Curr Obes Rep (2012) 1:9-15
DOI 10.1007/s13679-011-0005-4

ETIOLOGY OF OBESITY (D ALLISON, SECTION EDITOR)

Chronobiological Effects on Obesity

Molly S. Bray - Martin E. Young

Published online: 17 February 2012
© Springer Science+Business Media, LLC 2012

Abstract The development of obesity is the consequence of
a multitude of complex interactions between both genetic
and environmental factors. It has been suggested that the
dramatic increase in the prevalence of obesity over the past
30 years has been the result of environmental changes that
have enabled the full realization of genetic susceptibility
present in the population. Among the many environmental
alterations that have occurred in our recent history is the
ever-increasing dyssynchrony between natural cycles of
light/dark and altered patterns of sleep/wake and eating
behavior associated with our “24-hour” lifestyle. An exten-
sive research literature has established clear links between
increased risk for obesity and both sleep deprivation and
shift work, and our understanding of the consequences of
such dyssynchrony at the molecular level is beginning to
emerge. Studies linking alterations in cellular circadian
clocks to metabolic dysfunction point to the increasing
importance of chronobiology in obesity etiology.
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Introduction

The dramatic rise in obesity prevalence among both adults and
children is one of the most profound public health issues of
our time and one that has now become a worldwide concern.
Obesity is a multifactorial condition with a strong genetic
basis, with body mass index (BMI) having one of the highest
heritabilities (45% to 60%) of any quantitative trait [1].
Through historical accounts and paintings, there is evidence
that a genetic susceptibility for severe obesity has existed
throughout human history, albeit this phenotype has occurred
rarely until very recently. Although a sharp increase in obesity
prevalence in the United States has been documented begin-
ning in the early 1980s, recent estimates indicate that the
positive shift in the distribution of BMI may have actually
begun much earlier (ie, early 20th century) [2]. Importantly,
the upward trend in BMI through the 20th century, although
generally gradual, has been punctuated by distinct increases
following significant environmental events (e.g., subsequent to
World Wars I and II), coincident with increased industrializa-
tion that resulted in dramatic alterations in lifestyle [2]. These
observations suggest that environmental factors may interact
with and/or exacerbate genetic susceptibility to profoundly
influence obesity prevalence.

Central to the development of obesity is a basic imbal-
ance between energy intake and energy output—one must
eat to become obese, and physical activity can potentially
offset the consequences of overeating. But although it is
often assumed that this imbalance results from volitional
food intake and/or physical activity/inactivity, we now know
that a number of factors likely exert subtle effects on
metabolism, behavior, and response to environmental stres-
sors, all of which can influence obesity outcomes. In a
review of the putative “nontraditional” environmental factors
(i.e., not related directly to physical activity or food intake)
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influencing the development of obesity that have occurred in
the last 20 to 30 years, McAllister et al. [3+¢] include sleep debt
as one of 10 key contributing components. Both experimental
and observational studies of animals and human have provid-
ed evidence that sleep deprivation is strongly associated with
insulin resistance, increased hunger, alterations in hormones
and adipocytokines, and reduced immune response [4-S8].
Sleep deprivation, sleep apnea, and shift work (a form of
altered sleep and circadian behavior) are also strongly associ-
ated with increased risk for obesity, type 2 diabetes, cardio-
vascular disease, and cancer [9-18]. In a multivariate analysis
of predictors of overweight/obesity in the Quebec Family
Study, Chaput et al. [10] reported that short sleep duration
(<6 h), low calcium intake, and highly disinhibited eating
patterns were significantly associated with both obesity status
at baseline as well as weight gain over time, after adjusting for
age, gender, socioeconomic status, and other risk factors,
supporting the notion that factors beyond those centered
around physical activity and diet may be important determi-
nants of long-term energy balance. For a comprehensive re-
view of the epidemiologic and experimental evidence linking
sleep alterations to obesity, see McAllister et al. [3¢°].

