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Abstract
We address a planning problem faced by logistics service providers who transport 
freight over long distances. Given a set of transportation requests, where the origin 
and the destination of each request are located far apart from each other, a logistics 
service provider must find feasible vehicle routes to fulfil those requests at minimum 
cost. When transporting freight over long distances, multimodal transportation pro-
vides a viable alternative to traditional unimodal road transportation. We introduce 
this new problem, which we call the multimodal long haul routing problem (MML-
HRP), and present a mathematical formulation for it. Furthermore, we propose a 
matheuristic, using iterated local search within a column generation framework, for 
solving the MMLHRP. Results show that large cost savings can be achieved through 
multimodal transportation compared to unimodal road transportation.

Keywords  Multimodal transportation · Column generation · Iterated local search

Mathematics Subject Classification  90B06 · 90C11

1  Introduction

Long-distance transportation plays an increasingly important role in freight trans-
portation in Europe. In 2015 more than 40% of freight volumes transported on the 
road within the European Union were carried on distances larger than 500 km. This 
ratio is expected to increase even further in the future (Eurostat 2016a).
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A long-distance transport can be split up in three segments: first-mile (i.e., the 
pickup process), long haul (i.e., the long-distance transportation), and last-mile (i.e., 
the delivery process). Typically the first- and last-mile transports need to be con-
ducted by road transportation as most companies do not have a direct connection 
to a rail network and are not located at a port. For the long haul, on the other hand, 
additional modes of transportation such as rail or water can be considered. The main 
advantages of combining several modes of transportation are both lower costs and a 
lower environmental impact compared to traditional unimodal road transportation 
(SteadieSeifi et al. 2014).

Although the rail network in Europe is well elaborated and maintained, and the Rhine-
Main-Danube axis provides an excellent opportunity to include inland waterways in the 
transport chain (especially in Central and East Europe), freight transportation in Europe 
is currently still mainly done via road. The statistical office of the European Union 
reports a modal split of 75.4, 18, and 6.6% for road transportation, rail transportation, 
and inland waterway transportation, respectively, for the year 2014 (Eurostat 2016b).

In this article we consider an operational problem faced by logistics service pro-
viders who transport freight over long distances. That is, given a set of transport 
requests where the origin and the destination of each request are located far apart 
from each other, the logistics service providers must find feasible vehicle routes to 
fulfil those requests at minimum cost. We consider the full truck load version of 
this problem. That is, we consider only full truck loads in the first- and last-mile, 
and allow consolidation of requests only on long haul vehicles. This version of the 
problem arises in many industrial contexts such as transportation of raw materials 
or steel products, where more than one short haul vehicle is needed to transport a 
single request. We consider a heterogeneous fleet of long haul vehicles correspond-
ing to different modes of transportation and assume that the logistics service provid-
ers do not operate a fleet of short haul vehicles themselves, but utilize carriers. A 
vehicle which conducts a long-distance transport might have to travel for several 
days. In many cases, labour regulations prohibit a vehicle (e.g. a truck with just one 
driver) from travelling such a long time non-stop. In order to take such constraints 
into account we consider a daily operation time limit for each vehicle. Furthermore, 
we assume that a request may be split among several long haul vehicles (possibly 
associated with different transportation modes). That is, we allow a request to be 
split into an arbitrary number of parts. Each of those parts may be transported on a 
different path from the origin to the destination.

Research in the area of multimodal freight transportation planning increased con-
siderably in recent years (SteadieSeifi et al. 2014). An overview of the literature in 
the field of multimodal transportation planning can be found in the two most recent 
surveys of SteadieSeifi et al. (2014) and Caris et al. (2013).

A vast body of work deals with the Service Network Design Problem (SNDP), 
i.e., the (optimal) selection and scheduling of transportation services and choosing 
associated transportation modes, and determining the routing and flow of freight 
through the selected service network. A service is characterized by its origin, des-
tination, and intermediate terminals (its route), its frequency and service capacity, 
and its transportation mode. A mode is characterized by its speed, loading capacity, 
and price. Additionally, services and modes are usually assumed to have fixed costs. 
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Such tactical planning problems are typically modelled as fixed-cost capacitated 
multicommodity network design formulations on time-space networks. Recently, 
vehicle routing aspects have also been considered in SNDPs in the form of asset 
(e.g. vehicles) management. A limited number of vehicles is assigned to each ter-
minal (to which they must return). Vehicle management is then mainly incorporated 
as “design-balance constraints” (Pedersen et al. 2009) requiring that the number of 
vehicles entering and leaving a terminal must be the same, or through the design of 
cycles (see, for instance, Andersen et  al. 2009; Andersen and Christiansen 2009; 
Crainic et al. 2016).

However, these formulations do not consider the routing of first- and last-mile 
transportation. A very recent work which does consider it is by Medina et al. (2018), 
who essentially combine the SNDP with the Vehicle Routing Problem (VRP) and 
call this new problem the Service Network Design and Routing Problem (SNDRP). 
In this problem each supplier is assigned to a single terminal in a long haul consoli-
dation network to which it sends goods, and each customer is assigned to a single 
terminal from which its shipments are delivered. Direct shipments from suppliers to 
terminals are assumed, but the problem allows for delivery routes that visit several 
customers. The first-mile together with the consolidation network are then modelled 
as a SNDP, while the delivery routes are modelled as a VRP. The authors present 
two formulations on a time-space network (one route-based and one arc-based) and 
solve both with a dynamic discretisation discovery algorithm.

The literature on operational multimodal transportation planning is still scarce, 
though (SteadieSeifi et al. 2014). Moreover, only a small part of those studies con-
cern multimodal vehicle routing. Research on multimodal routing is mostly limited 
to commodity flow formulations. Such formulations usually assume an unlimited 
availability of first- and last-mile modes of transportation, and known fixed sched-
ules and free capacities for long haul modes of transportation. Shipments are then 
routed through the multimodal network by deciding upon the usage of those pre-
defined scheduled and unscheduled services (see for example Barnhart and Ratliff 
1993; Ziliaskopoulos and Wardell 2000; Chang 2008; Moccia et al. 2011).

Bock (2010) studies a multimodal vehicle routing problem. The model integrates 
multiple modes of transportation, transshipments, dynamic disturbances, and partial 
or total outsourcing of transportation services. However, split loads are not consid-
ered and the end of every time window is considered as soft, i.e. late arrivals are 
allowed. The dynamic problem is modelled as a rolling horizon scheme and solved 
with a variable neighbourhood search algorithm.

Two relevant related problems are the Pickup and Delivery Problem with trans-
shipment (PDPT) and the Pickup and Delivery Problem with split loads (PDPSL).

Regarding the PDPT Mitrovic-Minic and Laporte (2006) develop a two-phase 
heuristic solution method. They test it on small instances and show the usefulness of 
performing transshipments. Cortés et al. (2010) present an arc-based mixed-integer 
formulation for the problem which they solve by means of a branch-and-cut method. 
Qu and Bard (2012) solve the PDPT with a GRASP which uses an adaptive large 
neighbourhood search in the improvement phase. Masson et al. (2013) use a pure 
adaptive large neighbourhood search to tackle the PDPT in a passenger transporta-
tion application. Rais et al. (2014) propose a new mixed-integer formulation which 
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they solve with a commercial solver on small instances. Recently, Neves-Moreira 
et al. (2016) proposed a fix-and-optimize matheuristic for the PDPT with additional 
side constraints. The authors test their solution approach on real-world instances of a 
long haul freight transportation problem.

Regarding split loads, Nowak et al. (2008) propose a heuristic algorithm for the 
PDPSL and solve several random large-scale instances. Andersson et al. (2011) and 
Stålhane et al. (2012) solve the maritime version of the problem. The former sug-
gests a solution method based on a priori generation of single ship schedules and 
two path flow models that deal with the selection of ship schedules and assignment 
of quantities to the schedules. The latter solves the problem by means of a branch-
and-price-and-cut method. Both test their methods on randomly generated instances.

The contribution of our paper is threefold. First, we introduce a new problem, 
which we call the multimodal long haul routing problem (MMLHRP). To the best 
of our knowledge, no previous work has combined the routing of long haul vehicles 
associated with different transportation modes with the scheduling of both first- and 
last-mile transportation, where requests are allowed to be split and vehicle operation 
time limits are considered. Second, we propose a matheuristic, using iterated local 
search within a column generation framework, for solving the MMLHRP. Third, we 
present managerial insights regarding both the logistics of multimodal transport and 
the potential cost savings through multimodal transport. These insights are based on 
results of computational experiments which are based on real data.

The remainder of this article is structured as follows: In Sect. 2, we give a for-
mal description of the problem. In Sect. 3, a set covering formulation for the MML-
HRP and a column generation algorithm to solve its linear relaxation are presented. 
In Sect. 4, we describe a matheuristic based on column generation for the MML-
HRP, while computational experiments and a managerial discussion are presented in 
Sect. 5. Conclusions are reported in Sect. 6.

2 � Problem description

We are given a set of requests R. Each request r ∈ R is associated with a pickup 
location r+ , a delivery location r− , a positive load dr , and two time windows; one for 
the pickup location 

([
ar+ , br+

])
 and one for the delivery location 

(
[ar− , br−]

)
.

Furthermore, a heterogeneous fleet of vehicles K is given. Each vehicle k ∈ K 
has a non-negative capacity qk , a start depot ok at which it must start its tour, and an 
end depot �k at which it must end its tour. We consider two types of vehicles: short 
haul vehicles (e.g. trucks) and long haul vehicles (e.g. ships or trains). Long haul 
vehicles are further split up into active vehicles and passive vehicles. The difference 
between an active and a passive vehicle is, that an active vehicle can move on its 
own while a passive vehicle cannot. This means, that a passive vehicle must always 
move together with an active vehicle. The number of passive vehicles an active vehi-
cle pulls/pushes may vary throughout its tour, but must not exceed a maximum num-
ber u at any given point in time. Each vehicle is subject to a limit ek on the amount 
of hours per day it is allowed to operate, which must not be exceeded.
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To facilitate the transshipment of load from short haul vehicles to long haul vehi-
cles, and vice versa, a set of transshipment locations T is given. We assume that 
there are neither waiting times nor capacity restrictions at transshipment locations. 
Furthermore, we assume site dependency, that is to say, only short haul vehicles are 
able to visit every location, while long haul vehicles may only visit their respective 
depots and transshipment locations.

The problem is defined on a directed graph G = (V ,A) , where V and A are the 
vertex and arc sets, respectively. V is composed of the start and end depot for each 
vehicle, the set of pickup nodes, the set of delivery nodes, and the set of transship-
ment nodes. The set of arcs A =

⋃
k∈K Ak , where Ak ⊂ V × V  , defines the feasible 

movements of each vehicle k ∈ K between the different nodes in V.
With each arc (i, j) ∈ A and each vehicle k ∈ K is associated a travel cost cijk and 

a travel time tijk . Furthermore, with each transshipment node i ∈ T  is associated a 
transshipment cost mi per transferred unit. We assume that the triangle inequality 
holds for travel costs and travel times.

Service at a customer location must start within the prescribed time window. A 
vehicle may arrive prior to the beginning of the time window, but, in this case, must 
wait until the time window starts before starting the service. A time window is also 
associated with the depots. The time needed for service at any location depends on 
both the quantity to (un)load and the vehicle type. hik denotes the time needed for 
vehicle k ∈ K to (un)load one unit at vertex i ∈ V .

