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Abstract
Purpose of review Obesity is a multifactorial disease that is now
endemic throughout most of the world. Although addressing
proximate causes of obesity (excess energy intake and reduced
energy expenditure) have been longstanding global health prior-
ities, the problem has continued to worsen at the global level.
Recent findings Numerous microbial agents cause obesity in
various experimental models—a phenomena known as
infectobesity. Several of the same agents alter metabolic function
in human cells and are associated with human obesity or meta-
bolic dysfunction in humans. We address the evidence for a role
in the genesis of obesity for viral agents in five broad categories:
adenoviridae, herpesviridae, phages, transmissible spongiform
encephalopathies (slow virus), and other encephalitides and hep-
atitides. Despite the importance of this topic area, there are many
persistent knowledge gaps that need to be resolved.
Summary We discuss factors motivating further research and
recommend that future infectobesity investigation should be
more comprehensive, leveraged, interventional, and patient-
centered.

Keywords Adenovirus . Human . Animal . Adiposity .

Infectobesity . Pawnobe . Transmissible Spongiform
Encephalopathy

Introduction

Simplistic explanations for obesity enjoy popular appeal, but
obesity is complex and multifactorial [1]. By contrast, the
germ theory of disease has faced considerable scrutiny since
it was first proposed, spurring over a century of rigorous in-
fectious disease inquiry. Likewise, the idea that infectious
agents cause obesity has also faced criticism and spurred re-
search. Thus far, numerous infectious agents have been shown
to cause experimental lab animals to gain body fat (i.e.,
infectobesity) and serologic studies have demonstrated
humans with obesity are often infected with the same agents
(Table 1). For example, substantial epidemiologic evidence
links adenovirus (Ad) 36 and obesity with over 10,000 sub-
jects in a recent meta-analysis [20]. Further investigation of
infectobesity is needed to understand the relevance of
obesogenic infectious agents in human obesity pathophysiol-
ogy, clinical obesity management, and public health.

We provide a focused overview of viruses as causative
agents of obesity including overall biological plausibility of
infectobesity, discussion of the theoretical selection benefits
for a virus that can alter host metabolism, consideration of
adipogenesis as a host adaption to infection, discourse of spe-
cific agents and mechanisms, and proposed priorities to re-
solve persistent knowledge gaps. Five viral agent categories
with varying evidence of infectobesity causality are consid-
ered: adenoviridae, herpesviridae, phages, transmissible
spongiform encephalopathies (slow virus), and other enceph-
alitides and hepatitides.

Biological Plausibility

Infectobesity is biologically plausible when considering a
pathogen’s fitness, (i.e., how well a pathogen survives and
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propagates). For instance, cytomegalovirus (CMV) repro-
grams glucose and lipid metabolism through multiple mecha-
nisms to enhance biosynthesis of the viral envelope and other
substrates for viral progeny [21, 22], and interruption of the
cellular effect via cholesterol lowering medication inhibits
production of substrates and viral particles [23]. Likewise,
Ad-5 enhances host glycolytic enzyme activity that increases
nucleotide biosynthesis for progeny [24, 25]. Similarly, gut
microbes can metabolize dietary fat into acetate, and acetate
causes rodents to eat more fat [26], which theoretically should
promote survival of microbes best suited for digesting fat.

Symbiotic host selection is also a theoretical possibility:
that is, if an obesogenic host phenotype is selected, then a
virus conferring this phenotype could be simultaneously se-
lected. Recent livestock domestication includes aggressive se-
lection for metabolic features like efficient fat gain; when an
organism (e.g., heaviest cow) is selected, some of its associ-
ated microbiota are also selected [9••]. Although there is un-
certainty about how artificial selection of livestock impacted
livestock microbiota, the proposition is not entirely theoreti-
cal. For instance, there is evidence that numerous
infectobesity agents have livestock reservoirs [9••]. By similar
logic, purposeful selection of microbes associated with obesi-
ty (or other traits) could provide an experimental model for
selecting infectobesity agents and has been described else-
where as “pawnobe” evolution [9••].

