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Abstract
In this study, we introduce a logistic model for the delivery of small parcels to a set 
of service points (SPs), and we present effective methods for solving it. In the tradi-
tional delivery model, each recipient specifies a single location at which they wish to 
receive the parcel; however, when SPs are used, many recipients may have no strong 
preference among several locations, e.g., near the recipient’s home address, near the 
recipient’s office, or in the recipient’s favorite shopping mall. If some recipients are 
flexible and willing to provide the sender with more than one delivery location, it is 
possible to perform the delivery task at lower cost and within a shorter amount of 
time. Our solution methods are based on the concepts of the savings heuristic, the 
petal method and tabu search with a large neighborhood. An extensive numerical 
study is conducted to evaluate our solution methods and demonstrate the benefits 
of our model compared to the traditional nonflexible one. We also present a simula-
tion study to demonstrate that our model can be adapted to a stochastic and dynamic 
environment.

Keywords  Last mile delivery · Vehicle routing · Automated parcel lockers · Mixed-
integer programming · Heuristics

1 � Introduction and literature review

This paper addresses the last leg of the delivery process for small parcels, i.e., 
from a regional depot to the recipient. This leg is responsible for a significant 
share of the costs in the parcel delivery industry (Goodman 2005). One method 
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to reduce these costs is by delivering parcels to recipients through local service 
points (SPs) located near the recipients instead of bringing each parcel directly 
to the recipient’s address. These SPs may be either staffed facilities, such as 
post offices and grocery stores, or self-service facilities, such as automated par-
cel lockers. Cost savings are achieved through the consolidation of shipments to 
fewer locations, avoiding the need for time synchronization between the couriers 
and recipients and eliminating the time-consuming task of locating the recipi-
ents’ addresses (Faugere and Montreuil 2017). From the recipient perspective, 
receiving parcels at SPs rather than at home may be less convenient, but the cost 
savings may translate into lower shipment tariffs. Moreover, for some recipients, 
avoiding the need to synchronize with the courier may be desirable.

Using the shipment data of a courier company operating in West Sussex in the 
United Kingdom, Song et al. (2009) found that the use of staffed SPs instead of 
home delivery significantly reduced travel costs and the average delivery time. 
The policy of this company is to call recipients to ask them to collect their parcels 
from the depot if they are not available to receive their parcels at home. Under 
this policy, the mean travel distance of the recipients is also reduced since the SPs 
are generally located much closer than the depot.

The use of SPs for parcel delivery is gaining popularity in Europe and the US. 
For example, in France, as of 2014, more than 20% of parcels were already being 
delivered to SPs in stores (Morganti et al. 2014). It is probable that the share of 
automated and staffed SPs has increased since then.

An automated parcel locker system (APLS) is a parcel collection service that 
allows customers to have their parcels delivered to SPs and pick them up at any 
time of day using digital pickup codes. The use of automated service points may 
further economize the delivery process since automated SPs are available 24/7 
and lines are less likely to form at automated SPs than at attended facilities. Such 
services are provided by many mail and courier companies, e.g., Amazon Locker 
in the US, BoxIt in Israel and DHL PackStation in Germany. Each SP hosts lock-
ers of various sizes and a terminal that is used by the courier and recipients to 
deposit and collect parcels. The SPs are typically located on public premises, such 
as at gas stations or public transit stations. The increasing popularity of APLSs is 
creating opportunities for more efficient distribution models for small parcels.

In this paper, we introduce a logistic model for parcel distribution that is 
well suited for APLSs and present effective methods for solving it. An extensive 
numerical study is conducted to evaluate these methods and demonstrate the ben-
efits of the proposed logistic model compared to traditional methods.

In traditional delivery models, each recipient specifies a single location at 
which to receive his or her parcel. However, when an APLS is used, many recipi-
ents may have no strong preference among several delivery locations; for exam-
ple, a recipient may have equally convenient access to three different SPs along 
his or her commuting route from work to home if the parcel is delivered during 
the day or to another SP at walking distance from his or her home if the parcel is 
delivered in the evening. If some recipients are flexible and willing to provide the 
sender with more than one possible delivery location, then the delivery task can 
be completed at lower cost and within a shorter time.
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The goal of this study is to formulate and solve a parcel delivery model for deter-
mining the number of vehicles and their routes and assigning parcels to vehicles and 
destinations. We refer to this model as the flexible parcel delivery (FPD) problem, 
which is defined as follows. We are given a set of parcels, initially located at a cen-
tral facility (depot), and a set of SPs, each with a specific capacity. Each parcel is 
characterized by a set of possible destination SPs, a size and a penalty for failing to 
deliver it during the next shift. Such penalties can be updated over time to represent 
the urgency of each parcel. The parcels are distributed using an unlimited fleet of 
vehicles with identical capacity. The travel time and cost of travel between each pair 
of locations are given. In addition, there is a fixed handling time per parcel, which 
represents the time that is required to unload a parcel from a vehicle at an SP. A 
solution to the problem consists of a set of tours for the vehicles that visit each SP 
at most once, and a set of assignments of parcels to vehicles and destination SPs. A 
feasible solution must satisfy the capacity constraints of the vehicles and SPs as well 
as a shift length constraint that considers both the travel and handling times. The 
objective is to minimize the total travel cost, the total vehicle cost, and the sum of 
the penalties due to undelivered parcels.

In this paper, we focus on an extension of the problem in which the SPs and vehi-
cles are divided into lockers and cells, respectively, of specific sizes. Each locker or 
cell may contain at most one parcel at a time. The solution specifies a set of assign-
ments of parcels to lockers and cells, in which each parcel can be assigned only to 
a locker and cell of compatible size (i.e., one that is at least as large as the parcel).

The rest of the paper is organized as follows. In Sect. 2, we review the relevant 
literature and identify the gap closed by the current study. In Sect. 3, a detailed defi-
nition and mathematical formulation of the FPD problem are presented. In Sect. 4, 
our solution methods for this problem are introduced. In Sect. 5, a numerical experi-
ment conducted to test our solution methods is reported. It is shown that flexibility 
makes the delivery process more efficient. In Sect. 6, to strengthen our conclusions 
from Sect. 5, we demonstrate how our model can be used in a multiperiod, dynamic 
and stochastic setting by applying it in a rolling horizon scenario and allowing the 
users to redefine their sets of possible destinations if their parcels were not delivered 
during the current period (shift). In Sect. 7, some concluding remarks and directions 
for further research are presented.

2 � Literature review

The FPD problem is a vehicle-routing problem (VRP). Vehicle routing is a fun-
damental task for many private and public organizations. It is crucial for shipping 
goods in a cost-effective manner and for local transport within a factory or ware-
house building. Effective and efficient vehicle routing may also have economic and 
environmental effects: shorter routes for vehicles of higher capacity reduce pressure 
on the road infrastructure, improve traffic flow, and contribute to decreasing the neg-
ative externalities of transportation.

VRPs involve optimizing routes for a fleet of vehicles that need to transport 
goods, passengers, etc. For extensive reviews and classification of VRPs, see Golden 
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et al. (2008), Drexl (2012) and Toth and Vigo (2014). There are several VRP vari-
ants that share certain characteristics with the FPD problem. The classic variant has 
a single objective and is concerned only with minimizing the total cost or length 
of all routes when visiting all customers subject to vehicle capacity or route length 
constraints. This capacitated vehicle-routing problem (CVRP) was first introduced 
by Dantzig and Ramser (1959). An overview of the CVRP can be found in Laporte 
et al. (2000). The addition of distance constraints to the CVRP yields the distance-
constrained CVRP (DCVRP, Laporte et al. 1984). Constraints can be used to limit 
the distance, duration or cost of the routes.

A scheduling–routing–loading model with customer capacity constraints was 
addressed by Reyes et  al. (2007). These constraints are the basis of the customer 
capacity vehicle-routing problem (CCVRP), and they limit the number of vehicles 
that can be at a given location at the same time.