As already mentioned, we assume that the LSPs do not operate a fleet of short 
haul vehicles themselves, but utilize carriers. Consequently, only trips where a short 
haul vehicle carries load raise costs, and, therefore, only these trips need to be con-
sidered. Furthermore, we restrict short haul vehicle transportation to full truck loads 
and only allow consolidation of requests on long haul vehicles. The load of a single 
request may be split among several long haul vehicles or even transshipped to/from 
the same long haul vehicle at several transshipment locations. Each part of a request 
may thus be transported on a different path from the pickup location to the delivery 
location. Consequently, each split makes it more complicated for practitioners. That 
is, the number of routes, logistics operations, and administrative tasks increases with 
each split, as well as both the routes and the product flows become more complex. 
Therefore, practitioners try to avoid splitting the load of a request too often. To take 
this into account we assume the following transshipment policy (P1): always trans-
ship as much units of load of a request as possible. That is, in case of a transship-
ment to a long haul vehicle, transship units of load equal to either the free capacity 
of the long haul vehicle or the residual load of the request. In case of a transship-
ment from a long haul vehicle, unload the complete amount of units of load of the 
request currently on the long haul vehicle.

Following the idea of generating practical solutions, we assume that each unit of 
load may use at most one long haul vehicle. Thus, a unit of load can only be trans-
ported in one of two ways:

1.	 unimodal: using only a short haul vehicle to directly transport the unit of load 
from its pickup location to its delivery location
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2.	 multimodal: using a short haul vehicle only for the first- and last-mile, and 
using one, and only one, long haul vehicle for the long-distance transportation in 
between

The objective is to find a set of feasible short haul vehicle trips and long haul vehicle 
routes that serves all requests, such that the sum of travel costs and transshipment 
costs is minimized.

A feasible trip for a short haul vehicle corresponds to an arc in the graph G, while 
a feasible route for a long haul vehicle corresponds to a path from the start depot to 
the end depot in the graph G. Both a trip and a path are feasible if the vehicle capac-
ity and the limit on the amount of hours per day the vehicle is allowed to operate are 
never exceeded. For short haul vehicles, the time windows at the customer nodes 
must be respected and, in case a short haul vehicle performs a direct transport of 
a request from its pickup location to its delivery location, the pickup node must be 
visited before the delivery node. Similarly, for long haul vehicles the time windows 
at the start depot and end depot must be respected and a (partial load of a) request 
must always be loaded onto the vehicle before it is unloaded from the vehicle. Fur-
thermore, if a transshipment takes place the vehicle which receives the load must 
start its service at the transshipment node after the vehicle which gives the load.

Figure  1 illustrates a small problem instance (Fig.  1a) together with a feasible 
solution (Fig. 1b). It consists of four requests (1, 2, 3, 4) and five transfer locations 
(a,  b,  c,  d,  e). The transfer locations with bold borders represent the depots. The 
long haul of requests 1 and 2 is performed by a water bound long haul vehicle (e.g. 
a ship), while the long haul of request 3 is performed by a rail bound long haul 
vehicle (e.g. a train). For all three requests only the first-/and last-mile transports are 
performed by short haul vehicles. Because the origin location of request 4 is too far 
away from any transfer location, it is transported from its origin location to its des-
tination location exclusively with short haul vehicles. The route of the water bound 
long haul vehicle (dashed line) is: a − b − c − a , the route of the rail bound long 
haul vehicle (dotted line) is: d − e − d , and the short haul vehicle trips (solid lines) 
are: 1+ − a , 2+ − b , 3+ − d , 4+ − 4− , c − 1− , c − 2− , e − 3−.

Using the above notation, we can model the MMLHRP without policy P1 as an 
arc flow formulation (see Appendix 1). However, this model is of limited use as 
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Fig. 1   Small problem instance (a) consisting of four requests (1, 2, 3, 4) and five transfer locations 
(a, b, c, d, e) together with a feasible solution (b). The transfer locations with bold borders represent the 
depots
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even this simplified version of the problem is barely solvable with a commercial 
solver for tiny instances with respect to both solution time and memory usage. Fig-
ure 2 shows the increase in both the time until the root node is solved and the size of 
the process in the memory after the root node has been solved as a function of the 
number of requests. The depicted values are an average of five instances per number 
of requests. The number of locations in an instance ranges from seven in instances 
with one request to 29 in instances with six requests. In each instance one water 
bound long haul vehicle, one rail bound long haul vehicle, and a sufficient amount 
of short haul vehicles (between 38 and 363 vehicles) are available to transport all 
requests. From Fig. 2 it becomes clear that a more sophisticated solution technique, 
which performs better and allows us to implement policy P1, is required.

3 � A set covering formulation for the MMLHRP

Because the arc flow formulation is of limited use for generating lower bounds for the 
MMLHRP (see Fig. 2) we use a set covering formulation instead. Besides the fact that 
for vehicle routing, set covering formulations yield better lower bounds than compact 
formulations (Semet et al. 2014), using a set covering formulation allows us to effec-
tively solve larger problem instances. First, let us introduce some additional notation. 
Let Ω be the set of all feasible short haul vehicle trips from the pickup location of a 
request to its delivery location. Such a trip corresponds to an arc in the graph G of the 
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Fig. 2   Average time and memory consumption of the arc flow formulation using a commercial solver
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form (r+, r−) ∶ r ∈ R , and represents a direct unimodal transport of a request. In addi-
tion, Ω contains all feasible sets 𝒞 = {ℋ,𝒮} , where ℋ is a long haul vehicle route 
and � is a set of first- and last-mile trips of short haul vehicles. ℋ corresponds to a 
path in the graph G from the vehicle’s start depot to its end depot. A trip s ∈ � cor-
responds to an arc in the graph G either of the form (r+, t) ∶ r ∈ R, t ∈ T or of the 
form (t, r−) ∶ r ∈ R, t ∈ T . The former type of a trip represents a first-mile transport, 
while the latter represents a last-mile transport. A set � is feasible if, and only if, ℋ is 
feasible, all s ∈ � are feasible, and ℋ and � together allow for a feasible flow of each 
request transported by the long haul vehicle from its origin to its destination. A set � , 
thus, represents one long haul vehicle route together with the necessary first- and last-
mile transports by short haul vehicles. Consequently, a column j ∈ Ω consists of at 
least one short haul vehicle trip, and at most one long haul vehicle route.

Let P =
⋃

r∈R r
+ be the set of pickup nodes, and �i be the demand of pickup node 

i ∈ P . Let �SHV be the set of short haul vehicle types (e.g., truck), �AV be the set of 
active long haul vehicle types (e.g., ship or train), and �PV be the set of passive long 
haul vehicle types (e.g., barge). Then, � = �SHV ∪�AV ∪�PV is the set of all 
vehicle types. We denote with �k the number of available vehicles of type k ∈ � . 
For each column j ∈ Ω let ĉj be the cost of the column. �ij denotes the quantity of 
pickup node i ∈ P delivered in column j ∈ Ω , while �kj is the number of vehicles of 
type k ∈ � used in column j ∈ Ω . The non-negative integer variable �j indicates the 
number of times column j ∈ Ω is in the solution.

With the above notation, the MMLHRP can be formulated as follows:

subject to

The objective function (1) aims at minimizing the total costs. Constraints (2) ensure 
that the demand of each request is satisfied, while constraints (3) restrict the number 
of used vehicles in a solution to the number of available vehicles. Constraints (4) 
impose integrality requirements on the decision variable �j.

Due to the large size of Ω , solving the problem defined by (1)–(4) explicitly is 
impractical. Instead, we solve its LP-relaxation, called Master Problem (MP), with 
a column generation approach. To obtain the LP-relaxation the integrality require-
ments (4) are replaced by

(1)min
∑
j∈Ω

ĉj𝜃j

(2)
∑
j∈Ω

�ij�j ≥ �i ∀ i ∈ P

(3)
∑
j∈Ω

�kj�j ≤ �k ∀ k ∈ �

(4)�j ∈ ℕ ∀ j ∈ Ω
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The aim of the column generation approach is to solve the MP by finding a subset 
Ω� ⊆ Ω of columns, such that solving MP(Ω� ) also solves MP. MP(Ω� ) is called the 
Restricted Master Problem (RMP).

The approach starts with an initial set of columns and then iteratively solves the 
RMP and a pricing subproblem to produce columns with negative reduced cost, using 
dual information from the RMP. In each iteration these new columns are added to the 
RMP to obtain new dual information. This procedure is repeated until no new columns 
can be found. At that point an optimal solution of the RMP, and therefore of MP, has 
been found, which represents a lower bound for the problem (1)–(4).

3.1 � The pricing subproblem

The pricing subproblem aims at finding a variable �j that has the lowest reduced cost 
with respect to a given dual solution to the RMP. Let �i and �k be the dual variables 
associated with constraints (2) and (3), respectively. The reduced cost cj of a variable �j 
are given by

The subproblem is defined on graph G and its formulation makes use of the vari-
ables and sets as defined in Appendix 1. Some of which we repeat here for the sake 
of clarity:

Variables

Sets and parameters

(5)�j ≥ 0 ∀ j ∈ Ω

(6)cj = ĉj −
∑
i∈P

𝜇ij𝛾i −
∑
k∈�

𝜌kj𝛽k

fijrk amount of request r ∈ R transported by vehicle k ∈ K over arc (i, j) ∈ A

wirkk� amount of request r ∈ R transshipped from vehicle k ∈ K

to vehicle k� ∈ K at node i ∈ T

xijk

{
1 iff vehicle k ∈ K traverses arc (i, j) ∈ A

0 otherwise

B set of short haul vehicles cijk cost of traversing arc (i, j) ∈ Ak for vehicle k ∈ K

C set of active vehicles mi transshipment cost per unit at transship. node i ∈ T

E set of passive vehicles r+ pickup node of request r ∈ R

K B ∪ C ∪ E r− delivery node of request r ∈ R

qk capacity of vehicle k ∈ K ok∕�k start-/end-depot of vehicle k ∈ K
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Using these variables ĉj can be given by

Consequently, the subproblem then is

subject to 

Constraints (9) ensure that transshipment policy P1 is satisfied. P1 says to always 
transship as much units of load of a request as possible. For a more detailed descrip-
tion of P1 see Sect. 2. The function type(x) returns the vehicle type k ∈ � of vehicle 
x ∈ K . The purpose of this function is purely notational, namely to establish a link 
between the set of vehicles K of the arc flow formulation and the set of vehicle types 
� of the set covering formulation.

Due to the property of a column that it contains at most one long haul vehicle 
route and because all vehicles of the same type are assumed to be identical, one sub-
problem for each vehicle type arises. Each subproblem can be solved independently 
from the others. Also, since passive vehicles cannot move on their own, no sepa-
rate subproblem is required for them. Rather, passive vehicles are taken into account 
together with active vehicles in one subproblem. Thus, the set of vehicles K in each 
subproblem contains only short haul vehicles and at most one long haul vehicle.