A third perspective on biological plausibility is that host im-
mune responses could be adaptive in the short term but promote
obesity risk over the long term if adipose tissue has multiple
biological functions. Although energy storage is the most visible
purpose for adipocytes (i.e., fat cells), the immunologic roles of
adipose tissue are also noteworthy. For instance, some have pro-
posed adipocytes as the origin of the adaptive immune system in
vertebrates [27]. In fact, there is evidence of plasticity between
macrophages and adipocytes bearing similar cellular markers,
sharing the same stem cell lineage, and executing similar func-
tions [28]. Macrophages enlarge as they collect and engulf path-
ogens or cellular debris during phagocytosis, and adipocytes se-
quester excess glucose and lipophilic toxins and engage in anti-
microbial functions. For instance, the presence of a pathogen
(Staphylococcus aureus) leads to acute expansion of local adi-
pose tissue (increased size and number of adipocytes) and elab-
oration of an antimicrobial peptide (cathelicidin) and experimen-
tally blocking this function made mice more vulnerable to path-
ogen invasion [29, 30]. Adipocytes also modulate immunologic
cell activity (e.g., CD4+ Tcells) via fatty acid release [31]. At the
same time, the localized benefit of expanded adipose tissue could
be outweighed by obesity risk in a chronic infection with ongo-
ing systemic inflammation. Human studies have shown obesity
is independently associated with systemic inflammation [32, 33],
and the total burden of multiple chronic infections has been as-
sociated with body fat among men [34].

Table 1 Adipogenic virus evidence summary

Adenoviridae [2•] Herpesviridae [2•, 3•, 4,
5]

Phages [6–8] TSEs [9••, 10–16] Other [3•, 17–19]

Members
with any
adipogenic
evidence

SMAM-1, Ad-5, Ad-9, Ad-31,
Ad-36, Ad-37

HSV-1, CMV, HHV8 Gut phages BSE/CJD variant,
kuru, scrapie
variants

HCV, RAV7, BDV,
CDV

Natural host
of above
members

SMAM-1: avian Others:
humans

HSV-1, CMV, HHV8:
Humans

Likely all animals with a gut
have gut phages.

BSE: cattle scrapie:
sheep kuru:
human

HCV: human, RAV7:
chickens, BDV:
horses, sheep,
CDV: dogs

Presence in
humans
reported

SMAM-1, Ad-5, Ad-31, Ad-9
Ad-36, Ad-37

HSV-1, CMV, HHV8 Yes, ubiquitous. BSE, CJD, and kuru HCV, BDV

Livestock
reservoir

SMAM-1, Ad-36: chickens Unknown Yes, ubiquitous. BSEs: cattle scrapie:
sheep

RAV7: chickens,
BDV: horses, sheep

Lipogenic
in vitro

Ad-5, Ad-9, Ad-31, Ad-36,
Ad-37 cause adipocyte
differentiation and lipid
accumulation

CMV, HSV-1 (HSV-60),
and HHV8 cause lipid
accumulation

Unknown Unknown HCVenhances lipid
synthesis, CDV
enlarges adipocytes

Adipogenic
in animals

Ad-36, Ad-37: chickens,
Ad-36, Ad-5: mice, Ad-36:
rats, marmosets

Unknown Gut phages following
risperidone treatment:
mice

BSE: primates
scrapie, CJD
variants: mice

BDV, CDV: mice,
RAV7: chickens

Human
association
observed

Ad-5 childhood obesity, Ad-36
childhood, adult obesity and
BMI, SMAM-1 BMI

CMV metabolic
syndrome
components, HSV-1
obesity in some
studies

Indirectly—adipogenic gut
microbe transfer
associated with heavier
human donor

Kuru obesity and/or
bulimia during
early disease in
humans

HCV genotype 3
insulin resistance
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Adenoviridae

Adenoviridae is the most widely investigated adipogenic viral
family. Systematic reviews and meta-analyses of human epide-
miologic data show a robust association between Ad-36 viral
antibodies [20, 35, 36] and human obesity. A systematic review
of adipogenesis evidence among Ad-5, Ad-9, Ad-31, and Ad-37
has also been published [2•]. The evidence can be divided into
laboratory, animal, and epidemiologic categories [37•].
Adipocyte progenitor 3T3-L1 cell infection with Ad-9, Ad-31,
Ad-36, andAd-37 in vitro enhances adipogenesiswithmore lipid
content, more numerous adipocytes, and/or more commitment to
an adipocyte lineage. Ad-36 is adipogenic in Colo-320 cells [38].
Ad-5 is glycolytic in epithelial cells and adipogenic in Colo-320
cells, but not 3T3-L1 cells [2•, 3•, 24, 38].