The Molecular Circadian Clock

Although the relationship between altered sleep/wake behavior
and many common metabolic diseases has been solidly estab-
lished, the molecular mechanism linking the two is only be-
ginning to be elucidated. Organisms on Earth evolved within
the environmental context of a 24-hour day, and most organ-
isms examined to date have developed intrinsic mechanisms to
optimize their physiology to the 24-hour daily cycle of light
and dark. Chronobiology refers to this natural phenomenon of
rhythmicity in bodily function coincident with light/dark
cycles. For example, rhythms in heart rate, blood pressure,
core body temperature, and cortisol have been observed across
multiple mammalian species. These rhythms are controlled in
large part by circadian clocks, intrinsically maintained molec-
ular transcriptional mechanisms that serve to condition the
organism to changes in its environment [19, 20].

Early studies of rhythmic behavior in rats established the
existence of the suprachiasmatic nucleus (SCN), located with-
in the hypothalamus, as a central neural regulator of adrenal
rhythmicity [21]. Complete ablation of the SCN in neonatal
rats was later shown to abolish circadian rhythms in sponta-
neous locomotor activity, drinking, and estrous cycling, estab-
lishing the SCN as the primary center of gross circadian
regulation [22]. The SCN is entrainable by light and serves
to synchronize physiologic function to the natural daily cycles
of light and dark [23]. At the heart of the molecular circadian
clock are two genes, Clock (circadian locomotor output cir-
cuits kaput) and Bmall (brain-muscle arnt-like 1), which
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dimerize to form the core of a dual-feedback loop system that
comprises the primary circadian clock machinery [24, 25].
Together, the CLOCK:BMALI dimer facilitates the transcrip-
tion of the period (perl, per2, and per3), cryptochrome (cryl
and cry2), and rev-erb a (rev-erba) genes, the primary com-
ponents of the negative feedback loops. BMALI regulates the
transcription of both the Clock and Bmall genes to form the
positive feedback loop within the molecular circadian clock
[26-28]. The basic circadian clock structure is depicted in
Fig. 1. We now know that the mammalian circadian clock is
composed of an expanding list of core proteins that generate a
series of feedback loops, resulting in rhythmic expression of
clock components as well as downstream target genes [29].
These discoveries have been a major breakthrough in our
understanding of the molecular basis of cellular circadian
function.

Of equal importance to the establishment of the SCN as a
central “master regulator” of circadian physiology was the
discovery that an intact, cell-autonomous and self-sustained
circadian clock mechanism is expressed in almost every mam-
malian cell type examined to date [30]. Both peripheral and
central circadian clocks act in concert to maintain behavioral
and biological rhythms linked to the 24-hour light-dark cycle
and both are essential to health. Cellular clocks have been
shown to regulate metabolic and physiologic processes at the
whole body, organ, and cellular level, including sleep-wake
cycles, locomotor activity, body temperature, hormone secre-
tion, metabolism, and innate immune responses. The rhyth-
micity imposed by these clocks confers biological advantage
by anticipating both environmental and internal changes, so
that cells (and organisms) can efficiently program their phys-
iologic tasks and prepare for them [31]. Clocks are reset or
entrained on a daily basis by zeitgebers, environmental cues
such as light, food, noise, and/or neurohumoral factors that are
likely specific to each target tissue and provide information
about the external time [28, 32, 33].

Circadian Clocks and Obesity

In terms of obesity susceptibility, studies of the seasonal
variability in adiposity that occurs in many mammalian
species serve to illustrate that fluctuations in body weight
associated with changes in the light/dark cycle occur natu-
rally, independent of the societal and behavioral constraints
present in humans, suggesting a global role for the circadian
clock in regulating body weight. Molecular circadian clocks
may provide the critical mechanistic link between epidemi-
ologic observations associating altered daily rhythms result-
ing from shift work and sleep disturbances to alterations in
adiposity and body weight. One of the first lines of evidence
that disruptions in cellular clock function may lead to obe-
sity was provided by Turek et al. [34] who described the
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Fig. 1 Basic structure of the
cellular circadian clock
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metabolic phenotype of the Clock”’’ mutant animals.