3.2 � Solving the pricing subproblem

We model each pricing subproblem which considers a long haul vehicle type as a 
Shortest Path Problem with Resource Constraints (SPPRC). The subproblem which 
considers only short haul vehicles, on the other hand, can be solved by generating 
for each request r ∈ R a column j which contains only the arc 

(
r+, r−

)
 . The cost of 

such a column is ĉj = cr+r−k� , where k� ∈ B . The quantity delivered in such a col-
umn is �r+j = min

(
qk� , �r+

)
 , while the number of vehicles used is �kj = 1 , where 

ĉj =
∑

(i,j)∈Ak

∑
k∈K

cijkxijk +
∑
i∈T

∑
r∈R

∑
k∈K

∑
k�∈K

miwirkk�

(7)

min
�

(i,j)∈Ak

�
k∈K

cijkxijk+
�
i∈T

�
r∈R

�
k∈K

�
k�∈K

miwirkk�

−
�
r∈R

�
j∈V

�
k∈K

�r+ fr+jrk −
�
k∈�

�k

⎛⎜⎜⎜⎜⎜⎝

�
k� ∈ K ∶

type(k�) = k

�
j ∈ V⧵�
�k�

�
xok� jk�

⎞⎟⎟⎟⎟⎟⎠

(8)
route- and transshipment-feasibility constraints (26)–(44) (see Appendix 1)

(9)transshipment policy constraints
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k ∈ �SHV . We use the set of all such columns as the initial set Ω� for the column 
generation approach.

Each SPPRC is defined on an auxiliary graph G� = (V �,A�) . The vertex set V ′ 
contains the source vertex s and and the sink vertex z, representing the start and 
end depot. Additionally, V ′ contains two sets of vertices Π+ and Π− . Each vertex 
�+
ir
∈ Π+ (called pickup-transfer-node, PTN) represents at least one (possibly sev-

eral) short haul vehicle trip(s) (r+, i) plus a transshipment of request r ∈ R from 
the short haul vehicle(s) to the long haul vehicle at transshipment location i ∈ T  . 
Each vertex �−

ir
∈ Π− (called delivery-transfer-node, DTN) represents at least one 

(possibly several) short haul vehicle trips (i, r−) plus a transshipment of request 
r ∈ R from the long haul vehicle to the short haul vehicle(s). With each vertex 
v ∈ V � is associated a time window [av, bv] . The time windows are generated dur-
ing pre-processing in the following way:

•	 as = aok , bs = bok , az = a�k , and bz = b�k , where k ∈ C ∪ E

•	 a�+
ir
= ar+ + tr+ik , where k ∈ B

•	 b�+
ir
= max

j∈T
(br− − tjr−k − tijk� ) , where k ∈ B and k� ∈ C ∪ E

•	 a�−
ir
= 0

•	 b�−
ir
= br− − tir−k , where k ∈ B

The arc set A′ contains one arc from vertex s to each PTN, one arc for each fea-
sible connection between and within all PTNs and DTNs, and one arc from each 
DTN to vertex z. In total, A′ contains 12 different types of arcs. Each arc type cor-
responds to a feasible action which the long haul vehicle can do. Table 1 gives a 
detailed description of each arc type.

Figure 3 gives an example of an auxiliary graph G′ . It illustrates a small prob-
lem instance (Fig.  3a) together with the corresponding auxiliary graph for the 
water bound long haul vehicle (Fig. 3b). For the sake of clarity only one arc of 
each arc type is given as an example in Fig. 3b. The figure also indicates vertices 
which can be eliminated because they will never be part of an optimal solution 
(vertices with dashed borders). In general, every pair of a PTN and a DTN, where 
the travel cost of the corresponding first- and last-mile transports is larger than 
the travel cost of the direct transport from the pickup location to the delivery 
location of the request will not be part of any optimal solution. Consequently, 
every vertex which forms a part of only such non-eligible pairs will not be part of 
any optimal solution, and can therefore be eliminated.

In the SPPRC one seeks to find a cheapest (shortest) path from the source ver-
tex s to the sink vertex z. A common way to solve the SPPRC is to use a label-
ling algorithm (Feillet et al. 2004; Ropke and Cordeau 2009; Desaulniers 2010; 
Archetti et  al. 2011). Such a dynamic programming algorithm builds feasible 
(partial) paths in G′ which start at the source vertex s and end at some vertex 
i ∈ V � . Each existing partial path is extended along the arcs leaving its end vertex. 
The algorithm starts with the partial path containing only vertex s and proceeds 
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to create all feasible paths in G′ . In order to speed up the algorithm, dominated 
paths can be discarded throughout the search. Path p dominates path p′ if both 
end at the same vertex, the cost of p is less then or equal to the cost of p′ , and all 
feasible extensions of p′ to the sink vertex z are also feasible for p.

A feasible partial path from vertex s to any vertex i ∈ V � is represented by a label 
associated with vertex i. A label ℒ = (i, � ,ℜ) typically has one component � to rep-
resent the (reduced) cost of the path and a resource vector ℜ . We define 

Table 1   Description of arc types in A′

Type Arc Domain Action of long haul vehicle Cost

1 (s,�+
ir
) ∀i ∈ T ,∀r ∈ R Leave the depot cs,�+

ir
= cokik , 

where k ∈ C ∪ E

2 (�+
ir
,�+

ip
) ∀i ∈ T ,∀r, p ∈ R, r ≠ p Receive load of two distinct 

requests at the same transship-
ment location

c�+
ir
,�+

ip
= 0

3 (�+
ir
,�+

jp
) ∀i, j ∈ T ,∀r, p ∈ R, i ≠ j, r ≠ p Receive load of two distinct 

requests at two distinct trans-
shipment locations

c�+
ir
,�+

jp
= cijk , where 

k ∈ C ∪ E

4 (�−
ir
,�−

ip
) ∀i ∈ T ,∀r, p ∈ R, r ≠ p Unload two distinct requests 

at the same transshipment 
location

c�−
ir
,�−

ip
= 0

5 (�−
ir
,�−

jp
) ∀i, j ∈ T ,∀r, p ∈ R, i ≠ j, r ≠ p Unload two distinct requests 

at two distinct transshipment 
locations

c�−
ir
,�−

jp
= cijk , where 

k ∈ C ∪ E

6 (�+
ir
,�−

ip
) ∀i ∈ T ,∀r, p ∈ R, r ≠ p Receive load of a request then 

unload another request at the 
same transshipment location

c�+
ir
,�−

ip
= 0

7 (�+
ir
,�−

jr
) ∀i, j ∈ T ,∀r ∈ R, i ≠ j Receive load of a request at one 

transshipment location then 
unload it at another transship-
ment location

c�+
ir
,�−

jr
= cijk , where 

k ∈ C ∪ E

8 (�+
ir
,�−

jp
) ∀i, j ∈ T ,∀r, p ∈ R, i ≠ j, r ≠ p Receive load of a request at 

one transshipment location 
then unload another request at 
another transshipment location

c�+
ir
,�−

jp
= cijk , where 

k ∈ C ∪ E

9 (�−
ir
,�+

ip
) ∀i ∈ T ,∀r, p ∈ R, r ≠ p Unload a request then receive 

load of another request at the 
same transshipment location

c�−
ir
,�+

ip
= 0

10 (�−
ir
,�+

jr
) ∀i, j ∈ T ,∀r ∈ R, i ≠ j Unload a request at one trans-

shipment location then receive 
load of the same request at 
another transshipment location

c�−
ir
,�+

jr
= cijk , where 

k ∈ C ∪ E

11 (�−
ir
,�+

jp
) ∀i, j ∈ T ,∀r, p ∈ R, i ≠ j, r ≠ p Unload a request at one trans-

shipment location then receive 
load of another request at 
another transshipment location

c�−
ir
,�+

jp
= cijk , where 

k ∈ C ∪ E

12 (�−
ir
, z) ∀i ∈ T ,∀r ∈ R Return to the depot c�−

ir
,z = ci�kk , 

where k ∈ C ∪ E
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ℜ =
(
t, l,�,�, (d+

1
,… , d+|R|), (d

−
1
,… , d−|R|), g

)
 . Each component of ℜ represents the 

consumption of a resource (e.g., time) along the path until vertex i. We adapt the 
label-setting algorithm from Ropke and Cordeau (2009) and consider labels of the 
form ℒk =

(
i, � , t, l,𝒪,𝒰, (d+

1
,… , d+|R|), (d

−
1
,… , d−|R|), g

)
 where

•	 k ∈ �AV , indicates the type of long haul vehicle the label represents
•	 i ∈ V � is the vertex of the label
•	 � is the accumulated cost
•	 t is the time when leaving vertex i
•	 l is the load of the vehicle when leaving vertex i
•	 � ⊆ R is the set of open requests. A request is considered to be open when the 

amount of its demand which has already been picked up is larger than the amount 
delivered.

•	 � ⊆ R is the set of unreachable requests. A request r is considered to be unreach-
able if either the whole load of it has already been picked up, or if every exten-
sion (i,�+

jr
) ∶ j ∈ T  would violate the time window at vertex �+

jr
.

•	 d+
r  , r ∈ R , indicates how many units of the load of request r have already been 

transshipped to the vehicle
•	 d−

r  , r ∈ R , indicates how many units of the load of request r have already been 
transshipped from the vehicle

•	 g gives the number of passive vehicles in use when leaving vertex i

In accordance with Ropke and Cordeau (2009) we use the notation �(ℒk) to refer to 
the cost of label ℒk and consequently i(ℒk) , t(ℒk) , l(ℒk) , 𝒪(ℒk) , 𝒰(ℒk) , d+r (ℒk) , 
d−
r
(ℒk) , and g(ℒk) for the resources. Additionally, let q(ℒk) denote the total capac-

ity of the vehicle when leaving vertex i (including the capacity of all passive vehi-
cles currently in use), �(ℒk) denote the physical location of the label (i.e., the depot 
or transshipment location), r(i) refer to the request associated with vertex i ∈ V � , �i 

1+

2+

1−

2−

a

b

c

d

e

. . . customer location

. . . water transfer location

. . . rail transfer location

s

z

π+
a1

π+
a2

π−
a1

π−
a2

π+
b1

π+
b2

π−
b1

π−
b2

π+
c1

π+
c2

π−
c1

π−
c2

1

2

3

45

6

7

8
9

10

11

12

(a) (b)

Fig. 3   Small problem instance (a) consisting of two requests (1, 2) and five transfer locations 
(a, b, c, d, e) together with an illustration of the corresponding auxiliary graph G′ for the water bound 
long haul vehicle (b). The transfer locations with bold borders represent the depots. For the sake of clar-
ity only one arc of each arc type in A′ is given as an example. The numbers on the arcs indicate the arc 
type as given in Table 1. Dashed borders indicate vertices which can be eliminated, because they will 
never be part of an optimal solution
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denote the quantity of the request associated with vertex i ∈ V � transferred to/from 
the vehicle at vertex i (note that �i is a decision variable), h(i,k) denote the time 
needed by vehicle type k ∈ � for (un)loading one unit of load at node i, and r+(i) 
and r−(i) refer to the pickup location and the delivery location of request r ∈ R asso-
ciated with vertex i ∈ V � , respectively.

According to Ropke and Cordeau (2009), extending a label ℒk along an arc 
(i(ℒk), j) is feasible only if one of the following three conditions is satisfied:

Condition (10) states that if j is a PTN the respective request r is still reachable. 
Condition (11) states that if j is a DTN at least a part of the respective request r is 
currently on the vehicle. Condition (12) states that if j is the sink vertex then all load 
which has been picked up along the path has also been delivered.

The properties ensuring that the vehicle capacity and the time window are 
respected need to be adapted as follows:

In order for a label extension to be feasible, properties (13) and (14) need to hold as 
well. Property (13) states that the vehicle capacity is respected if either j is a DTN, 
or the current load on the vehicle is less than the capacity of the vehicle, or the cur-
rent number of passive vehicles in use is less than the maximum number of passive 
vehicles allowed. Property (14) states that in case j is a DTN, the time window at 
node j is respected if the time when leaving node i plus the travel time from node i 
to node j plus the service time at node j is less than or equal to the end of the time 
window at node j. Otherwise, in case j is a PTN, the time window is respected if the 
time when leaving node i plus the travel time from node i to node j is less than or 
equal to the end of the time window at node j. The difference in the calculation of 
the left hand side is a consequence of the different definitions of bj for a PTN and a 
DTN.