Animal experiments have demonstrated Ad-5 and Ad-36
infection cause rodents to gain body fat [39, 40], and Ad-36,
Ad-37 (compared to Ad-2), and SMAM-1 infections cause
chickens to gain body fat, but not Ad-31 infection [41–43].
Ad-36-infected chickens also transmitted an obesogenic phe-
notype to cage mates and to blood transfusion recipients [41].
Observational (natural) Ad-36 infection in non-human pri-
mates was positively correlated with weight gain in one study
that identified time of infection [44] while another small study
comparing primates with any prior exposure to Ad-36 showed
non-significant differences in body weight, but persistent dif-
ferences in glycemia [45]. Non-human primate infection with
adenovirus caused substantial increases in body fat shortly
after infection [44].

Epidemiologically, the association between adenoviridae
and obesity in humans is stronger among children with Ad-5
and Ad-36 [2•, 35, 46] while Ad-8 [2•] also had a similar trend
toward obesity among children but no association among
adults for Ad-5 or Ad-37; however, association between Ad-
36 and obesity is also present in adults in meta-analyses con-
ducted by different international groups including a combined
analysis of over 10,000 (mostly adult) subjects [20, 35, 36].
Additionally, Ad-31 has a non-statistically significant associ-
ation of similar magnitude as Ad-36 in adults, and antibody to
a non-human adenovirus SMAM-1 was associated with hu-
man body mass index in adults [2•, 47].

The mechanisms by which Ad-36 promotes adipogenesis
are known. The presence of viral protein early 4 open reading
frame 1 (E4-ORF1) is necessary and sufficient for acute
adipogenic effects [2•]. The virus activates the so-called mas-
ter-switch of adipocyte development, peroxisome proliferator-
activated receptor-γ (PPARγ), signaling adult stem cells to
become adipocytes [48, 49]. Ad-36 causes cells to express
glucose transporters (Glut4 & Glut1) by activating the Ras
pathway (upregulating phosphatidal inostitol 3-kinase) even
without insulin signaling [50–52]. Glucose transporters bring
glucose into the cell and upregulated fatty acid synthase rap-
idly converts additional glucose to fatty acids [53], meaning

adipocytes are larger and more abundant shortly after
infection.

Chronic adipogenic mechanisms are also understood as
infected cells show lower fat oxidation [2•, 54] and hormone
alterations in insulin and leptin occur [53, 55]. Leptin hor-
mone ordinarily provides negative feedback on appetite after
lipid accumulation, but infected adipocytes secrete less leptin
[53]. Insulin regulates glucose metabolism and humans with a
history of Ad-36 infection have a lower concentration of in-
sulin [55]. Additionally, Ad-36 infection causes systemic in-
flammation; a knock-out study in mice showed that an inflam-
matory protein, monocyte chemoattractant protein 1 (MCP-1),
is necessary for maintaining Ad-36-induced obesity [56].
Studies using mice with genetic deletions have demonstrated
the importance of MCP-1 and PPAR-γ for obesity and insulin
resistance in mice without infection [2•, 57], so this is also a
plausible mechanism for obesity maintenance in Ad-36 infec-
tions. This is supported by a study which showed lowering
MCP-1 with anti-inflammatory mulberry extract reduced
body fat in Ad-36 infected mice [58].

Herpesviridae

At least two herpesviridae, cytomegalovirus (CMV) and her-
pes simplex virus 1 (HSV-1), appear to be lipogenic. CMV has
been connected with several components of metabolic syn-
drome, including higher blood pressure after infection [4]
and metabolic dysfunction among the general population
without obesity [5]. In vitro, CMV alters fatty acid synthase
and other metabolic enzymes, engorging the host cell with
lipid as suggested by the name “cytomegalovirus” [3•, 21,
22]. CMV fitness is influenced by metabolic changes and
statin medication reduced the production of progeny [23].
Cross-sectional association between HSV-1 and obesity has
been identified in some studies [34, 59, 60], and there are links
between total burden of infections, inflammation, and obesity
[34, 61, 62]. One study found HSV-1 and CMVwere connect-
ed to central obesity in women, but not men, suggesting a
mechanism of chronic inflammation or other host factors
[62]. The genetic polymorphism predisposing individuals to
HSV-1 infection is associated with higher body mass, arguing
against reverse causation (i.e., genetic susceptibility to herpes
necessarily comes before obesity) [59].