The multivehicle covering tour problem (m-CTP) introduced by Hachicha et al. 
(2000) is defined by a set of locations V  that the vehicles can visit and a set of loca-
tions W that should be served. Each w ∈ W is associated with one or more v ∈ V  , 
and the goal is to find a set of m minimum-length tours through elements of V  that 
cover all elements of W . The flexibility aspect of the FPD problem is captured 
by this model when V  is the set of SPs and W is the set of parcels that should be 
“covered”.

Ghiani and Improta (2000) introduced the generalized VRP (GVRP), in which a 
fleet of vehicles serves a set of customers who are divided into clusters. Each clus-
ter is visited exactly once by only one of the vehicles. A customer can be served 
when a vehicle visits any of the customers in that customer’s cluster. The vehicles 
are capacitated, and each cluster has its own demand. The objective is to find a min-
imum-distance set of routes that allows all customers to be served. In this model, 
the destination flexibility stems from the fact that the planner needs to choose only 
one location in each cluster to visit. Biesinger et  al. (2018) introduced a genetic 
algorithm combined with a solution archive for solving the generalized VRP with 
stochastic demand at the customers. Miranda et  al. (2018) extended the general-
ized VRP to a bi-objective problem that also considers the costs of delivering the 
goods to their destinations within each cluster. Their model considered only a single 
vehicle.

Another variation is the vehicle-routing problem with profits (VRPP), which 
shares components of the objective function with our FPD problem. Unlike the 
CVRP, the VRPP is characterized by a profit value associated with each customer; 
the objective is to maximize the total net profit from the visited customers after 
travel costs (Archetti et al. 2014). Equivalently, it is possible to associate a penalty 
with each customer who is not visited and to formulate the objective as the minimi-
zation of the sum of the travel costs and penalties.

Most VRPP studies have examined variations of the single-vehicle case, also 
known as the traveling salesman problem (TSP) with profits (Feillet et al. 2005), the 
orienteering problem (Golden et al. 1987; Vansteen et al. 2011), the selective TSP 
(Laprote and Martello 1990) and the prize-collecting TSP (Balas 1989).

The team-orienteering problem (TOP) is a well-studied version of the multivehi-
cle generalization of the VRPP. The TOP includes a set of geographically scattered 
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customers, each assigned a profit value. Each vehicle must visit a subset of custom-
ers within a given time limit. The objective is to maximize the collected profit while 
satisfying the time limit for each vehicle (Archetti et al. 2007).

In the well-studied traveling purchaser problem (TPP), given a list specifying 
the products and quantities required, a purchaser must find a purchasing plan that 
exactly satisfies the product demand by visiting a subset of suppliers on a unique 
tour. The model contains flexibility in the selection of the supplier for each prod-
uct. The objective of the purchaser is to minimize the combined travel and purchase 
costs. The problem combines supplier selection, route construction and product pur-
chase planning. This problem dates back to the 1960s, and more recent multivehicle 
variations also exist. For a review of the state of the art in TPP research, see Man-
erba et al. (2017).

Raviv et al. (2013) modeled a VRP variant in a bike-sharing system—the static 
bicycle repositioning problem (SBRP). In their model, they included the time 
needed to load and unload bicycles on and off vehicles (handling time), vehicle 
capacity, station capacity, and route time limits. This problem is a type of inventory 
routing problem in which the decisions are which customers to visit and when as 
well as how many goods to deliver to each. The goods are not identified by specific 
destinations. See Moin and Salhi (2007) for an overview.

Reyes et  al. (2017) studied the vehicle-routing problem with roaming delivery 
locations (VRPRDL). This problem is motivated by a new technology that enables 
the delivery of parcels to the trunk of the recipient’s car. The location of the car var-
ies over time, with known, nonoverlapping time windows for each location. The goal 
is to deliver all parcels to the correct cars.

Lang et al. (2014) considered a variation of the VRP with time windows in which 
the goal is to minimize the total fuel consumption, which is affected by the vehicle 
load. There are several alternative stop points for each customer; this scenario is 
motivated by the routing of a fleet of couriers in an urban environment. Each cou-
rier can decide to stop his or her vehicle either on the same side of the street as the 
customer or on the opposite side. The time window for each possible stop point is 
adjusted to reflect the walking time from the stop point to the customer location.

The FPD problem is different from all variants of the VRP that have been stud-
ied to date in that each item to be delivered is identified and characterized by a set 
of optional destinations (SPs) and a penalty for not delivering it at all. In a feasible 
solution, not all items must be delivered, and an item may not be delivered even if 
its destination is visited. More generally, vehicle-routing models that combine the 
flexible delivery of unique goods, time constraints, handling time, vehicle-loading 
considerations, and customer capacity constraints have not been studied. Table  1 
lists some characteristics of the VRP variants discussed above as well as the FPD 
problem. Indeed, the FPD problem stands out as a unique and rich vehicle-routing 
model. The first four characteristics considered in the table are the existence of vehi-
cle capacity constraints, route length constraints, customer capacity constraints and 
handling times. The next column concerns the identifiability of particular items. 
Items may be identified by their locations, urgency, dimensions and time windows. 
Next, we characterize the destination flexibility if applicable and then list the char-
acteristics of the objective function.
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3 � Problem definition and formulation

In this section, we present a formal definition and a mixed-integer linear pro-
gramming (MILP) formulation of the FPD problem. The context here is an opti-
mal planning problem for a single shift with the possibility of postponing the 
delivery of some parcels to subsequent shifts. The application of the static single-
shift model presented here in a dynamic multishift environment using a rolling 
horizon framework will be discussed in Sect. 6. The FPD problem is defined by 
the following inputs:

A set of SPs, where each SP is characterized by a set of available lockers of 
different sizes. Each locker may contain at most one parcel at a time. The number 
of different locker sizes in the system is assumed to be small (e.g., three or four). 
The assortment of available lockers defines the effective capacity of the SP. The 
actual capacity of the SP may be larger, but some of the lockers may be occupied 
by parcels that were dropped off in previous shifts and have not yet been collected 
by their recipients.

A matrix of the travel times between the SPs and between the depot and the 
SPs, where the travel cost per time is also given.

A fleet with an unlimited number of identical vehicles. The cost of operating 
each vehicle during a shift is given. Each vehicle is divided into cells of different 
sizes. These sizes are assumed to be identical to the sizes of the lockers in the 
SPs. Each cell may contain at most one parcel at a time. The assortment of cells 
defines the capacity of the vehicle.

A set of parcels, where each parcel is associated with a set of SPs to which it 
can be delivered, a penalty for failing to deliver that parcel and a set of locker/
cell sizes with which it is compatible. The degree of flexibility is defined by the 
number of different potential destinations for the parcels. The penalty represents 
the urgency class and possibly the seniority of the parcel in the system. Thus, in 
a multishift setting, the operator may raise the penalty for a parcel after each shift 
in which that parcel remains undelivered.

A fixed time associated with each operation of unloading a parcel from a vehi-
cle and depositing it in its locker. Our model determines which parcels should 
be loaded onto each vehicle, but it is assumed that the vehicle-loading operation 
commences before the beginning of the planning horizon.

The length of the shift that constitutes the planning horizon. All utilized vehi-
cles depart from the depot at the beginning of the planning horizon and must 
return by the end of this period.

A solution to the problem consists of a set of routes traveled by the vehicles, 
the identities of the parcels loaded on each vehicle, their destination SPs and the 
sizes of the cells and lockers to which they are assigned. A feasible solution sat-
isfies the shift length constraint and the capacity constraints of the vehicles and 
SPs. The objective is to minimize the sum of the following three cost compo-
nents: the total travel cost for all vehicles, the fixed cost for each utilized vehicle, 
and the total penalty for all parcels that are not delivered.

Our model is based on the following simplifying assumptions:
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1.	 Each SP can be visited only once per shift by a single vehicle, i.e., there is no 
“split delivery”. This assumption is typically not very restrictive in our application 
since the number of parcels that should be delivered to each SP is small compared 
to the vehicle capacity.