If the extension of label ℒk along arc (i(ℒk), j) is feasible then a new label ℒ′
k
 is 

created and the vertex of the label, the cost, and all resources must be updated as 
follows:

(10)j ∈ Π+ ∧ r(j) ∉ 𝒰(ℒk)

(11)j ∈ Π− ∧ r(j) ∈ 𝒪(ℒk)

(12)j = z ∧ 𝒪(ℒk) = �

(13)j ∈ Π− ∨
(
l
(
ℒk

)
< q

(
ℒk

))
∨
(
g
(
ℒk

)
< u

)

(14)

(
j ∈ Π− ∧

(
t
(
ℒk

)
+ ti(ℒk),jk + h(j, k)�j ≤ bj

))
∨
(
j ∈ Π+ ∧ t

(
ℒk

)
+ ti(ℒk),jk ≤ bj

)

(15)i(ℒ�
k
) = j
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(16)

�
�
ℒ

�
k

�
= �

�
ℒk

�
+ ci(ℒk),j + g

�
ℒk

�
ci(ℒk),j +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�k iff j = z

�
�j

qk�

�
cr+(j),�(j),k�+

�jmj −
�

�j

qk�

�
�k��−

�r+(j)�j−

addlPV
�
ℒ

�
k
,ℒk

�
�k��� iff j ∈ Π+

�
�j

qk�

�
c�(j),r−(j),k�+

�jmj −
�

�j

qk�

�
�k�� iff j ∈ Π−

k� ∈ B, k�� ∈ 𝒦SHV

k��� ∈ 𝒦PV

(17)
t
(
ℒ

�
k

)
= t

(
ℒk

)
+ addlTime

(
max

(
aj, t

(
ℒk

)
+ addlTime

(
t
(
ℒk

)
, ti(ℒk),j,k

))
, h
(
i
(
ℒk

)
, k
)
�j

)

(18)

𝒰
(
ℒ

�
k

)
= 𝒰

(
ℒk

)
∪
{
r ∈ R ∶ ∄�+

ir
∶ t

(
ℒ

�
k

)
+ addlTime

(
t
(
ℒ

�
K

)
, tj,�+

ir
,k

)
≤ b�+

ir

}
∪
{
r(j) ∶ d+

r(j)
= dr(j)

}

(19)l(ℒ�
k
) =

{
l(ℒk) + �j iff j ∈ Π+

l(ℒk) − �j iff j ∈ Π−

(20)𝒪(ℒ�
k
) =

{
𝒪(ℒk) ∪ {r(j)} iff j ∈ Π+

𝒪(ℒk)⧵{r(j)} iff j ∈ Π−

(21)d+
r
(ℒ�

k
) =

{
d+
r
(ℒk) + �j iff j ∈ Π+ ∧ r = r(j)

d+
r
(ℒk) otherwise

(22)d−
r
(ℒ�

k
) =

{
d−
r
(ℒk) + �j iff j ∈ Π− ∧ r = r(j)

d−
r
(ℒk) otherwise

(23)

g(ℒ�
k
) =

⎧
⎪⎪⎨⎪⎪⎩

�
l(ℒ�

k
)

qk�

�
iff j ∈ Π+, k� ∈ 𝒦PV

g(ℒk) and create additional labels where

g(ℒ�
k
) = x,∀x ∈ ℕ ∶

�
l(ℒ�

k
)

qk�

�
≤ x < g(ℒk) iff j ∈ Π−, k� ∈ 𝒦PV
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Updating rule (15) sets j as the vertex of the new label. Rule (16) updates the cost 
( � ). The cost of the new label is equal to the cost of the old label plus the travel cost 
of the active vehicle and the passive vehicles along arc (i(ℒk), j) . Furthermore, if j 
is the sink vertex z the dual variable for the active vehicle needs to be deducted. If 
j ∈ V �⧵{s, z} , additionally the travel cost of each short haul vehicle used for the cor-
responding first-/last-mile transportations and the transshipment cost must be added, 
as well as the dual variable for each used short haul vehicle deducted. Finally, if j 
is a PTN (i.e. if a request is transshipped onto the vehicle) the dual variable of both 
the pickup node and any additional passive vehicle must be deducted from the cost 
of the new label. To determine the number of additional passive vehicles we use the 
function addlPV(x, y) , which returns the number of additional passive vehicles used 
in label x compared to label y. It is defined as

The departure time (t) of the new label is set according to rule (17). It is equal to the 
departure time of the old label plus the travel time of the vehicle along arc (i(ℒk), j) , 
plus the waiting time at j, plus the service time at j, plus the appropriate mandatory 
resting time. The appropriate amount of resting time depends on both the current 
time and the duration of the performed activity (i.e., (un)loading a request or travers-
ing an arc). Therefore, the calculation of the new departure time needs to be done in 
two steps. First, the arrival time at node j is calculated. Then, given the arrival time, 
the start of the time window at j, and the service time, the departure time of the 
new label can be calculated. In both steps we use the function addlTime(x, y) , which 
returns the amount of additional time needed to perform an activity with duration y, 
given the current time x. It takes the limit on the operation time of the vehicle into 
account and is defined as

where ℵ denotes the amount of time units per day the vehicle must rest, � denotes 
the total amount of time units per day, and � is the residual time the vehicle may still 
work on the current day given by

Rule (18) updates the set of unreachable requests ( � ) of the new label. It is equal to 
the union of the set of unreachable requests of the old label and the set of requests 
for which there is no time feasible extension from node j to any of their correspond-
ing PTNs. Additionally, if all of the demand of the request which is associated with 
node j has already been picked up, then the set of unreachable requests of the new 
label also contains this request. Rules (19)–(22) update the load of the vehicle (l), 
the set of open requests ( � ), and the amount of each request which has already been 
transshipped to/from the vehicle ( d+

r
/d−

r
 ), respectively. Rule (23) updates the number 

of passive vehicles in use (g). If j is a PTN, the number of passive vehicles in use 

addlPV(x, y) = max (g(x) − g(y), 0)

addlTime(x, y) =

⎧⎪⎨⎪⎩

𝜔 + ℵ +
�

y

ek

�
𝜉 +

�
y −

�
y

ek

�
ek

�
iff 𝜔 < 0

𝜔 + ℵ +
�
y−𝜔

ek

�
𝜉 +

�
y − 𝜔 −

�
y−𝜔

ek

�
ek

�
iff 0 ≤ 𝜔 < y

y otherwise,

� = ek − (⌊x⌋ mod �) − (x − ⌊x⌋)
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is equal to the minimum number of passive vehicles required to carry the total load 
of the vehicle. If j is a DTN, the number of passive vehicles in use of the new label 
is equal to the number of passive vehicles in use of the old label. Furthermore, in 
this case, we create one additional label for each possible value of g between the 
minimum number of passive vehicles required and g(ℒk) . Each of those labels is 
identical to the new label except for the value of g. Creating those additional labels 
is necessary in order to cover all feasible active-passive-vehicle combinations with 
which the new label can be extended further.

The amount of request r ∈ R transshipped to/from a long haul vehicle at node i ∈ V � 
(i.e., �i ) is determined as follows:

�i is determined in accordance with transshipment policy P1. That is, if i is a PTN 
the amount of the corresponding request transshipped to the long haul vehicle is 
equal to the minimum of the amount of the request which has not yet been trans-
shipped to the vehicle and the remaining capacity of the vehicle. The remaining 
capacity of the vehicle is equal to the current capacity of the vehicle, plus a pos-
sible increase of the capacity through addition of passive vehicles, minus the current 
load on the vehicle. If i is a DTN, the amount of the corresponding request trans-
shipped from the vehicle is equal to the amount of the request which is currently on 
the vehicle.

In order to discard dominated labels during the search we use the following domi-
nance conditions. Label ℒk dominates label ℒ′

k
 if all of the following conditions 

hold:

3.3 � The column generation algorithm

As already mentioned above, we initialize the RMP with a set of columns which 
contains one column for each request r ∈ R , corresponding to direct full truck load 
trips from their pickup location r+ to their delivery location r− . Whenever the label-
setting algorithm finds at least one column with negative reduced cost, we add them 
to the RMP and re-solve it in order to obtain new dual information before we solve 
the next subproblem. Furthermore, we do not solve the subproblems to optimality in 
each iteration of the column generation algorithm, but stop after a sufficient amount 
of columns has been found by the label-setting algorithm. When the label-setting 
algorithm cannot find new columns with negative reduced cost, the column genera-
tion algorithm stops and we have obtained a lower bound for the MMLHRP.

�i =

{
min

((
dr(i) − d+

r(i)

)
,
(
q
(
ℒk

)
+min

(
u − g,𝒲k − g

)
qk� − l

(
ℒk

)))
iff i ∈ Π+

d+
r(i)

− d−
r(i)

iff i ∈ Π−

𝜏(ℒk) = 𝜏(ℒ�
k
), 𝜁(ℒk) ≤ 𝜁(ℒ�

k
), t(ℒk) ≤ t(ℒ�

k
),

𝒪(ℒk) ⊆ 𝒪(ℒ�
k
), ∀r ∈ R ∶ d+

r
(ℒk) ≤ d+

r
(ℒ�

k
), 𝒰(ℒk) ⊆ 𝒰(ℒ�

k
), and

g(ℒk) = g(ℒ�
k
).
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4 � Matheuristic

With the column generation algorithm presented in the previous section we are able 
to compute lower bounds for small sized instances in a reasonable amount of time 
(see Sect. 5). For medium, large, or even real-world sized instances the algorithm 
is not applicable, though. Due to the large amount of labels generated by the label-
setting algorithm, the column generation algorithm becomes impractical in terms of 
both run time and memory consumption. Therefore, we substitute the label-setting 
algorithm with an iterated local search (ILS) algorithm to solve the subproblem (i.e. 
to generate negative reduced cost columns). When using the ILS algorithm to solve 
the subproblem, the column generation algorithm is not exact any more.

Due to the fact that it is not guaranteed that the optimal solution of the MP will be 
found when using the ILS algorithm, we refrain from using a branch-and-price pro-
cedure for obtaining an integer solution. Instead, we use the columns generated by 
the column generation algorithm for the MP to solve the problem defined by (1)–(4).

4.1 � Iterated local search algorithm

ILS is a metaheuristic generating a sequence of local optima. It is an iterative 
method which works on an incumbent solution y and considers different neighbour-
hoods of y in each iteration (for an elaborate description of ILS see Lourenço et al. 
(2010)). A solution, in our case, is a path in G′ which starts at the source vertex s and 
ends at the sink vertex z. The pseudo code for the ILS is depicted in Algorithm 1.

Algorithm 1: ILS heuristic
1 y= path (s,z)
2 NegCostPath=
3 repeat
4 y = LocalSearch(Perturbation(y))
5 if accept(y ,y) then
6 y= y
7 end
8 if cost(y )< 0 then
9 NegCostPath= NegCostPath∪{y }
10 end
11 until stopping criterion met;
12 return {y ∈ NegCostPath : cost(y)≤ 0.9 · min

x∈NegCostPath
cost(x)}

We initialize the algorithm with the path (s, z) in line 1. Line 4 is the interesting 
part of the algorithm. First, the (current) incumbent solution is perturbed and then 
local search is applied to the perturbed solution. Both the Perturbation phase and 
the LocalSearch phase consider the following two neighbourhoods:
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1.	 Insertion–adding a new request to the path
2.	 Removal–removing a request from the path

Because the dual variables from the MP are associated with the PTNs, it is likely 
that some arcs entering a PTN have a negative cost. Therefore, both types of moves 
can yield cost reductions.