In vitro evidence supports an adipogenic role for HSV-1.
The HSV60 segment of synthetic HSV-1 DNA enhances pro-
liferation of adipose cells while reducing leptin release [63],
similar to AD-36. HSV-1 also alters cellular metabolic pro-
cesses related to glucose and glycolysis [3•]. It is likely that
Kaposi sarcoma herpes virus (HHV8) is also lipogenic [3•]
in vitro, but an association with human obesity has not been
identified.
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Phages

Research has shown that the gut microbiome, including bacteria,
viruses, and other microscopic organisms, likely have a causal
influence on host body weight. A stool transfer from a heavier
human twin caused mice to gain weight [6]. The mice (like Ad-
36 infected chickens) also transferred a stool-derived metabolic
phenotype to cage mates [6]. In human adults, numerous probi-
otic formulations cause modest weight loss [64, 65] although the
quality and size of the studies were limited. Finally, several
Bacillus spp.-derived probiotics cause commercially favorable
weight gain in multiple agricultural animals [66–68].

Potential mechanisms for the microbiome to influence
weight are numerous. Whole-genome analysis at the strain
level correlated host obesity with Lactobacillus genes for ox-
idative stress and glycolysis [69]. Acetate production from
microbiota caused hyperphagia and obesity among rodents
through a parasympathetic nervous system pathway [26].
Non-specific inflammatory mechanisms similar with
adenoviridae and herpesviridae are also possible. Bacterial
translocation could contribute to low-grade inflammation: li-
popolysaccharide binding protein (translocation marker) se-
rum concentration was associated with overweight and obesi-
ty in a population-based study [70]. Additionally, a probiotic
has been shown to prevent the inflammatory infiltration of
macrophages into adipose tissue that is a feature of the persis-
tence of Ad-36 obesity in mice [56, 71].

Despite rapidly emerging causal evidence, findings are
modest, and meta-analysis of observational data shows there
are relatively weak correlations between bacterial taxa and
obesity across studies [72]. Phages are more diverse than the
bacteria they infect and represent the most numerous biologic
group known [73], and so, the stool virome could be important
in fat gain and obesity. Phage in human stools is capable of
shifting the dynamics of the gut microbial ecosystem in vivo
[73], and host stress may affect phage composition of gut
microbiota [7]. The role of phages in obesity transmission
was identified in mice which like humans gain weight after
treatment with risperidone, an antipsychotic medicine [8].
Risperidone depresses energy expenditure, inducing weight
gain in mice. Stool transplanted from risperidone-treated mice
causes transference of both weight gain and depressed energy
expenditure. Phage isolated by filtration from among gut mi-
crobes was sufficient for lowering energy expenditure and
causing weight gain in recipient mice [8].

Transmissible Spongiform Encephalopathies

Numerous transmissible spongiform encephalopathies (TSEs) exist
that transmit obesity to at least one host species [9••]. The specific
TSE agent is often described as a “prion” or “slow virus.”
Controversy exists over whether a misfolded protein or its