2.	 The availability of lockers at the SPs is known before the beginning of the plan-
ning horizon. The generated plan ignores the possibility that parcels may be 
collected from the SPs during the shift.

3.	 The sizes of the lockers/cells are nested, i.e., a larger locker can contain any parcel 
that can also be contained in a smaller one. This assumption is well aligned with 
the automated parcel locker equipment that is available on the market.

Next, we introduce the following notation to define our MILP model:

Sets
S SPs; S = {1,… , n}

S0 Locations, including the depot and SPs; S0 = S ∪ {0}

Q Parcels to be potentially delivered; Q = {1,… , p}

Sq SPs to which parcel q ∈ Q can be delivered; Sq ⊂ S

J Indices of the cell/locker sizes (types), in decreasing order of size
Parameters
T Maximum route duration (the length of the planning horizon)
Vik Total driving time from SP i  to SP k (travel time matrix)
Cj Number of cells of size j in each vehicle
Bi,j Number of available lockers of size j at SP i
Pq Penalty for not delivering parcel q
Dq Minimal size of a cell/locker in which parcel q can fit
� Travel cost per unit of driving time
� Unloading time for a parcel
� Fixed vehicle cost
Decision variables
xik Binary variable; equals 1 if a vehicle travels from SP i  to SP k for all i, k ∈ S.

yqik Binary variable; equals 1 if parcel q travels on a vehicle from SP i  to SP k for 
all q ∈ Q and i, k ∈ S.

zqi Binary variable; equals 1 if parcel q is delivered to SP i  for all q ∈ Q, i ∈ Sq.

ui Arrival time of a vehicle at location i  ( u0 is assumed to be 0).

s.t.

(1)min�
�
i∈S0

�
k∈S0

Vikxik +
�
q

⎛⎜⎜⎝
1 −

�
i∈Sq

zqi

⎞⎟⎟⎠
Pq + � ⋅

�
k∈S

x0k,

(2)yqik ≤ xik q ∈ Q, i, k ∈ S0,
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The model can be described as follows:

(3)
∑

q∶Dq≤j

yq0i ≤ x0i ⋅

j∑
j�=1

Cj� ∀j ∈ J, i ∈ S,

(4)
∑

q∶Dq≤j∧i∈Sq

zqi ≤

j∑
j�=1

Bij� ∀i ∈ S, j ∈ J,

(5)
∑
k∈S0

xik ≤ 1 ∀i ∈ S,

(6)
∑
k∈S0

xik =
∑
k∈S0

xki ∀i ∈ S0,

(7)
∑
i∈S0

yqik =
∑
i∈S0

yqki ∀q ∈ Q, k ∈ S�Sq,

(8)
∑
i∈S0

yqik =
∑
i∈S0

yqki + zqk ∀q ∈ Q, k ∈ Sq,

(9)uk ≥ ui + �

∑
q∶i∈Sq

zqi + Vik − (1 − xik)T ∀i ∈ S0, k ∈ S,

(10)u0 = 0,

(11)uk + �

∑
q∶k∈Sq

zqk + Vk0 ≤ T ∀k ∈ S,

(12)
∑
i∈Sq

zqi ≤ 1 ∀q ∈ Q,

(13)
∑
k∈S

yq0k ≤
∑
i∈Sq

zqi ∀q ∈ Q,

(14)xik ∈ {0, 1} i, k ∈ S0,

(15)yqik ∈ {0, 1} ∀q ∈ Q, i, k ∈ S0,

(16)zqi ∈ {0, 1}∀q ∈ Q, i ∈ Sq,

(17)ui ≥ 0 ∀i ∈ S0.
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	 (1)	 The objective function minimizes the sum of the three cost components: the 
travel costs for the vehicles, the penalties for parcels not delivered, and a fixed 
cost for each vehicle used. The first and third components are jointly referred 
to as the transportation cost.

	 (2)	 The decision variables x and y are associated with each other. For each parcel 
carried on a vehicle in a section (between two locations), the corresponding 
section must be a part of a vehicle route.

	 (3)	 The total number of parcels of a certain size or larger that is sent from the depot 
to a specific SP must be at most equal to the total capacity of the vehicle for 
parcels of that size or larger. This inequality guarantees that each vehicle has 
sufficient capacity for the parcels of each size that it is to deliver, independent 
of the assignment of parcels to particular cells.

	 (4)	 The total number of parcels of size j or larger that are delivered to SP i must 
be no greater than the number of available lockers of this size or larger at SP i . 
This inequality guarantees that each SP has sufficient available capacity for the 
parcels of each size that are to be delivered to it, independent of the assignment 
of parcels to particular lockers.

	 (5)	 At most one vehicle may depart from any SP since we assume that split deliver-
ies are not allowed.

	 (6)	 The number of vehicles that arrive at a location is equal to the number of 
vehicles that depart from it (vehicle flow conservation equation). Note that 
according to (5), at each SP, this number is either zero or one.

	 (7)	 Each parcel that travels to an SP that is not one of its possible destinations must 
leave that SP.

	 (8)	 Each parcel that travels to one of its possible destination SPs either leaves that 
SP or is delivered to it. Together (7) and (8) stipulate the conservation of parcel 
flow.

	 (9)	 If a vehicle travels from SP i to SP k , then its arrival time at SP k is at least its 
arrival time at SP i (or 0) plus the time required to unload all parcels delivered 
to SP i and the travel time from SP i to SP k . This inequality eliminates subtours 
that do not contain the depot.

	(10)	 The arrival time at the depot is zero.
	(11)	 The total time for each vehicle’s tour is limited to at most T .
	(12)	 Each parcel can be delivered to at most one SP.
	(13)	 Only delivered parcels can leave the depot, each on at most one vehicle.
	(14–17)	 The domains of the decision variables are defined.

This problem is intractable because it is a generalization of various NP-hard prob-
lems, such as the CVRP. Obtaining a reasonably approximated solution to (1)–(17) 
using a commercial solver is not practical for most real-life instances, as we dem-
onstrate in Sect. 5. In the next section, we present heuristic algorithms designed to 
generate good solutions for large problem instances.
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4 � Methodology

In this section, we present two mathematical construction heuristics for solving the 
FPD problem: a savings heuristic based on the idea proposed by Clarke and Wright 
(1964) and a heuristic based on the petal heuristic of Foster and Ryan (1976) and 
Ryan et al. (1993). In both cases, the subproblems are solved to optimality using a 
commercial MILP solver. In addition, we design a tabu search heuristic that can be 
used to improve the solutions obtained with these construction heuristics. Via the 
numerical experiment described in Sect. 5, we will show that these heuristics reach 
good solutions in a relatively short time.

4.1 � Savings heuristic

The savings heuristic for the classic CVRP was introduced by Clarke and Wright 
(1964). Since that time, this heuristic has been adapted to many VRP variants. For 
examples of its application, see Toth and Vigo (2014), Chapters 4, 8, and 12. The 
fundamental idea of the algorithm is to repeatedly unify existing routes to reduce 
the total cost. The algorithm starts with a set of simple routes—tours consisting of 
the depot and one customer. In each iteration, the algorithm checks for the poten-
tial total cost savings that can be obtained by unifying each pair of routes. The pair 
that yields the feasible tour with the largest savings is unified, and the algorithm is 
repeated until no feasible unification can yield a positive savings. Altinkemer and 
Gavish (1991) introduced an improvement of the savings heuristic by optimizing 
each candidate pair of routes for unification by solving the TSP.

In the FPD problem, the calculation of the savings obtained by unifying two 
routes should consider all three cost components, i.e., the travel times, penalties for 
undelivered parcels and vehicle costs. The value of each potential unification is eval-
uated in two stages: the routes are determined first, followed by the delivery plan.

In the first stage of evaluating a candidate solution, the unification of two routes 
reduces the vehicle cost component by the fixed cost of a single vehicle and the 
associated travel cost. The travel cost savings value is calculated as the difference 
between the sum of the travel times of the two routes and the travel time of the 
unified route, as calculated by solving the TSP using CPLEX. Since the routes are 
rather short, these subproblems can be solved quickly. If the travel time of the uni-
fied route exceeds the time limit T, then the unified route is infeasible.