In the Perturbation phase the method performs n random moves with equal prob-
ability of a move being an insertion or a removal of a request ( n = 5 in practice). In 
case of an insertion, we first randomly choose a request which is not yet fully served. 
Then, we randomly choose a corresponding PTN and a corresponding DTN. After 
this, we insert the PTN at a randomly chosen position in the path. We insert the 
DTN at the first feasible position in the path after the PTN. In case of a removal, we 
randomly choose a PTN in the path and remove it together with the corresponding 
DTN.

In the local search the method employs a steepest descent on both neighbour-
hoods, i.e. in each iteration we perform the move which brings the best improvement 
of the path cost, be it an insertion or a removal of a request. For this purpose we first 
calculate for all not yet fully served requests the change in the path cost incurred by 
inserting the corresponding PTN-DTN-pairs at every feasible position in the path. 
Then, we calculate for each request which is already served on the path (i.e. PTN-
DTN-pair) the change in the path cost incurred by removing it from the path. Finally, 
we perform the move which yields the highest cost reduction. The local search stops 
when no improving neighbour can be found, i.e. when the change in the path cost of 
every feasible move is greater than or equal to zero.

In line 5 we determine if the new solution should be accepted. We use the so-
called random walk as acceptance criterion, where a new local optimum is always 
accepted as a new incumbent solution. Furthermore, in each iteration we check if the 
new solution has negative reduced cost, and store it if it does (lines 8 and 9).

In line 11 we check if a stopping criterion is met. We apply the adaptive stopping 
criterion proposed by Cacchiani et  al. (2014). It automatically adapts the number 
of iterations to the difficulty of the problem and works as follows: if a negative cost 
path has been found after n iterations, then the algorithm stops; else, the total num-
ber of iterations is increased by the factor � , in order to allocate more time to the 
algorithm. Additionally, it is necessary to define a total limit on the number of itera-
tions nMAX which can never be exceeded. We set n = 10 , � = 10 , and nMAX = 1000 
in our implementation.

At the end of the algorithm (line 12) all paths with reduced cost within 10% of 
the best solution found are returned to the RMP.

4.2 � Hybrid label‑setting/ILS algorithm

Additionally, we implemented a hybrid version of the algorithm which combines the 
label-setting algorithm and the ILS (ILS/Lbl) to solve the subproblem. It starts with 
ILS to solve each subproblem. If ILS does not find a negative reduced cost column 
for at least one subproblem, we switch to the label-setting algorithm. As soon as the 
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label-setting algorithm finds a new column we switch back to ILS. The algorithm 
stops when the label-setting algorithm cannot find new columns. Note that this is an 
exact algorithm.

5 � Computational experiments

In this section, we summarize the computational experiments performed to assess 
both the performance of our solution method and the potential savings achiev-
able through multimodal transport. The algorithm was implemented in C++ using 
CPLEX 12.7 as MIP-solver. All experiments were performed on an Intel Xeon 2.6 
GHz CPU with a run time limit of 8 h. Because ILS is stochastic, we perform five 
runs whenever we use a subproblem algorithm involving ILS.

In the following three subsections we first present the instances which we use for 
the computational experiments (Sect.  5.1). In Sect.  5.2 we present computational 
results with respect to the performance of our solution method. Finally, in Sect. 5.3 
we present managerial findings.

5.1 � Test instances

We generated a set of test instances mimicking real-world long-distance transporta-
tion within and between countries along the Danube. For this purpose we created 
a set of customer locations and a set of transshipment locations. The set of cus-
tomer locations contains 55 locations, where each location corresponds to a random 
address within the industrial area of a major city from the following six countries: 
Austria, Slovakia, Hungary, Romania, Serbia, and Bulgaria. Five locations were 
selected from Serbia and ten locations from each of the other countries. The set 
of transshipment locations contains the location of the train station in each of the 
selected cities as well as the locations of nine major ports along the Danube.

The pickup and the delivery location for each request are randomly selected from 
the set of customer locations. The demand of a request is randomly generated as 
well, with d ∼ U(20, 1500) and d ∈ ℕ . Each instance considers a time horizon of 
30 days. The time windows of a request were randomly placed within this interval. 
The width of each time window is either 8, 72, or 120 h, which was chosen ran-
domly with an equal probability for each width-size. We created ten sets of requests 
for each of the following size categories (= number of requests): 2, 5, 10, 30, 50, 
100, and 200. In order to analyse if it is beneficial to consider more transshipment 
locations than just the closest one for each customer, we generated from each set of 
requests an instance which contains only the closest train station and the closest port 
for each customer location (named “closest”), and another instance which contains 
all 64 transshipment locations (named “all”).

We consider the following vehicle types in our instances: truck, ship, push craft, 
barge, train, and single wagon. Trucks represent the short haul vehicles, and the rest 
represent the long haul vehicles. We consider ships, push crafts, trains, and single 



417

1 3

A matheuristic for a multimodal long haul routing problem﻿	

wagons as active vehicles, and barges as passive vehicles. However, we only allow 
push crafts to push barges. Furthermore, push crafts are special vehicles in the sense 
that they have no capacity ( qk = 0 ) and are only used to push barges. In the real 
world it is often possible that a logistics service provider attaches a single wagon 
to someone else’s train which travels to the desired destination train station. This is 
why we consider single wagons in addition to complete trains. Table 2 summarizes 
the parameters used for each vehicle type. All costs and parameters were determined 
based on real world data in collaboration with an Austrian logistics service provider.

We used a travel cost of 0.73 €/km and a capacity of 20 tons for a truck in our 
experiments. The daily maximum operation time was assumed to be 10 h, which 
corresponds to the current labour regulations for commercial drivers in Austria. 
The distance- and travel time-matrices were calculated with the software MS 
MapPoint 2013. We used the following average velocities:

•	 Motorway: 65 km/h
•	 Highway: 60 km/h
•	 City: 20 km/h

The duration for a complete (un)loading of a truck was set to 24 min (= 50 
tons/h). For both the train and the wagon we assumed a daily maximum opera-
tion time of all of the 24 h. The capacity of a wagon was set to 50 tons. An Aus-
trian logistics service provider advised us to assume a length of 26 wagons for 
a train, as this was the most common length in their experience. Thus, we set 
the capacity of a train to 1300 tons (= 26 wagons). We used travel costs of 6.95 
and 0.32 €/km for a train and a wagon, respectively. The distance matrix was 
constructed by using the online train-kilometre calculator http://jizde​nka.idos.
cz. In practice, freight trains are often time constrained due to the higher prior-
ity accorded to passenger trains. In order to avoid an over-estimation of the rail 
capacity, or respectively, an under-estimation of the delivery time we assumed a 
very low average velocity for trains of just 15 km/h, which we then used to create 
the travel time matrix. For a ship we assumed a daily maximum operation time 
of 14 h, because freight ships on the Danube typically have only one captain. For 
the push craft (and barge) we assumed a limit of 24 h, because they usually have 
two captains and can therefore be operated around the clock. The capacity of both 

Table 2   Parameters used in test 
instances

Vehicle type Travel cost (€) Capacity (tons) Max. operating 
time per day (h)

Truck 0.73/km 20 10
Train 6.95/km 1300 24
Wagon 0.32/km 50 24
Ship 43.76/h 1000 14
Push craft 35.67/h 0 24
Barge 10.45/h 1000 24

http://jizdenka.idos.cz
http://jizdenka.idos.cz


418	 D. Wolfinger et al.

1 3

a ship and a barge was set to 1000 tons, while a push craft has no capacity. We 
set the maximum number of barges a push craft may push at the same time to 
six, which corresponds to the smallest maximum number of barges a push craft 
can push along all segments of the Danube considered in our test instances. It is 
customary to express travel cost for water vehicles in monetary units per time unit 
(as opposed to per distance unit). Thus, we assumed travel cost for ships, push 
crafts, and barges of 43.76, 35.67, and 10.45 €/h, respectively. The travel time 
matrices were constructed by using the online travel time calculator http://www.
danub​e-logis​tics.info/trave​l-time-calcu​lator​/. We assumed transshipment cost of 3 
€/ton at all ports and train stations, and an (un)loading speed of 125 tons/h for all 
long haul vehicles.

From each of the above described instances we created 11 versions which differ 
with respect to the availability of long haul vehicles:

	 1.	 no long haul vehicles available (named “N”)
	 2.	 only one ship available (named “S”)
	 3.	 only one push craft with six barges available (named “P”)
	 4.	 only one train available (named “T”)
	 5.	 only 26 wagons available (named “G”)
	 6.	 the available capacity of water-bound long haul vehicles equals 30% of the total 

demand, no rail-bound long haul vehicles available (named “W30”)
	 7.	 the available capacity of rail-bound long haul vehicles equals 30% of the total 

demand, no water-bound long haul vehicles available (named “R30”)
	 8.	 the available capacity of both water-bound and rail-bound long haul vehicles 

each equals 30% of the total demand (named “WR30”)
	 9.	 no restriction on the availability of water-bound long haul vehicles, no rail-

bound long haul vehicles available (named “W”)
	10.	 no restriction on the availability of rail-bound long haul vehicles, no water-

bound long haul vehicles available (named “R”)
	11.	 no restriction on the availability of long haul vehicles (named “ ∞”)

A sufficient number of short haul vehicles is always available in each instance in 
order to guarantee feasibility. In total we created 1,540 instances. We use the follow-
ing naming convention for the instances: a − b − c − d

•	 a ∈ {2, 5, 10, 30, 50, 100, 200} : size category
•	 b ∈ {0, 1,… , 9} : set of requests
•	 c ∈ {closest, all} : available transshipment locations
•	 d ∈ {N, S, P, T, G,W30, R30,WR30,W,R,∞} : available long haul vehicles

The wild card “ ∗ ” refers to all instances in a category, while “[!x]” refers to all 
instances in a category except for “x”, e.g. “2-∗-all-[!N]” refers to all instances of 
size 2, where all transshipment locations are present, and long haul vehicles are 
available.

All instances are available at: http://plis.univi​e.ac.at/resea​rch/test-insta​nces/

http://www.danube-logistics.info/travel-time-calculator/
http://www.danube-logistics.info/travel-time-calculator/
http://plis.univie.ac.at/research/test-instances/
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5.2 � Computational results

In the first set of experiments we evaluate the stability of the ILS. For that pur-
pose we calculate for each instance the percentage gap between the objective 
function value of the best run and the worst run. Figure 4 shows boxplots of the 
percentage gaps regarding the MP solutions (Fig.  4a) and the integer solutions 
(Fig. 4b) for each instance size. The number in brackets under the instance names 
represents the total number of instances in this size category. In order to obtain a 
better visual representation of the boxplots we truncated the y-axis at 5 and 10%, 
respectively. This cut off three outliers of Fig. 4a (max. outlier = 8.34%) and ten 
outliers of Fig. 4b (max. outlier = 21.13%). The ILS appears to be quite stable. 
For more than 90% of the instances the gap between the best and the worst run 
is less than 1% regarding MP solutions and less than 2% regarding integer solu-
tions. Using the hybrid ILS/Lbl algorithm decreases the gaps even further. How-
ever, due to the involvement of the label-setting algorithm we could only solve 
instances with up to ten requests. Because the gap is equal to 0% for more than 
75% of the instances regarding both MP solutions and integer solutions, we do 
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Fig. 4   Boxplots of the percentage gaps (y-axis) between the objective function value of the best run and 
the worst run when ILS is used as the subproblem algorithm; one boxplot for each instance size (x-axis). 
The numbers in brackets represent the number of instances per instance size

Table 3   Stability of the ILS/Lbl 
algorithm: MP solutions

Columns Min, Avg, and Max give the minimum, average, and maxi-
mum percentage gap between the objective value of the best run and 
the worst run regarding MP solutions. The number in brackets next 
to the name represents the number of instances of the respective size

Name gap (%)

Min Avg Max

2-∗-∗-[!N] (200) 0.00 0.00 0.00
5-∗-∗-[!N] (200) 0.00 0.00 0.23
10-∗-∗-[!N] (200) 0.00 0.12 4.86
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not present the data as boxplots but only report the minimum, average, and maxi-
mum gap for each instance size in Tables 3 and 4, respectively.