associated 25-nm viral particle is the transmissible agent [74].
Recent evidence using nuclease and keratinase indicates misfolded
proteins are not sufficient to transmit TSEs while nucleic acids are
sufficient; therefore, including TSEs in our discussion of viruses is
appropriate [75, 76]. This class of transmissible agent also shares
features with adenoviridae (Table 1—livestock reservoirs, primate
experiments, and human observational evidence). The neurodegen-
erative disorder Kuru is commonly associated with obesity and
bulimia in humans in early stages of disease [10]. A Creutzfeld
Jakob disease (CJD) agent variant (263 K-sc) with lower virulence
causes “extreme obesity” in mice [11], and several scrapie agents
cause hyperphagia, fat gain, and/or weight gain in some mouse
strains [12–14]. Infection with a high dose of bovine spongiform
encephalopathy has a different time course for the metabolic and
neurologic manifestations in non-human primates [15, 16]. In a
feeding study, the agent initially remained confined in the gut and
caused rapid weight gain within 1.5 years that was not seen in
controls [15]. The mechanism of weight gain appears related to
interaction between the agent and gut endocrine cells [15], but
pancreatic involvement has also been observed [16, 77], perhaps
related to a type 2 diabetes phenotype, suggesting the possibility of
endocrinemechanisms. Further, adrenalectomypreventsmice from
gaining weight with another TSE (scrapie) and infection of the
hypothalamus augments weight gain, suggesting a hormonal path-
way through the hypothalamus-pituitary-adrenal axis [14].

Fatal CJD and kuru are relatively rare in humans, and the
possibility of TSE relevance in human obesity at a population
level might be dismissed because of the prevalence of human
TSEs. However, genetic susceptibility to CJD has shown a
modeled penetrance of 0.96 after age 80, which may reflect
ubiquitous infection or a form of CJD that is not horizontally
transmitted [78]. The prevalence, incidence, and other epide-
miologic features of TSE-associated viruses are unknown in
humans. Evidence suggests neurologic manifestations are
eventually 100% with a very high dose of infectious agent
(≥5 g), but infection rates after feeding low dose agent (0.05
and 0.005 g) are less clear, perhaps because of longer incuba-
tion [16]. CJD (variant 263 K-sc) causing “extreme obesity”
in mice required a 17-times higher dose for GT1 cells to dem-
onstrate prion proteins [11], and the initial stages of primate
infection appear confined to the gut [15]. Even if these agents
are not relevant for human obesity at a population level, they
demonstrate further proof of concept with causal evidence that
infectious agents are able to cause rapid weight gain [15] and
alter host eating behavior [14].

Other Encephalitides and Hepatitides

Other known examples of viral infectobesity occur in animals
with pathogens of the brain or liver [17]. Because these organs
have numerous roles in metabolic regulation, identifying hu-
man pathogens could be important. Adenoviridae [79, 80] are
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also known to infect the liver. Hepatitis C virus (HCV) alters
cellular metabolism to upregulate fatty acid synthase and
glycolosis similar to some adenoviridae and herpesviridae
[3•]. Human studies have shown an association between
HCV, insulin resistance, and/or metabolic syndrome possibly
related to hepatic steatosis (appearing worse with genotype 3)
[18]. Other examples include the following: Borna disease
virus (BDV) infects the hypothalamus and causes obesity in
mice [17, 81]; Rous associated virus 7 (RAV7) causes obesity,
ataxia, and liver steatosis in chickens [17, 82]; and canine
distemper virus (CDV) alters brain catecholamine pathways
in mice [83] and causes enlarged adipocytes [17].

The Importance of the Infectobesity Field in More
Effective Obesity Management

Tremendous progress has beenmade in infectobesity research,
but social factors motivating the field are important consider-
ations for appropriately prioritizing future research.
Specifically, further understanding of viral etiologies could
help counter obesity bias, reinforce public health approaches,
and reinforce the value of biological science in the investiga-
tion of obesity.

First, public stigma against those afflictedwith disease is often
pervasive, particularly when there are physical manifestations
(e.g., strabismus) [84]. With obesity, there are also behavioral
causes, so bias is often more explicit. For instance, one scholar
advocated increasing social pressure on people with obesity as a
weight loss incentive [85]. However, those reporting perceptions
of stigma gain more weight [86], while a socially supportive
intervention improves hunger and eating behaviors [87].

Some suggest infectobesity sounds like a “lame excuse” for
those who struggle with their weight [88], but biologic insight
by itself should not remove the need for healthy behavior. To
the contrary, providing information about personal obesity
risk appears to increase healthy behavioral intentions regard-
less of how the causal pathway of the risk is described [89].
On the other hand, if infections were a more widely accepted
factor in the development of obesity, an attributional justifica-
tion for social stigma is reduced andmore empathy and greater
access to available treatments could follow.