Clock®" mutant mice, in which circadian clock function
is disturbed via a dominant-negative mutation that elimi-
nates the transactivation domain of the CLOCK protein, are
significantly heavier, have altered patterns of feeding, and
are hyperphagic. In addition, these animals have 24-hour
hyperlipidemia, hyperglycemia, and hyperleptinemia, and
display altered diurnal patterns of physical activity, expend-
ing a greater proportion of daily energy during times when
the animals are normally sleeping [34]. Interestingly, global
disruption of Bmall results in a markedly lean phenotype,
with decreased subcutaneous adipose and muscle tissue
mass, defective glucose homeostasis, and reduced life span
[35-37]. These observations provide evidence that global
clock disturbances at the molecular level can lead to altered
adiposity and metabolic disorders. Among the putative
mechanisms linking the circadian clock to obesity, altera-
tions in adipogenesis, satiety signaling, and energy metabo-
lism have all been associated with circadian regulation.

Adipogenesis

One potential mechanism linking molecular clock disruption
to increased adiposity/disturbed metabolism is the regulation
of adipogenesis, which appears to be due at least in part to the
adipocyte circadian clock. Within adipose tissue, 650 genes
have been identified via microarray analysis that are robustly
expressed in a rhythmic manner across multiple (epididymal,
inguinal, and brown) types of adipose tissues, including core
circadian clock genes [38]. Among the rhythmic genes
expressed in adipose are peroxisome proliferator-activated
receptor-y (Pparg) and CCAAT/enhancer binding protein-[3
(Cebpb), two important initiators of adipocyte differentiation,
suggesting a putative time dependency of fat cell formation.
Shimba et al. [37] reported that BMALI, a core clock com-
ponent, is also a potent initiator of adipogenesis. Fibroblasts
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from Bmall knockout animals failed to differentiate in vitro,
and this failure was reversed via adenovirus-mediated transfer
of intact Bmall. In these experiments, genes related to lipo-
genesis were stimulated in a BMALI1-dependent manner,
and overexpression of BMALI in 3T3-L1 adipocytes in-
creased lipid synthesis activity [37]. More recently, these
investigators have shown that the inability to form adipose
tissue in Bmall”" mice leads to ectopic lipid formation in liver
and skeletal muscle, along with elevated plasma triglycerides,
free fatty acids, and cholesterol, providing a direct link be-
tween clock-regulated adipogenesis and the development of
metabolic syndrome [39]. In addition to Bmall, another core
clock gene, Rev-erba, has been shown to act as a key repressor
of anti-adipogenic genes, and to act downstream of other
differentiation factors, including Pparg and Cebpa [40]. Noc-
turnin (noc), a circadian-regulated protein associated with re-
sistance to diet-induced obesity and altered adiposity, has also
been demonstrated to bind to Pparg and markedly enhance
Pparg transcriptional activity [41, 42]. Together, these obser-
vations suggest a potential time-of-day dependency for adipo-
cyte formation, with circadian clock genes either directly or
indirectly regulating this process.

Food Anticipatory Behavior and Satiety Signaling

Among the strongest entraining influences for circadian
clocks in peripheral tissues is the timing of feeding [43,
4471; whether and how circadian clocks in turn regulate
feeding initiation and satiety signaling has been the subject
of some controversial findings. Food-anticipatory rhythms
(i.e., the anticipation of food availability when food is
restricted or presented at certain times of the day) persist
following complete SCN ablation, suggesting that the cen-
tral circadian regulator of food intake and food entrainment
lies outside the SCN [45]. Fuller et al. [46] reported that
food-anticipatory rhythms, which are absent in Bmall™
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mice, can be rescued with cell-specific restoration of Bmall
expression in the dorsomedial hypothalamus (DMH). Nev-
ertheless, Moriya et al. [47¢] reported that, although clock
genes are expressed in DMH cells and exhibit a daily
rhythm of expression that is set by mealtime and persists
during food deprivation, food-entrained rhythms of behav-
ior, temperature, and clock gene expression in brainstem and
forebrain areas are unaffected by DMH ablation. More
recently, it has been suggested that because lesions of spe-
cific hypothalamic, corticolimbic, and brainstem structures
do not eliminate all food anticipatory rhythms, circadian
regulation of food-anticipatory behavior is likely controlled
by a distributed, interconnected system of oscillators
entrained by fluctuations in different humoral signals [48,
49]. Hypoglycemia preceding feeding anticipation may be
one means of central regulation of food anticipatory behav-
ior, since control of rhythmicity in glucose metabolism by
the SCN has been well established [50-52].