In the following, whenever results involving ILS are reported they correspond 
to the best of five runs regarding the objective function value, and to the worst of 
five runs regarding the run time. In the practical case computers have multiple 
cores, which means that multiple runs can be performed in parallel. Thus, we 
believe it reasonable to use the solution with the best objective function value, 
since this is obviously the solution a practitioner would implement. Furthermore, 
we believe it is reasonable to use the slowest run time instead of the actual run 
time of the run which produced the best solution, because it is only possible to 
determine the best solution after the slowest run has finished.

Now we evaluate the performance of the subproblem algorithms. For that pur-
pose we solve only the linear relaxation of the problem (i.e., the MP) and then 
compare both the computing times and the quality of the (approximation of the) 
lower bound. Table 5 shows, for each subproblem algorithm, the average comput-
ing times and solution quality. The first column gives the instance names (and 
the number of instances in brackets). Columns CPU give the average computing 

Table 4   Stability of the ILS/Lbl 
algorithm: integer solutions

Columns Min, Avg, and Max give the minimum, average, and maxi-
mum percentage gap between the objective value of the best run and 
the worst run regarding integer solutions. The number in brackets 
next to the name represents the number of instances of the respec-
tive size

Name Gap (%)

Min Avg Max

2-∗-∗-[!N] (200) 0.00 0.01 2.25
5-∗-∗-[!N] (200) 0.00 0.02 1.62
10-∗-∗-[!N] (200) 0.00 0.29 6.39

Table 5   Comparison: computing times and solution quality

Columns CPU give the average computing time in seconds to solve an instance; Columns Min, Avg, and 
Max give the minimum, average, and maximum percentage gap between the objective value obtained 
when using the ILS (or ILS/Lbl) and the objective value obtained when using the label-setting algorithm. 
The number in brackets next to the name represents the number of instances of the respective size
∗ 19 Instances could not be solved within the run time limit (8 h)
+ 14 Instances could not be solved within the run time limit (8 h)

Name Lbl-setting ILS ILS/Lbl

CPU CPU Gap (%) CPU Gap (%)

Min Avg Max Min Avg Max

2-∗-∗-[!N] (200) 0.2 0.1 0.0 0.0 7.9 0.1 0.0 0.0 0.0
5-∗-∗-[!N] (200) 11.7 0.3 0.0 0.0 4.8 6.9 0.0 0.0 0.0
10-∗-∗-[!N] (200) 3798.9∗ 3.5 − 11.1 − 0.2 3.2 2675.0+ − 11.1 − 0.4 0.0
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time in seconds to solve an instance using the label-setting algorithm, the ILS, 
or the ILS/Lbl combination, respectively. Columns Min, Avg, and Max give the 
minimum, average, and maximum percentage gap between the objective value 
obtained when using the ILS (ILS/Lbl combination) and the objective value 
obtained when using the label-setting algorithm. The ILS performs well in terms 
of both run time and solution quality. For all instance sizes the average gap is 
close to 0% and the average computation time is only a fraction of the compu-
tation time of the label-setting algorithm. The negative gap in the last row is 
explained by the fact that the label-setting algorithm could not solve 19 of the 
instances of size 10 within the run time limit. The ILS and the ILS/Lbl combina-
tion found better solutions for 13, respectively 15, of those instances.

Table 6   Label-setting: impact time window width and period length

Columns 30 day period and 60 day period give the average computing time in seconds to solve the MP 
for instances with a period length of 30 and 60 days, respectively. Columns 8 h, 120 h, and 240 h refer to 
instances where each time window has a width of 8, 120 and 240 h, respectively. The number in brackets 
next to the name represents the number of instances of the respective size
∗ 1 Instance could not be solved within the run time limit (8 h)
+ 4 Instances could not be solved within the run time limit (8 h)

Name 30 day period 60 day period

8 h 120 h 240 h 8 h 120 h 240 h

2-∗-∗-∞ (20) 0.3 0.4 0.4 0.3 0.4 0.4
5-∗-∗-∞ (20) 6.9 21.4 40.1 22.5 23.0 43.7
10-∗-∗-∞ (20) 242.9 3139.0∗ 8784.3+ 1554.0 3891.3 10665.9+

Table 7   ILS: impact time window width and period length

Columns 30 day period and 60 day period give the average computing time in seconds to solve the MP 
for instances with a period length of 30 and 60 days, respectively. Columns 8 h, 120 h, and 240 h refer to 
instances where each time window has a width of 8, 120 and 240 h, respectively. The number in brackets 
next to the name represents the number of instances of the respective size
∗ 2 Instances could not be solved within the run time limit (8 h)
+ 20 Instances could not be solved within the run time limit (8 h)

Name 30 day time horizon 60 day time horizon

8 h 120 h 240 h 8 h 120 h 240 h

2-∗-∗-∞ (20) 0.1 0.1 0.1 0.1 0.1 0.2
5-∗-∗-∞ (20) 0.4 0.7 1.1 1.2 1.5 2.1
10-∗-∗-∞ (20) 2.1 5.7 8.8 10.6 12.4 19.2
30-∗-∗-∞ (20) 48.3 128.4 200.2 244.5 388.9 518.2
50-∗-∗-∞ (20) 259.4 649.8 944.0 1337.9 2056.3 2874.6
100-∗-∗-∞ (20) 1944.8 4503.6 6985.7 11647.1 17086.7 22404.0∗

200-∗-∗-∞ (20) 9449.7 25268.5 28800.0+ 28800.0+ 28800.0+ 28800.0+
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We now evaluate the impact of the width of the time windows and the length of 
the time horizon on the performance of the subproblem algorithms. For that purpose 
we created new instances based on the ∞-instances. We kept everything the same 
except the width of the time windows, the position of the time windows, and the 
length of the time horizon. In each new instance all time windows have the same 
length. In total we created six new versions from each ∞-instance: one version where 
the width of the time windows is equal to 8, 120, and 240 h, respectively; combined 
with a length of the time horizon of 30 and 60 days. We again solve only the MP and 
then compare the computing times. Tables 6, 7, and 8 show, for each subproblem 
algorithm, the average computing times in seconds. Columns 30 day period and 60 
day period give the average computing time to solve the MP for instances with a 
time horizon of 30 and 60 days, respectively. Columns 8 h, 120 h, and 240 h refer 
to instances where each time window has a width of 8, 120 and 240 h, respectively. 
Wider time windows and longer time horizons correlate with larger solutions spaces. 
Therefore, it is not surprising that both the width of the time windows and the length 
of the time horizon have a considerable impact on the performance of all three sub-
problem algorithms. What is interesting, however, is that the width of the time win-
dows has a noticeably larger impact on the label-setting algorithm than on the ILS, 
while for the length of the time horizon it is the other way around. An increase of 
the time window width from 8 to 120 h, from 120 to 240 h, and from 8 to 240 h, 
results in 3.8, 1.9, and 9.0 times longer computation times on average for the label-
setting algorithm. For the ILS the computation times increase by a factor of only 
1.8, 1.4, and 2.5 on average, respectively, for the same increases of the time window 
width. The computation times of the hybrid ILS/Lbl-setting algorithm increase by 
a factor of 3.3, 2.5, and 12.1 on average, respectively. Increasing the time horizon 
from 30 to 60 days almost doubles the run time on average for the label-setting algo-
rithm and the ILS/Lbl-setting algorithm, while it more than doubles the run time on 
average for the ILS. If we consider all seven size categories of the instances (not just 
the smallest three), then the run time of the ILS almost triples on average.  

Table 8   ILS/Lbl-setting: impact 
time window width and period 
length

Columns 30 day period and 60 day period give the average com-
puting time in seconds to solve the MP for instances with a period 
length of 30 and 60 days, respectively. Columns 8 h, 120 h and 240 h 
refer to instances where each time window has a width of 8, 120 and 
240 h, respectively. The number in brackets next to the name repre-
sents the number of instances of the respective size
∗ 3 Instances could not be solved within the run time limit (8 h)
+ 1 Instance could not be solved within the run time limit (8 h)

Name 30 day period 60 day period

8 h 120 h 240 h 8 h 120 h 240 h

2-∗-∗-∞ (20) 0.2 0.3 0.3 0.2 0.3 0.4
5-∗-∗-∞ (20) 2.8 6.0 12.5 8.0 9.7 16.1
10-∗-∗-∞ (20) 123.0 1329.6 6299.2∗ 601.8 1593.3 6977.2+
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In the following, all analyses compare only integer solutions and are based on 
results obtained with ILS as the subproblem algorithm.

5.3 � Managerial discussion

Now we address the question of whether it can be beneficial to consider more poten-
tial transshipment locations than just the closest one of each customer. For that 
purpose we compare the objective function values of the solutions of the “closest” 
instances with the “all” instances. Table  9 gives the average and maximum per-
centage gap between those solutions, whereby the solution values of the “closest” 
instances are the reference values. For all instance sizes, the solutions where all 
transshipment locations are considered are on average less than 0.25% better. The 
maximum difference of ∼7.5% is achieved at an instance of size 10 and decreases 
to less than 1% for larger instances. However, this is to be expected as the num-
ber of additional ‘non-closest’ transshipment locations decreases with an increas-
ing number of requests. Table 9 also shows that on average the number of requests 
transshipped at a location which is not the closest one is less than one. Additionally, 
Table 9 shows that the moderate decrease in costs is achieved through a compara-
tively large increase in computation time. It takes on average 2–3 times longer to 
solve larger instances which contain all transshipment locations.

The negative value of the average percentage gap for instances of size 100 can be 
explained as follows. In general, given two sets of columns, A and B, it is possible 
that set A yields a better LP solution than set B, but a worse integer solution than 
set B. This is what happens here. For some “all” instances, the column generation 

Table 9   Comparison: 
“closest”–“all”

Average and maximum percentage gap between the objective func-
tion values when only the closest transshipment locations are consid-
ered and when all transshipment locations are considered. Column 
#requests non-closest gives the average and maximum number of 
requests which are transshipped at a location which is not the closest 
one. Column run time factor gives the factor by which the run time 
increases (at the minimum, on average, and at the maximum) when 
all transshipment locations are considered. The number in brackets 
next to the name represents the number of instances of the respective 
size

Name Gap “closest” 
vs. “all” (%)

#requests 
non-closest

Run time factor

Avg Max Avg Max Min Avg Max

2-∗-∗-[!N] (100) 0.03 0.63 0.1 1 0.0 13.2 147.7
5-∗-∗-[!N] (100) 0.07 6.68 0.2 1 0.0 13.3 59.5
10-∗-∗-[!N] (100) 0.22 7.57 0.4 3 0.1 5.9 18.9
30-∗-∗-[!N] (100) 0.19 2.95 0.7 5 0.2 2.1 34.8
50-∗-∗-[!N] (100) 0.04 1.27 0.4 5 0.2 1.4 6.8
100-∗-∗-[!N] (100) − 0.06 0.98 0.3 7 0.0 3.0 50.9
200-∗-∗-[!N] (100) 0.01 0.80 0.5 5 0.0 2.6 52.1
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approach produces a set of columns that yields a better LP solution than the set of 
columns produced for the corresponding “closest” instance, but a worse integer 
solution.