Infectious etiologies of obesity also argue in favor of de-
scriptions of obesity as an “epidemic” (or pandemic/endemic),
even though these terms are often applied to characterize in-
fectious diseases. More broadly, infectious etiologies have
well established public health approaches for control. An im-
portant insight for human immunodeficiency virus treatment
was that “treatment is prevention,” suggesting that the whole
population benefits when one case is medically treated [90].
Network dynamics also appear relevant for the spread of obe-
sity, and these patterns could be used to prioritize obesity
interventions [91].

Researching viral causes of obesity could lead to greater
insight about the root causes of obesity within a biological
framework related to host and agent adaptations. While obe-
sity is multifactorial, oversimplification based on a physics-
based thermodynamic model rather than a biological model
has prevailed for over 90 years [92]. Both physics and biology
have tremendous utility, but focusing on energy balance alone
obscures the complex reasons for these behaviors and could
limit the condition to the mathematics of these behaviors.

Some have advocated more tailored treatments for obesity
subtypes that might respond differently to different treatments
[93], and this also argues in favor of finding all the underlying
etiologies, including infectious ones. Yet, current treatment of
obesity is not cause-specific [93]. A recent example of an
effective cause-specific intervention is the treatment of an
obesogenic genetic defect, proopiomelanocortin deficiency,
using melanocortin-4 receptor agonist [94] with excellent
results.

Developing targeted antimicrobial agents or vaccines
against microbes contributing to obesity could also be indi-
vidualized. Spiramycin, an antibiotic used for toxoplasma in
pregnancy [95], reduces adipogenesis in 3T3-L1 cells in vitro
by reducing PPARγ and Glut-4 and ameliorating fat gain in
mice on a high-fat diet [96]. This same pathway is activated by
Ad-36, and this agent could be investigated as a targeted ther-
apy for addressing obesity associated with viral infection.

Frameworks and Future Studies

Future investigation into infectobesity research gaps should
carry a high priority. Several frameworks have been proposed
to understand the causal role of infectious agents in human
disease. Koch’s postulates from 1890 still provide useful
criteria for determining causal inferences, and some agents
meet some of these postulates. However, in multifactorial dis-
eases like obesity, it is unlikely that a single infectious agent is
solely responsible for obesity. Any uninfected group used for
comparisons may still develop obesity due to other contribu-
tors, including other microbes. Using pathogenic viruses to
unequivocally determine causality in humans is generally im-
permissible from an ethical perspective (vaccine trials could
be an exception).

In 2011, Dhurandhar proposed a more accommodating
framework for identifying putative obesogen agents based
on Ad-36, where three evidence categories (in vitro, animal,
and human epidemiology) are used to draw obesogenic infer-
ences [37•]. The framework is a valid starting point, and this
review has focused on evidence from each of these three tiers
for each category of virus reviewed. Since 2011, it has become
clear that human epidemiology studies on this topic are diffi-
cult to interpret when considering a single virus in a randomly
selected cohort for numerous, empirically supported reasons:
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& Infection with one virus is non-randomly related to infec-
tion with other viruses because of co-infections, cross re-
activity, host resistance, confounding, and/or other factors

& Many important adipogenic viruses likely have not been iden-
tified; only a handful of over 60 adenoviruses have been inves-
tigated, and many of the uninvestigated viruses are genetically
similar and common in seroepidemiology studies [2•].

& Serostatus is not necessarily maintained over time, which
has been documented for Ad-36 [97], so those without
antibody at a given time point might still have had prior
infection.

& Site and route of infection appear to make a difference in
host phenotype for numerous infectious agents, and there
is evidence they also matter for adipogenic viruses [14].

& Host factors appear to play a role in response to infection
as empirically demonstrated using meta-regression on the
association between Ad-36 and obesity among children
and adults [20, 35]. Although significant in both popula-
tions, the magnitude of association is stronger in children
(odds ratio [OR]=2.3, p<0.001 vs. OR=1.8, p=0.005)
[20]. Insulin is involved in weight gain and weight loss,
and a causal change in insulin sensitivity would be expect-
ed to promote weight gain in a naturalistic setting while
promoting weight loss during a diet. Such an interaction
by dieting status would be consistent with several empiric
observations in longitudinal Ad-36 studies [55, 98, 99].

