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Abstract We introduce a new optimization problem, the Service Network Design

and Routing Problem that integrates long-haul and local transportation planning

decisions. Such a problem is particularly important for consolidation carriers that

face customer demands for fast delivery and thus must synchronize the different

levels of their transportation operations. We present two formulations of the

problem: (1) a route-based formulation that allows for the modeling of a rich set of

rules governing local delivery routes at the expense of increased instance size and

computational solve time, and, (2) an arc-based formulation that can be solved more

quickly but has less modeling power. We solve each with a Dynamic Discretization

Discovery algorithm that was recently proposed and designed for solving Service

Network Design problems that require the precise modeling of time. With an

extensive computational study, we examine the benefits of each formulation.
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1 Introduction

In many cases, a transportation company is tasked with transporting a shipment that

requires most, if not all of a delivery vehicle’s capacity. In such cases, the shipment is

large enough to generate revenues, such that it is economical to route the vehicle

directly from the origin of the shipment to its destination. Ground carriers that focus

their operations on these kinds of shipments are often referred to as truckload carriers.

However, there are other cases, wherein shipments are small relative to the capacity

of the delivery vehicle. In these cases, the carrier is faced with a different routing

problem, as the revenue generated by a single shipment is too small to cover the costs

of delivering that shipment directly from origin to destination. At the same time, the

size of the shipment relative to trailer capacity presents the opportunity to load

multiple shipments, each with a potentially different origin and final destination, into

one vehicle. As a result, carriers route these shipments through a network of terminals

to consolidate multiple shipments into one vehicle. Carriers that focus on these

shipments are often referred to as consolidation carriers, and typically participate in

one of the two industries: (1) Small package (e.g., UPS, FedEx, DHL) and (2) Less-

than-truckload (LTL) freight (e.g., XPO Logistics, UPS, Saia).

This network of carrier terminals, called consolidation network, facilitates the

consolidation of shipments for longer, inter-city or inter-regional, movements.

However, shipments must also be transported from the customer origin to a terminal

in this network associated with that city or region (and similarly from a terminal in

this network to the customer destination). Thus, consolidation carriers are faced

with the challenge of routing shipments and resources (e.g., vehicles) on two levels

and operations researchers have primarily studied methods that optimize the

operations on a single level. In the first level, carriers determine routes that originate

at a terminal in the consolidation network. These routes enable vehicles to pick up

shipments at customer origins for transportation through the consolidation network

as well as deliver shipments that have been transported through the consolidation

network to customer destinations. This first level is often referred to as the local

distribution (or local delivery routes) and is typically modeled with a variant of the

classical Vehicle Routing Problem with Time Windows (Toth and Vigo 2014) or of

the Pickup and Delivery Problem (Berbeglia et al. 2007; Parragh et al. 2008). Then,

in the second level, carriers must route shipments (and resources such as vehicles)

through the consolidation network to a terminal from which the local delivery routes

can then transport the shipment to the customer’s destination. This second level is

often referred to as the long-haul operation, and is typically modeled with a variant

of the Service Network Design Problem (SNDP) (Crainic 2000).

As such, each customer shipment often travels on three vehicle routes from origin

to destination. The first vehicle route transports the shipment from the customer

origin to an origin terminal in the consolidation network. The second vehicle route

transports the shipment from that origin terminal to a destination terminal in the
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consolidation network. Finally, the third vehicle route transports that shipment from

that destination terminal in the consolidation network to the customer destination.

As these three routes all carry the same shipment, they in turn require

synchronization. For example, it must be that the second route does not depart

from the origin terminal before the shipment arrives there. Similarly, the third route

must not depart from the destination terminal before the shipment arrives there.

Historically, to avoid modeling this synchronization explicitly and thus

decompose the problem into a separate VRP and SNDP, operation researchers

have made assumptions regarding the timing of local distribution. For example, it is

common to assume that the route for a shipment through the consolidation network

must arrive at the destination terminal by a certain time in the morning (to model

that it must be available for local routes before they depart). Similarly, it is common

to assume that a shipment will not be available at the origin terminal for routing

through the consolidation network until after a certain time in the evening (to model

that it will not be available for routing in the consolidation network until after the

local routes have returned).