In the second stage of the evaluation, the effect of route unification on the total pen-
alty is obtained by comparing the total penalty for the current solution with the opti-
mal penalty that can be obtained with the new set of routes. Note that due to the flex-
ibility of the parcel destinations, route unification may affect the delivery of parcels to 
any SP in the system, not only those that are visited by the unified route. Given the set 
of routes (for each candidate unification), the algorithm finds the optimal assignment 
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of parcels to vehicles and SPs by solving a streamlined version of the MILP problem 
defined by (1)–(17), in which the vehicle route variables are fixed. The objective func-
tion serves to minimize the total penalty for the parcels that are not delivered on these 
routes. We refer to this subproblem as the loading problem. Note that route unification 
can only increase the total penalty since the capacity and route length constraints are 
tightened, while the two other cost components are reduced.

The loading problem for a given set of routes is formulated using some additional 
notation as follows: R denotes the set of the routes under consideration, the set Gr 
consists of all SPs visited by a route r ∈ R , and TSP(Gr) is the shortest route that 

visits all of the SPs in Gr plus the depot. Let U =
�R�⋃
r=1

Gr be the set of all visited SPs, 

and let Tr = T − TSP(Gr) be the remaining time available for unloading parcels on 
route r . Next, we redefine the decision variables as shown below.

Decision variables
yq,r Binary variable; equals 1 if parcel q is assigned to a vehicle that is traveling on route r . This 

variable is defined for each tuple (q ∈ Q, r ∈ R ∶ Sq ∩ Gr ≠ �).

zq,i Binary variable; equals 1 if parcel q is delivered to SP i  . This variable is defined for each 
tuple (q ∈ Q, i ∈ Sq ∩ U).

The remaining notation is the same as that used in (1)–(17):

s.t.

(18)min
�
q∈Q

Pq

⎛⎜⎜⎝
1 −

�
i∈Sq∩U

zqi

⎞⎟⎟⎠
,

(19)
∑

q∶Dq≤j∧(Sq∩Gr≠�)

yqr ≤

j∑
j�=1

Cj� ∀j ∈ J;r ∈ R,

(20)
∑

q∶Dq≤j∧i∈Sq

zqi ≤

j∑
j�=1

Bij� ∀i ∈ U, j ∈ J,

(21)�

∑
q∶(Sq∩Gr≠�)

yqr ≤ Tr ∀r ∈ R,

(22)
∑

i∈Sq∩Gr

zqi ≤ yqr ∀q ∈ Q, r ∈ R ∶ Sq ∩ Gr ≠ �,

(23)
∑

i∈Sq∩U

zqi ≤ 1 ∀q ∈ Q ∶ Sq ∩ U ≠ �,
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The objective function (18) minimizes the total penalty for all parcels that are 
not delivered along the fixed routes. Constraints (19) and (20) are the capacity con-
straints for the vehicles and SPs, similar to (3) and (4). Constraints (21) limit the 
time available for unloading parcels along each route. Constraints (22) state that if 
a parcel is delivered to an SP on a given route, then it is carried by the vehicle that 
serves that route. Constraints (23) and (24) state that each parcel can be delivered to 
only a single SP via only one route. Constraints (25) and (26) define the domains of 
the decision variables.

Since the savings calculation for each pair of existing routes involves solving 
two optimization problems (the TSP and the loading problem), we have devised a 
method that allows the calculations for many dominated pairs, i.e., pairs whose uni-
fication cannot yield the largest savings in the current iteration, to be skipped.

Recall that each unification of two routes yields some savings in terms of the 
vehicle and travel costs and some additional cost due to the increased penalty. We 
refer to the former as the transportation savings and the latter as the added penalty 
for each pair of routes that can be unified. The net transportation savings after the 
added penalty is called the total savings for a pair.

While the savings heuristic runs, we store a list, L, of feasible route pairs along 
with their potential transportation savings. In each iteration of the savings heuristic, 
the procedure loops through L in nonascending order of the transportation savings. 
For each route pair with a transportation savings greater than the best total savings 
encountered so far, we calculate the added penalty by solving the loading problem. 
If the total savings value is greater than the best total savings found so far, we store 
this pair as the best candidate for unification and update the value of the best total 
savings found. Once we encounter a pair with smaller transportation savings than 
the best total savings found so far, we exit the loop. Note that all remaining pairs in 
the sorted list will have smaller total savings since their transportation savings are 
smaller even without considering the added penalty. The best route pair is unified. 
The list L is updated by removing each pair that contains a member of the unified 
pair, and new pairs that contain the newly created route are added. The transporta-
tion savings of the new pairs are calculated by solving TSPs, and the savings heuris-
tic proceeds to the next iteration. In Pseudocode 1, we present the details of a single 
iteration of the savings heuristic.

(24)
∑

r∶(Sq∩Gr≠�)

yqr ≤ 1 ∀q ∈ Q ∶ Sq ∩ U ≠ �,

(25)yqr ∈ {0, 1} ∀q ∈ Q, r ∈ R ∶ Sq ∩ Gr ≠ �,

(26)zqi ∈ {0, 1} ∀q ∈ Q, i ∈ Sq ∩ U.
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To reduce the time needed to solve the loading problems in each iteration, we add 
a constraint to the model that bounds the value of the objective function such that 
the total savings cannot be less than the best savings found so far in this iteration. In 
many cases, this results in an infeasible loading problem, and the solver terminates 
faster.

After the savings heuristic terminates, the algorithm checks the profitability of 
each of the obtained routes. Routes for which the total penalty for the parcels deliv-
ered on those routes is smaller than the travel and vehicle costs are not profitable. 
Using an iterative procedure, we select the worst of the nonprofitable routes, remove 
it from the solution, and re-solve the loading problem with the remaining routes. 
This process is repeated until all routes are profitable. Note that the removal of a 
nonprofitable route in one iteration may cause other nonprofitable routes to become 
profitable ones in the new solution to the loading problem. Therefore, we remove the 
nonprofitable routes one by one.

4.2 � Petal heuristic

The petal heuristic for the CVRP was introduced by Foster and Ryan (1976) and was 
improved by Ryan et al. (1993). In the first step of the petal heuristic, a TSP solution 
for all customers (but not the depot) is found using either some heuristic or an exact 
method. This TSP solution is referred to as the grand tour. In the second step, petal 
routes are created. The petals are contiguous subsequences of customers along the 
grand tour, and each consists of a set of customers that can be served by a single vehi-
cle, meaning that their total demand does not exceed the vehicle capacity. A petal route 
is constructed by solving a TSP for the customers on a petal in addition to the depot. In 
the third step, a set of petal routes that cover all customers while minimizing the total 
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cost are selected by solving a set-covering problem. Note that the number of considered 
routes is limited to quadratic order in the number of customers, whereas the number of 
all potential routes is exponential in the number of customers. Petal routes are attractive 
since they consist of sets of customers that are geographically close together.

In this paper, we adapt the petal heuristic to the FPD problem. Only petal routes that 
satisfy the shift length constraint are considered, and heuristic domination criteria are 
used to further reduce the number of candidate routes. Note that if the triangle inequal-
ity holds, there is no need to solve the TSP for all possible petals. Once a tour that visits 
a subset of SPs is found to exceed the shift time limit, all subsets that contain it can be 
eliminated from consideration. We use CPLEX to find the optimal grand tour and to 
solve the TSPs for the petals. In the second step, we only create potential tours for the 
vehicles; we do not assign parcels to vehicles and SPs yet.