Multiple complex and redundant pathways influence feed-
ing behavior and include components arising from both the
hypothalamus and peripheral tissues. Leptin, an adipocyte-
specific cytokine and central regulator of both appetite and
energy balance, exhibits striking circadian patterns in both
gene expression and protein secretion, with peaks in leptin
expression occurring during the sleep phase [53, 54]. Ghrelin,
a powerful initiator of feeding behavior arising from the
gastrointestinal tract, exhibits a reciprocal rhythmic expres-
sion pattern to that of leptin, and it has been suggested that
preservation of the temporal relationships between these two
factors may be critical in maintenance of energy balance [55].
Ablation of the SCN in animals completely eliminates the
diurnal pattern of plasma leptin levels but neither timing of
feeding nor adrenalectomy affect the rhythmicity of leptin
release, suggesting some level of regulation by the central
circadian clock [54, 56]. Peripheral clocks or some other
peripheral mechanism rather than the central clock may play
a more important role in regulating feeding behavior [55, 56].
Leptin receptors are expressed in areas of the brain that also
express additional factors influencing both feeding behavior
and energy metabolism, including neuropeptide Y (Npy),
agouti-related protein (4grp), proopiomelanocortin (Pomc),
cocaine and amphetamine-related transcript (Carf), orexin
(Ox), ghrelin (Ghri), and others [57-59]. Clock™!® mutant
mice exhibit altered food intake patterns, and rhythmic ex-
pression of Cart, Ox, and Ghrl is greatly attenuated in these
animals [34].

Energy Homeostasis and Metabolism
The maintenance of energy balance is influenced by a com-
plex metabolic system involving multiple cell types (e.g.,

enterocytes, hepatocytes, adipocytes, myocytes, etc.)
performing discrete and overlapping functions, including
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absorption, digestion, and substrate utilization, synthesis,
and turnover. A substantial body of research has decisively
established a link between both central and peripheral cir-
cadian clocks and metabolism [60, 61]. Hoogerwerf et al.
[62, 63] report that circadian clock genes are robustly
expressed throughout the gastrointestinal tract and that
timed feeding can dramatically shift intestinal clocks, sug-
gesting a putative role for the gastrointestinal circadian
clock in regulating motility, cell proliferation, and migra-
tion. The capacity for both lipolysis and lipogenesis varies
throughout the 24-hour day, and such capacity can be al-
tered via manipulations of the light/dark cycle and period
length [64, 65]. We and others have demonstrated rhythmic
patterns in lipid metabolism in multiple tissues, such that
factors that promote lipid utilization are highest upon wak-
ing, and factors that promote lipid storage are highest im-
mediately prior to sleeping [66¢, 67]. These observations
suggest that energy balance may be critically dependent
upon synchronization of macronutrient intake to metabolic
rhythms.

To address the question of whether altering the timing of
ingestion of specific types of macronutrients to specific
times of day would differentially impact energy balance,
we conducted a series of experiments in which we compared
animals fed either a high-fat meal upon waking combined
with a low-fat meal prior to sleeping or a low-fat meal upon
waking combined with a high-fat meal prior to sleeping
[68]. Two striking findings resulted from these experiments.
First, animals fed either high-fat or low-fat food (but not
mixed combinations of these foods) only during the normal
12-hour waking period (lights off for these nocturnal ani-
mals) did not differ in body weight, body fat, or any meta-
bolic parameter measured; this is in stark contrast to ad
libitum feeding in which animals fed high-fat diets were
heavier, fatter, and showed significantly poorer metabolic
profiles compared with animals fed low-fat diets [68]. These
observations suggest that uniform diets ingested during
appropriate times of the day do not promote obesity.