However, both LTL and small package carriers are seeing increasing customer

demands for short transit times (sometimes called service standards). LTL carriers

are seeing these demands in part due to their role in supply chains and the rise of

just-in-time manufacturing approaches. Small package carriers are seeing these

demands in part due to their role in eCommerce. This paper is motivated by an

industrial collaboration with a logistics provider in France that promotes the

consolidation of the goods of retail suppliers from manufacturing facilities to retail

stores in city areas, through a network of logistics hubs called Collaborative Routing

Centers (CRCs). This logistics provider sees the synchronization of routes at CRCs

as a key element to reducing costs and satisfying customer delivery deadlines. In

general, for carriers that are considering offering the same-day delivery service of

shipments between cities or regions, the assumptions mentioned above, regarding

the timing of events, limit the routing options considered by the resulting

optimization methods. Such limitations can be costly and/or lead a carrier to forego

offering the services its customers desire.

As such, in this paper, we present two mathematical models and solution methods

for integrated long-haul and local transportation planning. We propose these models

and methods to assist carriers with the design of transportation systems that are able

to meet customer demands for short service standards in a cost-effective manner.

These models integrate the two levels of routing decisions, and explicitly recognize

the need for synchronization of routes. These models are derived from the time-

expanded network-based service network design model presented in Boland et al.

(2017). To effectively accommodate short transit times, we show how these new

models can also be solved by the Dynamic Discretization Discovery (DDD) solution

approach presented in that paper. As that method is an exact solution approach, the

solution approaches we present are exact as well.

While the two proposed models extend the model presented in Boland et al.

(2017), they differ in the degree to which they can capture operational realities. The

first extension models the vehicle routing problem corresponding to the local

distribution with route-based variables. Thus, it can capture all operational realities
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that can be encoded in a variable representing a route. For this extension, we treat

DDD as a black box, and limit our scope to instances of the extended model,

wherein routes are enumerated a priori (as opposed to generated on the fly via a

column generation-based method). To avoid the computational difficulties associ-

ated with enumerating routes, the second extension models the vehicle routing

problem associated with the local distribution with arc-based variables. While this

model does not suffer from the explosion in number of variables seen in the route-

based model, it implies modifications to the model for which DDD was initially

proposed to solve. Furthermore, the operational realities it can capture are limited to

those that can be expressed by the proposed arc-based VRP formulation.

Fundamentally, we believe that this paper presents multiple contributions. First,

it presents multiple exact solution approaches for a problem that is of critical

importance to both consolidation carriers in general, as customer is expressing

greater demands for short transit times, and a specific carrier in France. These

solution approaches are the first to capture the timing of activities at the precision

that is necessary when synchronizing transportation moves in the presence of short

transit times. Second, at the heart of these solutions, approaches are novel

formulations of the problem that illustrate how it can be modeled as a variant of the

SNDP. Third, by formulating the problem as a variant of the SNDP, we illustrate

how the DDD solution approach, which was originally presented in the context of

solving an SNDP with few complicating constraints, can be extended to variants

that model operational realities more accurately. Finally, with an extensive

computational study, we assess the effectiveness of each solution approach, their

sensitivity to instance characteristics, and validate the solution of the new models

proposed in this paper.

This paper is organized as follows. Section 2 presents the relevant literature,

contrasting it with the work presented in this paper. Section 3 then describes the

problem that we wish to study in greater detail. Section 4 presents the two

optimization models that we have developed for this problem, whereas Sect. 5

details how we solve them. Then, in Sect. 6, we present the results of an extensive

computational study, and in Sect. 7, we conclude and present avenues for future

research.