In an actual distance matrix obtained from geographic information systems (GIS), 
one may encounter some minor violations of the triangle inequality, due to some round-
ing errors and noise in the data collection process. In these cases, adding an SP to a 
route may result in shortening its travel time. Therefore, there may be some pathologi-
cal cases in which an infeasible route, with a total travel time that is slightly larger than 
T , may be a subset of a feasible route that is slightly shorter than T . However, these 
routes are unlikely to be in the optimal solution since routes that exploit nearly all the 
planning horizon ( T ) for traveling (leaving very short time for parcel unloading opera-
tions) are anyway unattractive for our petal heuristic.

In the third step, we simultaneously select an optimal subset of the routes to be served 
and assign parcels to vehicles and SPs. That is, we produce a plan that minimizes the 
total vehicle, travel and penalty costs. Note that in our heuristic, not all SPs have to be 
covered. This problem is formulated as an MILP model, with the same notation used in 
the savings heuristic formulation defined in (18)–(26). However, the set of routes R now 
represents all of the candidate petal routes rather than a fixed set in each iteration of the 
savings heuristic. The meanings of Gr and Tr are also changed accordingly. The decision 
variables and the problem formulation, given by (27)–(37), are presented below:

Decision variables
xr Binary variable; equals 1 if route r is served by a vehicle
yqr Binary variable; equals 1 if parcel q is assigned to a 

vehicle that is traveling on route r . This variable is 
defined for each tuple (q ∈ Q, r ∈ Rq)

zqi Binary variable; equals 1 if parcel q is delivered to SP i  . 
This variable is defined for each tuple (q ∈ Q, i ∈ Sq)

s.t.

(27)min�
∑
r∈R

Trxr +
∑
q∈Q

(
1 −

∑
i∈S

zqi

)
Pq + �

∑
r∈R

xr,

(28)
∑

q∶(Dq≤j)∧(Gr∩Sq≠�)

yqr ≤ xr

j∑
j�=1

Cj� ∀r ∈ R, j ∈ J,
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The objective function (27) minimizes the sum of the three cost components: the 
travel cost, the penalty cost and the fixed cost per vehicle. Constraints (28) and (29) 
are the capacity constraints for the vehicles and SPs, formulated similarly to (3) and 
(4). Constraint (30) states that each parcel that is delivered to a specific SP will be 
delivered on a route that serves that SP. Constraint (31) limits the unloading time 
along each selected route. Constraint (32) states that each SP can be served by only 
one vehicle. Constraints (33) and (34) state that each parcel can be delivered via 
only one route to only a single SP. Constraints (35)–(37) define the domains of the 
decision variables.

We apply a heuristic consideration to further reduce the number of considered 
routes. To this end, we define the profitability bound of a petal route as an upper 
bound on the penalty saved by delivering parcels to the route’s SPs minus the travel 
and fixed vehicle costs. The upper bound on the saved penalty is calculated by 
greedily adding parcels to the route in nonincreasing order of their penalties while 
maintaining the shift length constraint. A petal route is a promising route if its prof-
itability bound is positive and is no lower than the profitability bound of any shorter 
petal route contained in it. For example, if the profitability bound of the route con-
structed from petal {3,1} is 100 and the profitability bound of the route constructed 
from {3,1,7} is 90, then the latter is not considered a promising route. Nonpromising 
routes can be excluded from the set R in (27)–(37), thereby significantly reducing 

(29)
∑

q∶(Dq≤j)∧(i∈Sq)

zqi ≤

j∑
j�=1

Bij� ∀i ∈ S, j ∈ J,

(30)zqi ≤
∑

r∶i∈Gr

yqr ∀q ∈ Q, i ∈ Sq,

(31)� ⋅

∑
q∈Q∶Gr∩Sq≠�

yqr ≤ xr ⋅ Tr ∀r ∈ R,

(32)
∑

r∶i∈Gr

xr ≤ 1 ∀i ∈ S,

(33)
∑

r∈R∶Gr∩Sq≠�

yqr ≤ 1 ∀q ∈ Q,

(34)
∑
i∈Sq

zqi ≤ 1 ∀q ∈ Q,

(35)xr ∈ {0, 1} ∀r ∈ R,

(36)yqr ∈ {0, 1} ∀q ∈ Q, r ∈ R ∶ Gr ∩ Sq ≠ �,

(37)zqi ∈ {0, 1} ∀q ∈ Q, i ∈ Sq.
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the solution time for the model. Note that the longer a petal route is, the weaker its 
profitability bound is likely to be because it can be assigned more parcels that could 
be delivered on other routes in the solution. Therefore, shorter routes with higher 
profitability bounds are likely to be more profitable.

4.3 � Tabu search

The tabu search framework is a framework for designing neighborhood search heu-
ristics. To implement it, one needs to define an algorithm for constructing an initial 
solution, a neighborhood to be examined in each iteration, a tabu mechanism, and a 
stopping criterion.

In our implementation, the initial solution is obtained through either the sav-
ings heuristic or the petal heuristic, as described above. In Sect. 5, we present the 
results of applying a tabu search after each of these methods. The neighborhood is 
defined by the set of solutions that can be obtained by moving an SP from one route 
to another, swapping two SPs between two routes, inserting an unserved SP into a 
new or existing route, or turning a served SP into an unserved one. If one of these 
operations results in an empty route, that route is removed from the solution.

Each entry in the tabu list forbids the insertion of an SP into a particular route 
and consists of the corresponding SP and route indices. A tabu list entry is created 
after each operation that removes an SP from a route. For example, after SP i is 
moved from route r to route s , an entry (i, r) is inserted into the tabu list. Any opera-
tion that tries to reinsert SP i into route r is disallowed until this tabu entry expires. 
The swapping operation removes two SPs from their routes and thus creates two 
new tabu list entries. For the purposes of the tabu mechanism, the set of unserved 
SPs is also treated as a route, meaning that an SP that was removed from the set of 
unserved routes cannot be reinserted into this set until the corresponding tabu entry 
expires. The length of the tabu list is a parameter of this algorithm. In our numerical 
experiment, we set this parameter equal to one quarter of the number of SPs. The 
algorithm is stopped after a predefined time (or a number of iterations), and the best-
found solution is returned.

Calculating the objective function for each neighbor requires the following steps: 
(1) reoptimizing the affected route(s) by solving the corresponding TSP(s) and (2) 
solving the loading problem for the entire system with the new routes. Each opera-
tion performed to generate a neighbor may result in higher (or lower) vehicle and 
travel costs as calculated in step 1, but step 2 may compensate for these costs by 
means of a lower (or higher) penalty. To reduce the calculation time, we use sev-
eral algorithmic enhancements. First, we store the value of the optimal TSP solution 
obtained for each subset of SPs considered throughout the process in a hash table. 
Since the tabu search procedure requires the same TSPs to be solved multiple times, 
this caching mechanism eliminates most of the computational effort that is required 
for solving TSPs during the tabu search procedure.

Second, we solve (or retrieve from the cache) the TSPs for the routes of all neigh-
bors and sort the neighbors in ascending order of their transportation costs (vehicle 
and travel costs). The loading problems for the neighbors are then solved in this 
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order. For each instance of the loading problem, we add a constraint that limits the 
total cost for the current neighbor to be lower than the cost for the best neighbor 
found so far. Since the neighbors are sorted in ascending order of their transporta-
tion costs, this additional constraint renders many instances of the loading problem 
infeasible, and this infeasibility is quickly detected by the solver. Thus, we reduce 
the number of computations required to solve each such instance to optimality.

Third, we can save computational effort by skipping the process of solving load-
ing problems for neighbors that satisfy the following conditions:

1.	 The neighbor is obtained by removing one or two SPs from one or two unsaturated 
routes, i.e., routes where their travel time and capacity constraints are not binding.

2.	 The transportation cost improvement relative to the current solution is lower than 
the best improvement found so far in the neighborhood.

Neighbors that satisfy these conditions cannot be better than the best one found 
so far. Indeed, removing an SP from an unsaturated route cannot decrease the total 
penalty cost in the solution because if we could benefit from delivering additional 
parcels to any SPs on the original route, then the optimal loading solution would 
saturate the route. Therefore, improvement can stem only from a reduction in trans-
portation cost. Note that the above argument holds regardless of the new route to 
which the SP is moved.