The second important observation from these studies was
that animals fed daily “meals” of mixed composition only
during the normal 12-hour waking period (eg, a waking
high-fat meal combined with a low-fat meal prior to sleep-
ing or vice versa), simulating human patterns of eating,
demonstrated significant differences in body weight, body
fat, and glucose tolerance, with a high-fat waking meal
combined with a low-fat meal later in the waking period
associated with significantly better metabolic outcomes
[68]. Interestingly, the high-fat waking meal seemed to
promote metabolic flexibility (ie, appropriate switching
from fat to carbohydrate metabolism in response to the food
being eaten throughout the day), whereas a low-fat, high-
carbohydrate waking meal was associated with rapid initia-
tion of carbohydrate metabolism that persisted throughout
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the waking period, even when the animals were eating the
high-fat meal. Although these studies need to be replicated
in humans, they suggest that coordination of food intake
with natural fluctuations in substrate metabolism may play
an essential role in energy balance. The studies described
above support the importance of eating a daily breakfast and
limiting caloric density at the end of the waking period.
Certainly, a dietary regimen based on timing of food intake
rather than restriction of food intake may ultimately be a
more tolerable approach for losing or maintaining body
weight.

Which Came First?

Although substantial evidence suggests that disruptions in
circadian clocks and/or dyssynchrony with the diurnal
rhythms of light and dark can lead to obesity and related
comorbidities, some studies suggest that obesity itself can
disrupt circadian clocks. Obesity is associated with altered
sleep patterns and obstructive sleep apnea, and because
circadian rhythms in sleep-wakefulness are controlled pri-
marily by the SCN, obesity-associated sleep disturbances
have the potential to disrupt central circadian rhythms [69].
Numerous studies have demonstrated that obesity induced
through high-fat feeding in animals is associated with al-
tered rhythms in both core circadian clock genes as well as
clock-regulated genes [38, 70, 71]. Studies in humans have
reported lower amplitude of peak leptin release and delayed
phase of peak plasma leptin levels in obese versus lean
subjects [54, 72, 73]. Nevertheless, Ando et al. [74¢] have
recently reported that 0ob/ob mice, which completely lack a
functional leptin gene and ultimately develop obesity via
hyperphagia and altered basal metabolism, demonstrate al-
tered expression of circadian clock genes in peripheral tis-
sues as early as 3 weeks of age and prior to the development
of overt obesity, suggesting that altered regulation of leptin
rhythmicity may be a critical component of circadian clocks
disturbances associated with obesity [74¢].

Conclusions

A substantial and growing body of research has established
clear links between the development of obesity and altered
circadian behavior and function. At the epidemiologic level,
circadian disturbances resulting from shift work and/or sleep
manipulation have consistently been associated with increased
risk for obesity and related comorbidities. As we expand our
knowledge of cellular circadian clocks at the molecular level
and begin to unravel the ways in which cellular circadian
clocks coordinate metabolism and energy balance, a mecha-
nistic understanding of these epidemiologic associations is

emerging. The burden of obesity is a worldwide concern,
and it is certain that we must find new ways to tackle this
problem. We live in a 24-hour environment, where we can
literally eat, work, shop, play, exercise, and perform any
number of tasks 24 h a day, 7 days a week. Devices such as
smart phones and related technology keep us continually
connected to global events, and it is not surprising that average
sleep duration continues to decrease [75]. There is evidence
that daily behavioral patterns of eating and sleeping that are
dyssynchronous with natural cycles increase risk for the de-
velopment of metabolic disease; as such, this is an important
area to target for intervention. New insight into how patterns
of eating and physical activity behavior may be optimized to
improve concordance between fluctuations in metabolism and
these behaviors may lead to more efficacious strategies for
weight loss and weight maintenance.
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