linked to cancer risk reduction through modulation of the
adipocytokines profile, particularly elevation of adiponectin
and decrease of leptin, resistin, eNampt, and chemerin
[177—-180]. Paradoxically, although novel adipocytokines are
not only adipose-cell-derived, they are responsive to adiposity
alterations. Glycemic control can restore adipocytokine con-
centrations [181]. Pharmacologic agents such as metformin or
PPAR-y agonists that increase adiponectin and decrease
resistin and eNampt levels in both humans and mice could
be at the forefront of therapeutic strategies for obesity-
related malignancies [16°°, 25, 181, 182]. Lipid-lowering
drugs, calcium-channel blockers, folic acid, oleic acid, and
vitamin C and D supplementation may significantly improve
adipocytokine levels [4, 16+, 25]. Some nutraceuticals such
as curcumin, a polyphenol derived from turmeric, may mod-
ulate mRNA and protein levels of resistin and eNampt [183].

In preclinical studies, pegylated leptin receptor antagonist 2
has been shown to decrease the proliferation and angiogenesis
of BC cells [184, 185]. Peptide-based adiponectin receptor
agonists such as ADP355, which is an adiponectin mimetic,
has been reported to limit the proliferation of adiponectin
receptor-positive cancer cell lines [186, 187]. Targeting
resistin and eNampt inhibition, either by biochemical or anti-
body neutralization, by antisense oligonucleotides, or by an-
tagonism of their putative receptors, may be an effective strat-
egy in cancer therapeutics, particularly in depleting the tumor
inflammatory microenvironment [16ee, 25]. If their receptors
and signaling pathways are clearly determined, inhibition of
resistin and eNampt downstream targets may be further ex-
plored in the cancer therapeutics armamentarium.
Combination treatment with Nampt inhibitors and chemother-
apeutic drugs or radiation may represent an emerging strategy
enhancing the efficacy of existing chemotherapeutic agents
[16°+]. Hence, continued research is necessary to establish
whether novel adipocytokines could be a potential therapeutic
target for both cancer and obesity.

Adipocytokines, particularly adiponectin, are potentially
useful diagnostic and prognostic biomarkers, reflecting ad-
vanced stage, adverse prognosis, and inflammatory state.
Hypoadiponectinemia warrants assiduous investigation to rule
out cardiometabolic diseases and cancer [188, 189] as well as
worsened prognosis in cancer [182]. Recent data suggest that
eNampt and resistin may be promising cancer biomarkers
reflecting advanced stage and adverse prognosis [16e, 25,
190, 191]. Nevertheless, more large-scale prospective and lon-
gitudinal studies are needed to explore the diagnostic, prog-
nostic, and predictive utility of classic and novel
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adipocytokines as cancer biomarkers and to rule out a poten-
tial “epiphenomenon” effect of adipocytokines variation in the
context of tumor systemic inflammatory response.

The development of reliable, “user friendly”” and practical
automated laboratory techniques (enzyme-linked immunosor-
bent, electro-chemiluminescence immunoassays, etc.) and
standardization of immunoassay procedures are needed to in-
vestigate the physiologic and pathophysiological relevance of
adipocytokines. Also, there is a considerable number of unan-
swered practical issues in the clinical laboratory setting. What
adipocytokine levels should be considered unhealthy and
what are their optimal concentrations for cancer prevention?
Their reference range should be determined as they may differ
by age, gender, race, various preanalytical parameters, and
assay methodology. Detection of SNPs of adipocytokines
genes and quantification of adipocytokine expression in neo-
plastic tissues by using molecular techniques could provide
additional data for prognosis and therapeutic response [17¢e,
192, 193]. To investigate the potential association of
adipocytokines and cancer risk, adequately powered
Mendelian randomization studies employing genetic determi-
nants of adipocytokines derived from genome-wide associa-
tions studies are ideal because they circumvent confounding
of lifestyle variables and reverse causation [194—196].

Conclusion

In conclusion, this review provides evidence for a connec-
tion between classic and novel adipocytokines, and cancer.
High-throughput technologies such as proteomics and
metabolomics will identify novel adipocytokines. Further
research in basic and translational research is essential to
elucidate the ontological role of novel adipocytokines and
their interplay in cancer pathogenesis. Basic research stud-
ies are required to investigate the epigenetic regulation of
adipocytokines genes and to map out their receptors and
critical signaling pathways. More clinical longitudinal
studies are expected to determine a wide spectrum of
obesity-related biomarkers and assess their clinical utility
in cancer prognosis and follow-up. Finally, novel more
effective and safe adipocytokine-centered therapeutic in-
terventions may pave the way for targeted oncotherapy.
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