5 � Numerical experiment

In this section, we present the results of a numerical experiment conducted to com-
pare the various solution methods for the FPD problem, and we examine the effect 
of the degree of flexibility on the delivery cost.

5.1 � Experimental settings

All the proposed heuristic methods were coded in Python 2.7 with CPLEX 12.7 as 
the MILP solver. The experiments were performed on a system with an Intel i7-6700 
4.0 GHz processor with 64 GB of RAM running 64-bit Windows 10.

We generated 27 instances corresponding to 9 system configurations (as defined 
by the numbers of SPs and parcels) and 3 degrees of flexibility, as specified below:

•	 Number of SPs (depot included): 20, 40, and 50.
•	 Average number of parcels per SP: 10, 20, and 30. For example, among the 

50-SP instances, there were instances with 500, 1000 and 1500 parcels.
•	 Level of flexibility: none, low, and high, as described below.

In the nonflexible instances, each parcel had only one desired destination. In the 
low-flexibility instances, two-thirds of the parcels had only one destination each, 
while the rest each had two. In the high-flexibility instances, one-third of the parcels 
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had one destination each, another third had two destinations each, and the rest each 
had three possible destinations. The destinations of the parcels were uniformly 
selected from the set of SPs. To create some similarity between the instances, the 
parcels were generated jointly for all three levels of flexibility; three possible desti-
nations were generated for each instance, but only the first one or two destinations 
were used when applicable.

In all instances, each parcel was characterized as being one of three sizes: large, 
medium, or small. The parcels were generated such that 20% were large, 40% were 
medium, and 40% were small. The late delivery penalties were drawn from a geo-
metric distribution with a positive support and a parameter p = 0.1 (i.e., mean 10).

The total numbers of lockers in each SP were set to 16 large lockers, 32 medium 
lockers, and 32 small ones. The fraction of available lockers of each size was drawn 
from the triangle distribution TRIA (0.1, 0.5, 0.75) , and the result was rounded to the 
nearest integer. The numbers of large, medium and small truck cells were set to 32, 
64 and 64, respectively. The shift length constraint was set to T = 480 min (8 h). The 
travel cost per minute was set to � = 1 , and the cost for using each additional vehicle 
was set to � = 60 . The handling time was set to � = 1 min per parcel.

The three sets of SP locations were randomly selected from a list of gas stations 
in central Israel. Note that automated lockers are commonly located in gas stations. 
The 20- and 40-SP instances were subsets of the 50-SP instances. The depot was 
located in Airport City, in close proximity to the main distribution centers of several 
courier companies. The travel times in minutes between the locations were deter-
mined using Google Maps. We ensured that the data approximately satisfied the tri-
angle inequality, except for some rare and minor violations due to rounding errors.

The dataset used in our experiment is available in electronic appendix A.

5.2 � Experimental results

In this section, we compare the various solution methods presented in Sect. 4. We 
applied the complete MILP model of (1)–(17), the petal heuristic, and the savings 
heuristic to the 27 test instances. The solutions obtained with both the petal and 
savings heuristics were improved via tabu search. The time limit for the complete 
MILP model was set to 3 h, which seems practical for a daily operation. Generation 
of the petals was completed in several minutes, and the solution time for the MILP 
formulation of (27)–(37) was limited to 1 h. The savings heuristic terminated in no 
more than 32 min in the largest instances. Three hours were allocated for the tabu 
search method, from which the actual time taken in the construction phase (petal or 
savings) was subtracted.

In Table 2, we report the results of this experiment. In the first column, we pre-
sent the characteristics of the problem instance in the following format: number of 
SPs/number of parcels/degree of flexibility. Under “MILP obj.”, we present the best 
integer objective value of a solution to the complete model obtained after 3 h (and, 
in parentheses, the result obtained with a 10-h time limit for the smaller instances). 
Under “Petal”, we present the objective value obtained with the petal heuristic and 
the corresponding run time. Under “Petal + Tabu”, we present the objective value 
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of the solution obtained by applying the tabu search method to the initial solution 
obtained with the petal heuristic and the corresponding relative improvement. The 
relative improvement is calculated by subtracting the objective value after the tabu 
search from the value before the tabu search and dividing by the value before the 
improvement. In the remaining columns, we present the same information for the 
savings heuristic.

For each instance, the best obtained solution value is typeset in bold. For cases in 
which the MILP model of the petal method could not be solved to optimality within 
the 1-h time limit, the solution time is marked with an asterisk.

Table 2 shows that even in a significantly shorter time, the petal method and the 
savings heuristic method each reached better solutions than those obtained with the 
complete MILP formulation in most of the instances that we tested. The advantage 

Table 2   Results obtained within 3 h

SP/parcels/
flex

MILP obj. Petal Petal + tabu Savings Savings + tabu

Obj. Time (s) Obj. Improv. (%) Obj. Time (s) Obj. Improv. (%)

20/200/none 563 (560) 570 35 563 1.2 572 25 563 1.6
20/200/low 502 (502) 570 142 505 11.4 572 22 505 11.7
20/200/high 463 (463) 560 821 483 13.8 572 23 483 15.6
20/400/none 715 (659) 671 33 659 1.8 667 25 659 1.2
20/400/low 656 (650) 656 196 649 1.1 656 25 649 1.1
20/400/high 646 (642) 654 924 645 1.4 650 27 642 1.2
20/600/none 1125 (896) 900 43 885 1.7 897 34 885 1.3
20/600/low 1112 (819) 778 246 767 1.4 782 34 767 1.9
20/600/high 897 (768) 755 879 747 1.1 756 38 747 1.2
40/400/none 953 964 116 946 1.9 1037 113 920 11.3
40/400/low 881 889 545 879 1.1 945 115 901 4.7
40/400/high 826 814 3690* 806 1.0 896 117 827 7.7
40/800/none 7811 1456 187 1376 5.5 1521 158 1517 0.3
40/800/low 7811 1272 1032 1202 5.5 1311 156 1305 0.5
40/800/high 7811 1208 3689* 1142 5.5 1272 178 1141 10.3
40/1200/none 11,862 2034 376 1960 3.6 1978 278 1959 1.0
40/1200/low 11,862 1731 1332 1673 3.4 1862 318 1660 10.8
40/1200/high 11,862 1769 3700* 1566 11.5 1531 430 1509 1.4
50/500/none 5168 1229 749 1143 7.0 1184 255 1168 1.4
50/500/low 5168 1186 3423 1128 4.9 1121 269 1103 1.6
50/500/high 5168 1058 4236* 1006 4.9 1084 236 1070 1.3
50/1000/none 10,233 1677 844 1599 4.7 1652 325 1611 2.5
50/1000/low 10,233 1553 4235* 1491 4.0 1518 352 1516 0.1
50/1000/high 10,233 1626 4236* 1424 12.4 1380 369 1350 2.2
50/1500/none 15,237 2340 1074 2308 1.4 2509 528 2322 7.5
50/1500/low 15,237 2001 3781 1955 2.3 2103 582 1959 6.8
50/1500/high 15,237 1954 4244* 1868 4.4 1830 727 1829 0.1
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of the heuristic construction methods increases as the size of the instance grows. In 
fact, for all instances with at least 40 SPs and 800 parcels, the result obtained with 
the complete model was the trivial solution in which no parcels are delivered at all 
and all penalties are incurred. By contrast, both construction methods are scalable 
and can be used to obtain high-quality solutions in a short time.

The tabu search method always improved the solution obtained with either con-
struction heuristic within the time limit. The average relative improvement was 
4.2%. Thus, if time is available, it is always worth applying the tabu search method.

For the smaller instances (with 20 SPs), we also ran the complete MILP model 
with a 10-h time limit. Such a time budget is inappropriate for practical use during 
daily operations, but we were interested in finding optimal solutions to serve as a 
benchmark. However, none of these instances reached optimality, and the average 
and maximal optimality gaps were still 7.8% and 12.7%, respectively, after 10 h. We 
noted some improvement in the obtained results, but in all instances in which the 
heuristic methods yielded better results than the complete MILP formulation under 
the 3-h time limit, the heuristic methods were still better or equal when 10 h were 
allocated for the complete MILP solution.