2 Literature review

While the SNDP seeks to route shipments from an origin terminal to a destination

terminal through a network of consolidation terminals, the VRP with Time

Windows seeks to deliver shipments from a terminal (often called a depot) to

customer locations within their respective time windows. Both of these problems are

well studied (see Toth and Vigo 2014; Crainic 2000) and efficient solution methods,

both exact and heuristic, have been developed for each. However, to our knowledge,

SNDP and the VRPTW are typically modeled and solved independently; no

previous work has been published on the integration of these two optimization

problems. In this section, we review the most relevant works that integrate the

SNDP and routing problem. We focus on the main features of the joint problem,
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namely the consolidation of shipments, the transfers of goods from one vehicle to

another, and the time constraints related to the synchronization of routes.

In the SNDP, vehicle routing aspects have been recently considered on the long-haul

network to integrate the management of assets (including trucks and trailers) in

optimization models. In the tactical design of load plans, this is mainly integrated as

balancing constraints on the number of vehicles entering and leaving each terminal (see,

for instance, Pedersen et al. 2009; Jarrah et al. 2009; Erera et al. 2013a). More recently,

vehicle management has been integrated through the design of cycles in scheduled

SNDP by Andersen et al. (2009a, b) and Crainic et al. (2016). The goal is to design a

cyclic planning which is motivated by the integration of various modes of

transportation, including regular lines (such as railroads). Closer to an operational

setting, Erera et al. (2013b) focus on determining the routes and schedules of drivers,

trailers, and tractors to perform a given load plan. In these contributions, the proposed

models and algorithms rely on a discretization of time which allows the authors to

model the problems on time–space networks. In this discretization, time period of a few

hours are acceptable in a tactical context but absolutely not for solving real-life vehicle

routing problems. One of the most detailed examples of discretization is given by Erera

et al. (2013b), who suppose an hourly time granularity for a time horizon of one week,

but the method supposes that the load plan is given before determining the routes. The

latest work of Boland et al. (2017) propose a dynamic construction of the time–space

network which allows the solution of the SNDP with a 1 min granularity. This

algorithm has not yet been extended to integrate assets management.

In vehicle routing, transfers between vehicles have been studied in the vehicle

routing problem with cross-docking (Wen et al. 2008), the pickup and delivery

problem with cross-docking (Petersen and Ropke 2011), the pickup and delivery

problem with transfers (Mitrović-Minić and Laporte 2006; Cortés et al. 2010), or

the two-echelon VRP (Crainic et al. 2009). In these problems, the temporal

synchronization of routes is a challenge both for exact and heuristic methods (Drexl

2012). The VRP with cross-docking considers one compulsory cross-dock where

goods from pickup routes can be transferred between vehicles to design delivery

routes. This problem has been solved with several meta-heuristics (Wen et al. 2008;

Tarantilis 2013; Morais et al. 2014; Grangier et al. 2016b) or branch-and-price

(Santos et al. 2011). The pickup and delivery problem with cross-docking extends

the VRP with cross-docking by considering that transiting through the cross-dock is

optional. It has been solved heuristically by Petersen and Ropke (2011) and with

branch-and-price by Santos et al. (2013). Routing through several cross-docks or

transfer points is considered in Dondo and Mendez (2014). In this paper, a

commodity can be routed from its origin to its destination through a long-haul trip

between two cross-docks where pickup routes and delivery routes are performed.

However, to handle synchronization in the proposed branch-and-price approach, all

pickup routes are supposed to end before all transfers between cross-docks, which in

turn are supposed to end before the beginning of all delivery routes. The pickup and

delivery problem with transfers also integrates transfer possibilities at several

transfer points in the design of pickup and delivery routes. Mitrović-Minić and

Laporte (2006), Cortés et al. (2010), Qu and Bard (2012), and Masson et al.

(2013a). An efficient handling of synchronization in heuristics has been proposed by
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Masson et al. (2013b). Nevertheless, the pickup and delivery problem with transfers

does not integrate long-haul routes and systematic consolidation aspects. Finally the

two-echelon VRP has been studied in city logistics. It considers that all

commodities originate at a single location and that they should be transferred from

large vehicles to small vehicles at satellites locations before being delivered to

customers. Up to now, only two meta-heuristics (Grangier et al. 2016a; Anderluh

et al. 2017) and one exact method (Dellaert et al. 2016) integrate time windows on

customers and temporal synchronization between vehicles. For a larger survey on

routing with intermediate facilities, we refer to Guastaroba et al. (2016).