& There is high risk that the “Rose paradox” could play a
role in observations at a population level because of host-
agent interactions. That is, an individual might experience
an inflammatory response to a particular virus and develop
obesity even if the particular viral strain is not the most
common cause of inflammation (or obesity) throughout
the population.

These limitations suggest the need for carefully designed
research with probative value [100]. To advance the field at a
faster rate, we propose four specific priorities to make
infectobesity research more comprehensive, leveraged, inter-
ventional, and patient centered.

Several new technologies exist that could enable more com-
prehensive assessment of potentially adipogenic agents, includ-
ing metagenomic (agnostic) methods of next-generation se-
quencing and comprehensive virome characterization based on
synthetic proteins [101].Meta-genomics are necessary to identify
phage, and thus far, we are not aware of any comprehensive
assessment of phage and obesity correlation. Only within the last
3 years has meta-genomics characterized one of the most abun-
dant biologic agents within the gut microbiome [102]. This tool
could be applied to investigate agents in tissues outside the gut
(e.g., liver, brain, or adipose tissue). Outcomes should also be
assessed comprehensively as there can be beneficial or harmful
adipogenic agents. For instance, E4-ORF1 may have beneficial
properties for glucose disposal [50].

Other resources could also be leveraged such as emerging
bioinformatics tools. We have previously leveraged pattern
recognition to prioritize future investigation [2•]. Molecular
basic research shows Ad-36 E4-ORF1 is necessary and suffi-
cient for an adipogenic effect, and a public database (e.g.,
NCBI Blast) can be used to identify other viruses with nucleic
ac id homology for th is gene . Compar ison wi th
seroepidemiology of adenoviruses allowed us to identify the
agents with a similar gene and an abundant prevalence in
population level studies. Likewise, bioinformatic tools may
also predict tissue tropism, glycolytic/lipogenic genes, and
inflammatory host response among common chronic viruses
so that a more comprehensive catalog of potential adipogenic
viruses could be identified and empirically validated.

Stronger causal inferences are possible with interventional
studies and can be accomplished with emerging observational
designs that incorporate an element of randomization [103],
fully randomized platform trials [104], or traditional random-
ized clinical trials of vaccines. Even if many viruses contribute
to obesity, recent vaccines have used polyvalent antigens (e.g.,
9-valent HPV vaccine [105]) to create broad immunity. DNA
viruses like adenoviruses in particular are readily vaccine pre-
ventable [106] since they have relative genomic stability [107]
and a bivalent oral vaccine induced antibody with some cross
protection to multiple adenovirus strains [108]. We proposed
iterative selection and transfer of whole compartments of mi-
crobes to germ-free hosts in a process called pawnobe evolu-
tion [9••], which could allow causal inferences because trans-
fers are interventions. With each transfer, any microbes within
the compartment that confer an extreme phenotype should be
selected and refined over time, and inferences about the mi-
crobial genetic changes responsible for these host traits could
also be investigated as the microbes evolve.

Finally, future studies should be more patient centered.
Many fields make progress after there is sufficient public in-
terest in at least one application from the research. Some ev-
idence suggests Ad-36 testing could help tailor a diet inter-
vention because the Mediterranean diet is known to be more
effective among the infected [98]. Similarly, gut microbe char-
acterization has been used to tailor dietary recommendations
with some utility [109]. Anti-inflammatory mulberry extract
has been successful in treating mice with Ad-36 obesity, and it
could plausibly counteract numerous sources of inflammation
[58]. Combining a rigorous interventional design as described
above with an anti-inflammatory therapy could provide faster
translation to the patient than other novel basic science
discoveries.

Conclusions

Overall, there is progress and persistent knowledge gaps in the
infectobesity field. The theoretical and empirical support for
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the biological plausibility of infectobesity has strengthened.
There are shared patterns emerging with the five main catego-
ries of agents including inflammatory and endocrine pathways
in the liver and adipose tissue. Additionally, the priorities for
future investigation are becoming clearer. Focusing on early
clinical interventions could expand the interest and opportu-
nities for investigating the many questions related to
infectobesity, while human epidemiology comes with numer-
ous limitations.
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