It is also apparent from Table 2 that adding flexibility to the destinations always 
reduces the total cost. When we allowed one-third of the customers to choose two 
destinations and one-third to choose three destinations (high flexibility), we obtained 
an average cost savings of 15.2% in all instances compared with the nonflexible 
case and a cost savings of at least 12% in eight of the nine configurations. These 
improvements were calculated based on the best solution obtained with our solu-
tion methods. These results indicate that flexibility leads to substantially lower total 
transportation costs and penalties for undelivered parcels. Even low flexibility had 
a significant effect on the total objective value in all the cases. In the low-flexibility 
case, the average cost savings due to flexibility was 9.3%.

These benefits of flexibility are not particularly sensitive to our random selection 
of the destination SPs for each parcel. Indeed, in electronic appendix A, we present 
the results of a similar experiment, with the difference that the destinations of the 
flexible parcels were selected to be located only near each other. Even in this case, 
when high flexibility was allowed, there was an average cost reduction of 13.8%, and 
with low flexibility, the average reduction was 6.9%. These findings suggest that the 
benefits of flexibility cannot be explained merely by the opportunity to eliminate 
some regions from the routes and cover only certain regions.

As seen from a comparison of the petal and savings heuristics, neither of them 
significantly outperforms the other in terms of the objective value of the obtained 
solution. Moreover, even after applying the tabu search method to improve the solu-
tions obtained with these heuristics, we still cannot identify a dominating approach. 
However, note that in the larger instances, the MILP model of (27)–(37) could not 
be solved to optimality within an hour, while the savings heuristic always terminated 
quickly. In addition, the solution time of the petal method significantly increased 
with an increasing degree of flexibility, while the solution time of the savings heu-
ristic was not very sensitive to the flexibility. Therefore, we believe that the savings 
heuristic is more scalable and better suited for instances with high flexibility than 
the petal method is.
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The number of tabu search iterations that could be performed within the time 
limit decreased from thousands in the smallest instances to only a few iterations in 
the largest instances. We observed that most of the run time for these instances was 
spent in solving numerous instances of the TSP and loading problem. The TSPs are 
solved repeatedly, shift after shift, for the same set of locations. Thus, similar routes 
are likely to recur. In Sect. 6, we show that caching the TSP solutions may eliminate 
most of this time and allow more iterations to be performed within the allotted time.

In Table  3, we present the components of the objective function for the best 
obtained solution for each instance. In the first column, we present the characteris-
tics of the problem instance in the same format as in Table 2. The “Method” column 
presents the best solution method(s) for the instance. Under “Objective”, we pre-
sent the objective function value of the best solution for the instance. Under “Travel 
Time”, we present the total length of the routes in the solution. Under “No. of Vehi-
cles”, we present the number of vehicles used in the solution. Recall that the cost of 
each vehicle used is 60. Under “Penalty”, we present the total penalty for undeliv-
ered parcels in the solution. Under “No. of Parcels Delivered”, we present the num-
ber of parcels delivered in the solution.

It is apparent from Table 3 that our test instances span a wide variety of instance 
types, including instances in which all or almost all the parcels are delivered and the 
penalty is negligible as well as instances in which it is reasonable to avoid delivering 
up to 20% of the parcels and incur the corresponding penalties.

6 � Simulation study of multiperiod settings

In practical settings, the last leg of parcel delivery service is conducted in several 
shifts per day, each lasting several hours. Parcels that are not delivered in the first 
shift after their arrival at the regional depot are typically delivered in one of the fol-
lowing shifts, with increased priority. For our flexible delivery model, we conceive 
of a scenario in which the recipient is notified by a text message once his or her par-
cel has arrived at the depot and is asked to select a set of possible SPs. The opportu-
nity to select the possible destinations only a short time before the expected delivery 
enables the recipient to determine locations that are accessible to him or her at that 
particular time. If, due to capacity constraints, the parcel cannot be delivered during 
the first shift after its arrival, the recipient is given the opportunity to redefine the set 
of possible destinations.

In this section, we present a simulation study that demonstrates how our sin-
gle-period deterministic routing model and solution methods can be used in such 
a dynamic and stochastic environment. Moreover, we show that our conclusion 
regarding the benefits of flexible delivery holds in such a realistic environment.

In this simulation experiment, all the lockers at the SPs were initially empty 
and available for parcels. Before the beginning of each shift, new parcels arrived 
at the depot in accordance with a random process. Each new parcel was initially 
assigned an identical penalty. After the parcels had arrived at the depot, the FPD 
problem was solved for all parcels currently at the depot subject to the availability 
of lockers in the system. Based on this solution, parcels were assigned to lockers 
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at the SPs. Next, some parcels were collected from the SPs by their recipients 
in accordance with a random process. The penalty for each parcel that was not 
delivered (was left at the depot) was increased, and the set of possible destina-
tions for each of these parcels was redefined before processing for the next shift 
was initiated.

Table 3   Results obtained within 3 h, divided into individual components

SP/parcels/flex Method Objective Travel time No. of 
vehicles

Penalty No. of 
parcels 
delivered

20/200/none MILP 563 365 2 78 190
Petal + tabu 365 2 78 190
Savings + tabu 365 2 78 190

20/200/low MILP 502 362 2 20 196
20/200/high MILP 463 313 1 90 160
20/400/none Petal + tabu 659 477 3 2 398

Savings + tabu 477 3 2 398
20/400/low Petal + tabu 649 468 3 1 399

Savings + tabu 468 3 1 399
20/400/high Savings + tabu 642 462 3 0 400
20/600/none Petal + tabu 885 533 4 112 554

Savings + tabu 533 4 112 554
20/600/low Petal + tabu 767 499 4 28 579

Savings + tabu 499 4 28 579
20/600/high Petal + tabu 747 499 4 8 592

Savings + tabu 499 4 8 592
40/400/none Savings + tabu 920 593 3 147 376
40/400/low Petal + tabu 879 568 3 131 378
40/400/high Petal + tabu 806 516 3 110 379
40/800/none Petal + tabu 1376 829 5 247 756
40/800/low Petal + tabu 1202 809 5 93 778
40/800/high Savings + tabu 1141 678 5 163 772
40/1200/none Savings + tabu 1959 919 7 620 1041
40/1200/low Savings + tabu 1660 925 7 315 1103
40/1200/high Savings + tabu 1509 850 7 239 1108
50/500/none Petal + tabu 1143 826 4 77 492
50/500/low Savings + tabu 1103 724 3 199 456
50/500/high Petal + tabu 1006 627 3 199 467
50/1000/none Petal + tabu 1599 994 7 185 963
50/1000/low Petal + tabu 1491 966 7 105 979
50/1000/high Savings + tabu 1350 814 6 176 937
50/1500/none Petal + tabu 2308 1118 9 650 1322
50/1500/low Petal + tabu 1955 1121 9 294 1396
50/1500/high Savings + tabu 1829 1012 9 277 1387
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We simulated 40 shifts of 8 h each. The number of parcels that arrived before 
each shift was generated from a Poisson distribution with a mean of either � = 400 
or � = 800 . We used the 40-SP instances with the geographic locations described in 
the previous section. Each SP hosted 6 large, 12 medium and 12 small lockers for 
the � = 400 case, and these numbers were doubled for the � = 800 case. The parcels 
were collected from the SPs by their recipients within zero, one, two, or three shifts 
after delivery, with probabilities of 0.2, 0.4, 0.2 and 0.2, respectively. We note that 
most delivery companies allow recipients a certain amount of time to pick up their 
parcels from an SP. If a parcel is not collected by its recipient within that time, it 
is collected by the shipping company and returned to the depot, and the sender is 
informed. The parameters of the arrival and collection processes were selected such 
that the capacity constraints of the SPs would be likely to be binding in some but 
not all periods and locations. The penalty for each parcel was initially set to 10 and 
was increased by 20% after each shift in which the parcel was not delivered. This 
increase represents the increasing urgency of parcels that are delayed. The remain-
ing settings were exactly the same as in the previous section.