We now evaluate the increase in the delivery time of a request when it is trans-
ported multimodally compared to unimodally. For that purpose, we compare for 
each request its delivery times in the solutions of the different vehicle availabilities. 
Table  10 shows the average percentage increase of the delivery time of a request 
for selected multimodal cases compared to the unimodal case. In order to be able 
to make comparisons between the different vehicle types, Table  10 only includes 
requests which are transported by a long haul vehicle in every multimodal case. The 
delivery time of requests which are transported by a ship increases by roughly 86% 
on average compared to when they are delivered by a direct unimodal transport. 
Using a push craft the delivery time increases only by 64% on average. The smaller 

Table 10   Average delivery time 
increase: unimodal–multimodal

Columns 2–8 give the average percentage delivery time increase of a 
request for selected multimodal cases compared to the unimodal case 
(a-∗-∗-N), respectively

Name Delivery time increase (%)

d = S d = P d = T d = G d = W d = R d =∞

2-∗-∗-d 150.7 87.8 82.3 71.3 148.4 79.3 79.3
5-∗-∗-d 118.3 111.4 105.7 119.6 123.1 120.7 119.0
10-∗-∗-d 96.4 54.3 54.9 59.2 76.5 59.5 59.5
30-∗-∗-d 61.9 59.1 46.6 55.5 58.5 48.5 53.9
50-∗-∗-d 41.6 35.2 26.7 38.5 44.4 42.0 45.1
100-∗-∗-d 58.2 48.0 28.7 42.3 53.9 46.1 50.1
200-∗-∗-d 75.8 52.0 41.1 54.1 63.5 53.7 49.4
Average 86.1 64.0 55.2 62.9 81.2 64.2 65.2

Table 11   Average cost reduction: unimodal–multimodal

Columns 2–11 give the average percentage cost reduction for each of the ten multimodal cases com-
pared to the unimodal case (a-∗-∗-N), respectively. The number in brackets next to the name represents 
the number of instances of the respective size
∗ 1 Instance could not be solved within the run time limit (8 h)

Name Cost reduction (%)

d = S d = P d = T d = G d = W30 d = R30 d = WR30 d = W d = R d =∞

2-∗-∗ -d (20) 12.8 17.7 26.4 37.0 17.9 33.7 33.7 17.9 40.2 40.2
5-∗-∗ -d (20) 10.5 16.1 32.9 42.9 15.4 42.7 42.9 17.2 49.7 49.7
10-∗-∗ -d (20) 10.1 19.2 30.8 38.3 18.9 42.3 42.6 20.7 46.5 46.5
30-∗-∗ -d (20) 7.6 18.3 23.0 28.8 23.1 48.3 49.1 27.2 50.7 51.0
50-∗-∗ -d (20) 4.9 14.2 16.2 21.1 20.6 48.6 49.0 24.8 50.8 50.9
100-∗-∗ -d (20) 3.3 10.3 9.9 12.7 22.6 49.4 49.7 25.9 50.7 50.8
200-∗-∗ -d (20) 1.9 6.5 5.8∗ 7.2 22.5 50.2 50.6 25.5 50.9 51.2
Average 7.3 14.6 20.7 26.8 20.1 45.0 45.4 22.7 48.5 48.6
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increase of the delivery time by a push craft is because it can operate 24 h per day 
as opposed to the ship which can only operate for 14 h per day. Looking at trains 
and single wagons, the table shows that both cause an even smaller average increase 
in delivery time; namely ∼ 55 and ∼62%. In general, water transportation causes an 
average increase in the delivery time roughly 1.3 times larger than rail transportation 
(see “W” vs. “R”).

We now want to determine the potential cost savings through multimodal trans-
port. For that purpose we compare, for each set of requests, the objective function 
values of the solutions of the different vehicle availabilities. Table 11 presents the 
average percentage cost reduction for each of the ten multimodal cases compared to 
the unimodal case ( ∗-∗-∗-N). Using a single ship leads to a cost reduction of roughly 
7% on average. With a single push craft (and six barges) the cost reduction can be 
doubled, which is, of course, a direct consequence of the larger capacity. Both a 
single train and 26 wagons achieve an even larger decrease in costs, with savings of 
∼ 20 and ∼26%, respectively.

Furthermore, rail transportation achieves average cost reductions more than 
twice as high as water transportation (see “W30” vs. “R30” and “W” vs. “R”). This 
large difference in potential cost savings is partially due to time restrictions: water 
transportation is slower than rail transportation (see Table 10). Also, for most cus-
tomer locations the closest port is further away than the closest train station, which 
increases the travel time in the first- and last-mile. Therefore, because of time win-
dows, some requests cannot be transported by water, but can be transported by rail. 
Furthermore, the larger distance to the next port not only increases the travel time of 
the short haul, but also its cost. Thus, for some requests it is not worthwhile to trans-
port them by water, due to the high short haul costs, while it is worthwhile with rail 
transportation. On average, 98.1% of requests (or 98.4% of total demand) may be 
transported by rail in each of our instances, while only 71.7% of requests (or 71.3% 
of total demand) may be transported by water. The remaining 1.9% (1.6%), respec-
tively 28.3% (28.7%), can or should not be transported by rail, respectively water, 
because of time restrictions or too large short haul costs.

Table 11 shows further that when there is no restriction on the amount of avail-
able long haul vehicles, cost reductions of more than 50% can be achieved. How-
ever, almost identical cost savings can be achieved when there is no restriction on 

Table 12   Transportation mode and long haul vehicle type split

Columns 2–9 give the average proportion of total demand transported by the respective mode of trans-
portation, and type of long haul vehicle, in the respective long haul vehicle availability setting

Name Proportion of total demand transported (%)

Water Rail Road Ship Push craft Train Wagon Truck

∗-∗-∗-R30 (140) 0.0 71.5 28.5 0.0 0.0 35.3 36.2 28.5
∗-∗-∗-WR30 (140) 3.4 68.5 28.1 0.9 2.4 34.1 34.4 28.1
∗-∗-∗ -R (140) 0.0 77.5 22.5 0.0 0.0 42.9 34.6 22.5
∗-∗-∗-∞ (140) 2.4 75.1 22.5 0.6 1.8 41.0 34.1 22.5
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the availability of rail-bound long haul vehicles (see “R”). The same conformity in 
cost reductions can be observed between “R30” and “WR30”. Water transportation, 
it seems, is only of interest if rail transportation is not possible. Table 12 provides 
further insights on this issue. It shows, for cases “R30”, “WR30”, “R”, and “ ∞ ”, 
the proportion of the total demand which is transported on each mode of transporta-
tion. Rail transportation accounts, on average, for more than two-thirds of the total 
demand transported on the long haul, while water transportation amounts to only 
2.4–3.4%. In fact, facilitating water transportation in addition to rail transportation 
leads to only a slight increase (“R30” vs. “WR30”) or even no increase at all (“R” 
vs. “ ∞ ”) of the amount of demand transported in a multimodal fashion.

Tables 11 and 12 additionally show that wagons are heavily used and have a 
large impact on costs in the above presented solutions. Using wagons in the way 
we propose relies on a strong assumption. Attaching a single wagon to someone 
else’s train which travels to the desired destination train station might in fact not 
be possible in some real world cases, at least not all the time. Therefore, we reran 

Table 13   Average cost reduction (without wagons): unimodal–multimodal

Columns 2–10 give the average percentage cost reduction for each of the nine multimodal cases com-
pared to the unimodal case (a-∗-∗-N), respectively
∗ 1 Instance could not be solved within the run time limit (8 h)

Name Cost reduction (%)

d = S d = P d = T d = W30 d = R30 d = WR30 d = W d = R d =∞

2-∗-∗ -d (20) 12.8 17.7 26.4 17.9 28.3 28.4 17.9 28.3 28.4
5-∗-∗ -d (20) 10.5 16.1 32.9 15.4 38.0 38.2 17.2 40.8 40.5
10-∗-∗ -d (20) 10.1 19.2 30.8 18.9 35.3 36.8 20.7 39.4 39.4
30-∗-∗ -d (20) 7.6 18.3 23.0 23.1 43.3 44.7 27.2 45.3 45.9
50-∗-∗ -d (20) 4.9 14.2 16.2 20.6 42.8 44.1 24.8 45.2 45.6
100-∗-∗ -d (20) 3.3 10.3 9.9 22.6 43.5 44.7 25.9 45.8 46.2
200-∗-∗ -d (20) 1.9 6.5 5.8∗ 22.5 44.4 45.7 25.5 46.2 46.7
Average 7.3 14.6 20.7 20.1 39.4 40.4 22.7 41.6 41.8

Table 14   Transportation mode and long haul vehicle type split (without wagons)

Columns 2–9 give the average proportion of the total demand transported by the respective mode of 
transportation, or type of long haul vehicle, in the respective long haul vehicle availability setting

Name Proportion of total demand transported (%)

Water Rail Road Ship Push craft Train Wagon Truck

∗-∗-∗-R30 (140) 0.0 66.4 33.6 0.0 0.0 66.4 0.0 33.6
∗-∗-∗-WR30 (140) 7.3 61.1 31.6 2.4 4.9 61.1 0.0 31.6
∗-∗-∗ -R (140) 0.0 71.9 28.1 0.0 0.0 71.9 0.0 28.1
∗-∗-∗-∞ (140) 5.6 66.3 28.1 1.5 4.1 66.3 0.0 28.1
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all experiments again without the possibility of using wagons. Table 13 presents 
again the average percentage cost reduction for the multimodal cases compared 
to the unimodal case, but without the usage of wagons in cases “R30”, “WR30”, 
“R”, and “ ∞ ”. The average cost reductions decrease by roughly five percentage 
points in all four cases. The level of conformity in cost reductions between “R30” 
and “WR30”, as well as between “R” and “ ∞ , stays the same, though. Regard-
ing the proportions of total demand transported on each mode of transportation, 
Table  14 shows that there is only a slight shift towards water transportation. 
The majority of the demand previously transported by wagons is now covered 
by trains. Nonetheless, this shift constitutes a doubling of water transportation. 
Approximately 5% of total demand cannot be absorbed by any other long haul 
vehicle and is, therefore, transported by road.

6 � Conclusion

In this article we present a new problem called the multimodal long haul routing prob-
lem (MMLHRP). We propose both an arc flow formulation and a set-covering formu-
lation for this problem. For the set-covering formulation we further propose a column 
generation algorithm to solve its linear relaxation, i.e., to obtain lower bounds. We 
solve the subproblem in this approach with both a label-setting algorithm and an ILS. 
In order to obtain feasible integer solutions we propose a matheuristic which is based 
on the column generation framework. Computational experiments show that the ILS 
as the subproblem algorithm performs well compared to the label-setting algorithm. 
Indeed, using ILS as the subproblem algorithm made the MMLHRP tractable for large 
instances.