In conclusion, the integrated planning of long-haul and local transportation is an

original problem which has not received much attention from the scientific

community. To our knowledge, no previous work has been performed on this

subject with the proposed flexibility on time.

3 Problem description

We introduce the Service Network Design and Routing Problem (SNDRP), which

seeks to transport a set of shipments from a set of supplier locations (e.g., a

warehouse or manufacturing facility) to customer locations (retail stores) through a

consolidation network. We illustrate the problem that we solve in Fig. 1.

We assume an operating network in which facility location and allocation

decisions have already been made. Specifically, each customer is assigned to a

single terminal from which its shipments are delivered and each supplier is assigned

to a single terminal to which it sends goods. We also presume that these terminals

only have outgoing flow of goods. We assume direct shipments from suppliers to

terminals, but allow for delivery routes that visit multiple customers.

Supplier

Customer

Breakbulk (BB)

Line-haul

Distribution

Fig. 1 Representation of the transportation network
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In this paper, we call line-haul network the network composed of consolidation

network and the supplier locations. These assumptions directly arise from our case

study, where many customers are delivered from a limited number of possibly

distant supplier locations.

Each shipment is defined by a supplier location (origin), a customer location

(destination), a quantity, an earliest time at which it can be picked up at the supplier

location, and a latest time by which it must be delivered to the customer location.

The shipments are transported in the line-haul network, through which they are

routed to the terminal associated with their customer location. From there, local

carriers pick up the shipments and deliver them to their ultimate destination. We

refer to terminals in the line-haul network as breakbulks (BB). For a given shipment,

we refer to terminals that are not associated with the customer location as

intermediate terminals, and the terminal that is associated with the customer

location the destination terminal.

When freight arrives at an intermediate terminal, it is unloaded from inbound

transportation, consolidated with other freight, and loaded onto outbound

transportation to another terminal in the line-haul network. Transportation between

terminals in a line-haul network may occur for many reasons, including (re)-

positioning transportation resources such as trailers for future moves and drivers

returning to their home terminal. However, in this paper, we only consider

transportation that occurs to move freight. To transport freight between two

terminals in the line-haul network, we must ensure that there is sufficient capacity.

We presume a unit of capacity (e.g., the volume that a single vehicle can transport)

and choose how many such units we will pay for, with each unit coming at a cost. In

this sense, transportation costs are fixed, as we pay for a certain amount of capacity,

regardless of how much of it is used. We presume that these costs (as well as the

times required for transportation) are proportional to the distance between terminals.

Upon arrival at its destination terminal, a shipment waits until a local carrier can

pick it up. In a sense, this layer of the problem can be modeled as a Service Network

Design Problem, with a commodity representing a shipment that has a given

supplier location as its origin and the terminal associated with the customer location

as its destination. However, while each shipment has a given available time, there is

no fixed due time at the destination terminal, as this is determined by the timing of

the local distribution.

Each destination terminal serves as a depot for a fleet of delivery vehicles. We

assign each vehicle a set of shipments to deliver, and then derive a route that begins

at the depot, visits the destination of each shipment at a time before it is due, and

then returns to the depot. As each shipment has a size, we must ensure that the

assignment does not violate the vehicle’s capacity. Each move along this route

comes at a cost, again independent of the volume being transported, and requires a

length of time. We also present one route-based formulation of the problem that

considers rules that dictate the structure of the route, e.g., labor and safety

regulations, limit on the total duration of a route.

In a sense, this layer of the problem can be modeled as a Vehicle Routing

Problem with Time Windows. However, the time at which the route may begin is

not known, as it depends on the times at which shipments are delivered to the
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terminal. As such, for each shipment, we must synchronize the timing of its delivery

to its destination terminal with the departure of the local delivery route that delivers

it. In addition, we must do so in a way that minimizes the total transportation costs

(both costs within the line-haul network and those incurred at the local delivery

route) while ensuring that each shipment is picked up at its supplier after it is

available and delivered to its customer before it is due. Finally, we presume that all

problem parameters (transportation costs and times, vehicle capacities, and

shipment sizes and available/due times) are known with certainty.