At the beginning of each shift, the FPD problem was solved using the petal and 
tabu methods with a total time limit of 3 h. Thus, the total run time for each simu-
lation was 120  h. In addition, each optimal TSP route that was found during this 
process was cached and was then retrieved if needed in future iterations or shifts. 
Moreover, in the petal method, it was necessary to generate the petals only in the 
first period. Starting from the second period, the petals could be retrieved from the 
cache, and only the MILP formulation of (27)–(37) needed to be solved.

We created four problem instances with arrival rates of � = 400 and � = 800 . 
For each arrival rate, we tested the no- and high-flexibility cases, as described in 
Sect. 4. Detailed results of the 40-shift simulation of each of the above instances are 
described in electronic appendix B. The service quality and cost measures calculated 
from these results are presented in Table 4. The table presents the percentages of 

Table 4   General measures for the multiperiod settings

Measure λ = 400 λ = 800

No flexibility High flexibility No flexibility High flexibility

First shift delivery 84.1% 95.4% 91.2% 98.2%
Second-shift delivery 95.3% 99.5% 98.3% 99.7%
Delivery proportion for 3-dest. recipi-

ents
– 99.5% – 99.98%

Delivery proportion for 2-dest. recipi-
ents

– 98% – 99.8%

Delivery proportion for 1-dest. recipi-
ents

80.2% 87% 90.1% 93.9%

Average time to deliver a parcel (shifts) 0.25 0.055 0.107 0.024
Total travel time 32,092 23,801 41,745 31,769
Number of vehicle working shifts 133 121 245 224
Average cost of delivering a parcel 2.52 1.95 1.76 1.41
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parcels delivered during the shift following their arrival and within one shift (first- 
and second-shift delivery, respectively). The first shift (second shift) delivery meas-
ure is the ratio between the number of parcels that were delivered during the first 
(second) shift after their arrival and the total number of parcels that arrived in the 
system. For the calculation of the second-shift delivery measure, the last shift in the 
simulation was omitted. Next, the delivery proportions were calculated separately 
for parcels with one, two, and three destinations. The delivery proportion for N-dest. 
recipients is the ratio between the number of parcels with N possible destinations 
that were delivered and the total number of parcels with N possible destinations that 
were available for delivery (note that parcels that were not delivered during the shift 
after their arrival are counted more than once in the denominator). When flexibility 
is not allowed, this measure is relevant only for one destination.

The delivery time is the difference between the delivery shift and the first shift 
after the arrival of the parcel. The average delivery time was calculated based on 
the delivery times of all parcels that arrived before the first occurrence of a parcel 
that was not delivered before the end of the simulation. To eliminate bias, all parcels 
that arrived during the same shift as this parcel or later were omitted. As a result, 
we omitted only two to six shifts in each of the simulation runs, which suggests that 
given enough time, each sent parcel is indeed delivered.

Table 4 also presents the total travel time of the vehicles during the simulation 
and the number of vehicle working shifts, that is, the sum of the number of vehi-
cles used in each shift over the simulation period. We calculated the average cost of 
delivering a parcel by dividing the transportation cost by the total number of parcels 
delivered during the simulation. This measure does not include the penalties for the 
parcels because these penalties represent the service level and not the delivery cost.

It is apparent from Table  4 that the introduction of flexibility enables signifi-
cant improvement in the level of service while reducing the costs incurred by the 
operator.

It can also be seen that with destination flexibility, the delivery proportion for 
3-destination recipients is almost 100%, while these proportions are somewhat lower 
for the 1- and 2-destination recipients. These findings indicate a personal incen-
tive for recipients to show flexibility because it increases their chances of receiving 
their parcels earlier. Note that with the introduction of flexibility, even the nonflex-
ible recipients enjoy an improvement in their service level, but the impact is much 
stronger for the flexible recipients.

As expected, a comparison of the instances with low and high arrival rates reveals 
economies of scale due to the pooling effect of the SPs and opportunities for better 
consolidation of the parcels in the vehicles. However, the advantage provided by 
flexibility is still significant, even when the demand and the capacity of the lockers 
are both relatively high.

In all instances, TSP caching saved some computation time, as seen from the fact 
that the number of TSPs solved in the last five shifts was decreased by 56.9% on 
average compared with the number solved in the first five shifts of the simulation. 
However, this did not translate into a significant improvement in the performance 
of the tabu search algorithm since the loading subproblems consumed most of the 
computation time in each iteration.
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There are several factors that may affect the time required for the system to reach 
a steady state if such a state existed. For example, since all lockers are available 
at the beginning of our simulated scenario, it may take some time until the locker 
capacity constraints start to be binding. Similarly, during the early shifts, there are 
few undelivered parcels at the depot. On the one hand, such parcels compete for the 
available resources, but on the other hand, they create more opportunities for consol-
idation. Moreover, our solution method may also take some time to warm up since 
the TSP cache is built gradually. To verify that our experimental results represent a 
stable system, we plotted the number of parcels in the depot and the first- and sec-
ond-shift delivery ratios for each shift. These plots are shown in Figs. 1, 2 and 3 for 
the instances with � = 800 . Similar figures are provided for the � = 400 instances in 
electronic appendix B of this paper, and these figures lead to the same conclusions. 
For high-flexibility instances, the situation seems to stabilize immediately, while the 
nonflexible instances take some time to reach a steady state. During this warmup 
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Fig. 1   Number of parcels waiting to be delivered at the beginning of each shift for a parcel arrival rate of 
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time, the first- and second-shift delivery ratios decrease; thus, the service quality 
presented in Table 4 for the nonflexible instances is biased upwards. This result only 
strengthens our argument in favor of introducing flexibility.

7 � Conclusions

In this paper, we introduced a logistic model for the delivery of parcels from a sin-
gle depot to SPs in an APLS in which recipients can choose more than one possible 
destination SP. We showed that by exploiting this flexibility of the recipients, it is 
possible to reduce costs and shorten the delivery time significantly.

We formulated the problem as an MILP model and devised effective heuristic 
solution methods for this model that perform well on large instances, even with high 
flexibility. Specifically, we introduced two construction heuristics based on the sav-
ings and petal methods for the CVRP and an improvement algorithm based on the 
tabu search framework, in which a very large neighborhood is searched with the aid 
of an MILP solver.

Both the savings heuristic and the tabu search method are based on repeatedly 
solving many instances of the TSP and the loading problem. The TSP instances are 
relatively small, and we can use caching to reduce their solution times. Hence, most 
of the overall solution time is spent on solving instances of the loading problem. 
In our experiments, the linear programming relaxation of our formulation always 
resulted in an integer solution. However, we could not formally prove that the prob-
lem is solvable in polynomial time. This limitation raises the theoretical question of 
whether the loading problem is NP-hard. From a practical perspective, the develop-
ment of a more efficient solution method for the loading problem will increase the 
number of tabu search iterations that can be performed within a specified time limit.

Our model was formulated in the context of a single period with deterministic 
demand. However, through a simulation study, we showed that it could be adapted 
to a dynamic and stochastic environment. Our experimental results strengthen our 
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Fig. 3   First- and second-shift delivery percentages for a parcel arrival rate of 800 parcels/shift and high 
flexibility
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conclusion that exploiting the recipients’ flexibility makes the delivery process more 
efficient for the system as a whole and probably also for the individual recipients 
themselves. Thus, there is a personal incentive for the recipients to show flexibility. 
Formulating the problem directly in a multiperiod setting would result in a much 
more intricate model, and it would not be suitable for settings in which the recipients 
may arbitrarily change their desired destinations if their parcels fail to be delivered 
during the current shift. However, such a formulation could create better opportuni-
ties for efficient delivery. These will be interesting topics for future research.
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