Additional computational experiments show that it is not beneficial to consider more 
transshipment locations than just the closest one of a customer. Furthermore, we find 
that considerable cost reductions can be achieved through multimodal transport com-
pared to unimodal transport. In our computational studies, cost reductions of more than 
50% could be achieved in the most extreme cases, depending on both the number of 
requests and the number of available long haul vehicles. The experiments further show 
that water transportation hardly contributes in terms of both transported demand and 
cost reductions if rail transportation is available as well. In general, rail transportation 
achieves average cost reductions more than twice as high as water transportation.

Further research regarding the investigated problem may analyse the cost of the 
introduced policies and assumptions which aim at generating more practical solu-
tions. Allowing a unit of load to use several long haul vehicles in succession is likely 
to further reduce overall costs. The same is true for not regulating the number of splits. 
Indeed, the solutions will probably not be as practical, but the trade-off might be worth 
it. Another interesting research direction would be to consider an additional “green” 
objective, such as minimizing CO2 emissions. Especially in multimodal vehicle rout-
ing, minimizing costs and minimizing emissions of pollutants are conflicting objec-
tives. For example, trucks typically have significantly higher routing costs than ships 
but are at the same time significantly less polluting than ships.
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Appendix 1: Arc flow formulation

The MMLHRP can be modelled by means of an arc flow formulation using the follow-
ing variables:

Tables 15 and 16 provide a summary of the used notation.
For modelling purposes we define for variables x, f, and �:
xk(F) ≡

∑
(i,j)∈F xijk , frk(F) ≡

∑
(i,j)∈F fijrk , and �kk� (F) ≡

∑
(i,j)∈F �ijkk�

With the above notation the MMLHRP can be formulated as follows:

subject to

sik Start time of service of vehicle k ∈ K at node i ∈ V

zik Number of rests of vehicle k ∈ K until node i ∈ V

�ik Sum of travel- and service times of vehicle k ∈ K

until node i ∈ V

fijrk Amount of request r ∈ R transported by vehicle k ∈ K

over arc (i, j) ∈ A

wirkk� Amount of request r ∈ R transshipped from vehicle k ∈ K

to vehicle k� ∈ K at node i ∈ T

�ik Service time of vehicle k ∈ K at node i ∈ V

xijk

�
1 iff vehicle k ∈ K traverses arc (i, j) ∈ A

0 otherwise

yirkk�

⎧⎪⎨⎪⎩

1 iff request r ∈ R is transshipped from vehicle k ∈ K

to vehicle k� ∈ K at node i ∈ T

0 otherwise

�ijkk�

�
1 iff active vehilce k ∈ C pushes passive vehicle k� ∈ E over arc (i, j) ∈ A

0 otherwise

(24)min
∑
i∈V

∑
j∈V

∑
k∈K

cijkxijk +
∑
i∈T

∑
r∈R

∑
k∈K

∑
k�∈K

miwirkk�

(25)
∑
k∈K

frk(�
+
k
(r+)) =

∑
k∈K

frk(�
−
k
(r−)) = dr ∀r ∈ R

http://creativecommons.org/licenses/by/4.0/
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(26)xk(�
+
k
(ok)) = xk(�

−
k
(�k)) = 1 ∀k ∈ K⧵B

(27)xk(�
+
k
(i)) − xk(�

−
k
(i)) = 0 ∀i ∈ T , ∀k ∈ K⧵B

(28)
∑
k∈K

frk(�
+
k
(i)) −

∑
k∈K

frk(�
−
k
(i)) = 0 ∀i ∈ T ,∀r ∈ R

(29)�jk ≥ �ik + �ik + tijk −M(1 − xijk) ∀(i, j) ∈ Ak,∀k ∈ K

(30)zik ≥
�ik

ek
∀i ∈ V ,∀k ∈ K

(31)sik ≥ �ik + (gkzik) ∀i ∈ V ,∀k ∈ K

Table 15   Sets for the arc flow formulation

R Set of requests Ak Feasible movements of vehicle k ∈ K 
between the different nodes in V

P Set of pickup nodes ( P =
⋃

r∈R r
+) A Arc set ( A =

⋃
k∈K Ak)

D Set of delivery nodes ( D =
⋃

r∈R r
−) B Set of short haul vehicles

T Set of transshipment nodes (physical) C Set of active vehicles
T �(i) Set of node duplicates of transship. 

node i ∈ T

E Set of passive vehicles

T
⋃

i∈T T
�(i) K B ∪ C ∪ E

N P ∪ D ∪ T �+
k
(S) {(i, j) ∈ Ak|i ∈ S, j ∉ S} : set of arcs a ∈ Ak 

leaving set S ⊆ V

V N ∪
�⋃

k∈K ok ,
⋃

k∈K �k
�
 , where ok 

and �k are the start- and end-depots, 
respectively

�−
k
(S) {(i, j) ∈ Ak|i ∉ S, j ∈ S} : set of arcs a ∈ Ak 

entering set S ⊆ V

Table 16   Parameters for the arc flow formulation

ai Start of time window at node i ∈ V dr Load of request r ∈ R

bi End of time window at node i ∈ V qk Capacity of vehicle k ∈ K

cijk Cost of traversing arc (i, j) ∈ Ak for vehicle k ∈ K r+ Pickup node of request r ∈ R

ek Amount of hours vehicle k ∈ K is allowed to operate 
per day

r− Delivery node of request r ∈ R

gk Amount of hours vehicle k ∈ K must rest per day tijk Travel time over arc (i, j) ∈ Ak of vehicle 
k ∈ K

mi Transshipment cost per weight unit at transshipment 
node i ∈ T

u Maximum number of passive vehicles 
allowed per active vehicle

hik Loading time (time units per weight unit) at node 
i ∈ N of vehicle k ∈ K
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(32)sjk ≥ sik + tijk + (gkzjk − gkzik) + �ik −M(1 − xijk) ∀(i, j) ∈ Ak,∀k ∈ K

(33)
∑
r∈R

fijrk ≤ qkxijk ∀(i, j) ∈ Ak,∀k ∈ K

(34)sik + �ik −M(1 − yirkk� ) ≤ sik� ∀i ∈ T ,∀r ∈ R,∀k, k� ∈ K

(35)
∑
r∈R

wirkk� ≤ min{qk, q
�
k
} ⋅ yirkk� ∀i ∈ T ,∀k, k� ∈ K

(36)frk(�
+
k
(i)) = frk(�

−
k
(i)) +

∑
k�∈K

wirk�k −
∑
k�∈K

wirkk� ∀i ∈ T ,∀r ∈ R,∀k ∈ K

(37)�ik ≥
∑
r∈R

∑
k�∈K

(wirkk� + wirk�k)hik ∀i ∈ T ,∀k ∈ K

(38)�r+,k ≥ frk(�
+
k
(r+))hr+,k ∀r ∈ R,∀k ∈ B

(39)�r−,k ≥ frk(�
−
k
(r−))hr−,k ∀r ∈ R,∀k ∈ B

(40)ai ≤ sik ≤ bi ∀i ∈ P ∪ D ∪ {ok, �k},∀k ∈ K

(41)xijk =
∑
k∈C

�ijkk� ∀(i, j) ∈ Ak� ,∀k� ∈ E

(42)
∑
k�∈E

�ijkk� ≤ xijku ∀(i, j) ∈ Ak,∀k ∈ C

(43)sjk − sjp ≤ M(1 − �ijkk� ) ∀(i, j) ∈ Ak,∀k ∈ C,∀k� ∈ E

(44)sjp − sjk ≤ M(1 − �ijkk� ) ∀(i, j) ∈ Ak,∀k ∈ C,∀k� ∈ E

(45)xk+1(�
+
k
(ok)) ≤ xk(�

+
k
(ok)) ∀k ∈ B⧵{|B|}

(46)xk+1(�
+
k
(ok)) ≤ xk(�

+
k
(ok)) ∀k ∈ C⧵{|C|}
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The objective function (24) aims at minimizing the total cost. Constraints (25) guar-
antee that every request is fully satisfied. Constraints (26) make sure, that every long 
haul vehicle leaves its start depot and returns to its end depot. This constraint is not 
necessary for short haul vehicles, since we only consider trips where a short haul 
vehicle carries load. Constraints (27) guarantee the flow conservation of long haul 
vehicles. Again, this constraint is not necessary for short haul vehicles, because we 
are not looking for a path for short haul vehicles but for single trips (which corre-
spond to single arcs). Constraints (28) make sure that the same amount of load of a 
request which arrives at a transshipment node also leaves the transshipment node. 
Constraints (29)–(32) keep track of time and guarantee that a vehicle never exceeds 
the amount of hours per day it is allowed to operate. Constraints (29) keep track 
of the sum of travel- and service times of a vehicle until a node, while constraints 
(30) determine the number of rests a vehicle has to make until a node based on this 
sum. Constraints (31) determine the arrival time of a vehicle at a node. Finally, con-
straints (32) together with constraints (31) keep track of time overall by determin-
ing the start time of service of a vehicle at a node, taking the travel-, service-, and 
rest-times until this node into account. Constraints (33) ensure that the capacity of a 
vehicle is never exceeded. Constraints (34) ensure time synchronization at transship-
ment. That is, the vehicle receiving load must start its service after the vehicle giv-
ing the load. Constraints (35) guarantee that the amount transferred from one vehi-
cle to another does not exceed the capacity of either vehicle. Constraints (36) make 

(47)xk+1(�
+
k
(ok)) ≤ xk(�

+
k
(ok)) ∀k ∈ E⧵{|E|}

(48)xk(�
−
k
(i� + 1)) ≤ xk(�

−
k
(i�)) ∀i ∈ T ,∀i� ∈ T �(i)⧵{|T �(i)|},∀k ∈ C

(49)sik ∈ ℝ
+ ∀i ∈ V ,∀k ∈ K

(50)zik ∈ ℕ ∀i ∈ V ,∀k ∈ K

(51)�ik ∈ ℝ
+ ∀i ∈ V ,∀k ∈ K

(52)�ik ∈ ℝ
+ ∀i ∈ V ,∀k ∈ K

(53)xijk ∈ {0, 1} ∀(i, j) ∈ Ak,∀k ∈ K

(54)fijrk ∈ ℝ
+ ∀(i, j) ∈ Ak,∀k ∈ K,∀r ∈ R

(55)wirkk� ∈ ℝ
+ ∀i ∈ T ,∀r ∈ R,∀k, k� ∈ K

(56)yirkk� ∈ {0, 1} ∀ i ∈ T ,∀r ∈ R,∀k, k� ∈ K

(57)�ijkk� ∈ {0, 1} ∀ (i, j) ∈ Ak,∀k ∈ C,∀k� ∈ E



432	 D. Wolfinger et al.

1 3

sure that a vehicle leaves a transshipment node with the same amount of a request it 
arrived with, plus the amount of the request it received from other vehicles, minus 
the amount it gave to other vehicles. Constraints (37)–(39) determine the service 
time at each node. Constraints (40) ensure that the time windows are respected. 
Constraints (41) guarantee that a passive vehicle never moves on its own, but always 
together with an active vehicle. Constraints (42) ensure that the maximum number 
of passive vehicles per active vehicle is never exceeded. Constraints (43)–(44) regu-
late time synchronization between active and passive vehicles. Constraints (45)–(47) 
break the symmetry in the model with respect to the vehicles. Constraints (48) break 
the symmetry in the model with respect to the node duplicates of transfer locations. 
Constraints (49)–(57) give the domain of the decision variables.
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