To summarize, the SNDRP consists of determining the number of vehicles

between suppliers and terminals and between terminals on the line-haul network,

the load plans of the vehicles, the delivery routes from each destination terminal,

such that: each shipment is routed from its origin to its destination in its time

window, and the sum of all transport costs are minimized. In the next section, we

present two optimization models that we have formulated of this problem.

4 Optimization models

A key ingredient of the SNDRP is time. Each shipment has an earliest time at which

it can be picked up at a supplier and a latest time at which it can be delivered to a

customer. In addition, each transportation move requires time. However, most

importantly, we need to synchronize the delivery of a shipment to its destination

terminal in the line-haul network with the departure of the local delivery route. As

such, to model time we use a time–space network, a graph wherein nodes encode

both a physical location and a time window during which activities occur at that

location. By routing freight on a time–space network, we ensure the synchronization

that we need, both in time and space.

In this section, we present two formulations for the SNDRP, both of which

formulate the problem as a type of SNDP on a time–space network. The first is

similar to the extended, route-based, formulations one sees in the literature on the

VRP (Desaulniers et al. 2006), wherein a variable encodes the choice of an entire

route. This formulation also allows us to model a rich set of rules governing local

delivery routes. The second is similar to the compact, arc-based, formulations one

sees in the literature on the VRP (Toth and Vigo 2014).

We first introduce notations and the SNDP model that are used for both

formulations. The two SNDRP formulations are presented in Sects. 4.3 and 4.4.

4.1 Notation

We first discuss how we model the physical network through which shipments are

routed. We let D ¼ ðN;AÞ represent a physical network with node set N and arc set

A. The node set is comprised of three sets of nodes: Nc, which denotes the set of

customer locations, Nbb; which denotes the set of breakbulk terminals, and Ns,

which denotes the set of supplier locations. As each customer location has an

associated breakbulk, we let NcðiÞ; i 2 Nbb denote the set of customers associated
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with breakbulk i. Conversely, we let bbðjÞ denote the one breakbulk associated with

customer j 2 Nc.

The arc set A contains arcs that model moves between different types of nodes.

Specifically, the arc set contains arcs between a supplier node and a breakbulk, e.g.,

of the form ði; jÞ; i 2 Ns; j 2 Nbb: The arc set also contains arcs that model

movements between two breakbulks and are of the form ði; jÞ; i; j 2 Nbb:
Associated with each arc a ¼ ði; jÞ 2 A is a travel time ttij, a fixed cost fij, a

variable cost cij; and a capacity uij. As the time spent loading and unloading freight

can have a critical impact on whether it is delivered on time, we embed these times

in the travel time of each arc. In short, the network D ¼ ðN;AÞ encompasses all the

locations depicted in Fig. 1, and in both formulations serves to model activities in

the line-haul network and in the local delivery routes.

From the physical network, we define a time–space network

DT ¼ ðNT ;HT [ AT Þ, where physical nodes and arcs are associated with time(s).

We let Ti ¼ fti1; :::; tinig represent the set of all time points at node i 2 N and

T ¼ [i2NTi. Then, the arc set At contains arcs of the form ðði; tÞ; ðj; tÞÞ where arcs

(i, j) belongs to the set of physical arcs A, t 2 Ti and t 2 Tj. In addition to arcs

derived from those in A, we model the opportunity for shipments to wait at a

terminal, either for later transportation to another terminal in the line-haul network

or pickup by a local delivery route. To do so, we let the arc set HT represent the set

of waiting arcs of the form ðði; tikÞ; ði; tikþ1ÞÞ 8i 2 N and k ¼ 1; :::; ni�1.

The set of customer shipments is denoted by K. Each shipment must be picked up

at its origin node ok 2 Ns no earlier than ek, and delivered to its destination node

dk 2 Nc no later than lk: We also presume that associated with each shipment is a

size qk: In both formulations, a shipment will be modeled as a commodity whose

origin node in the time–space network is node ðok; ekÞ and whose destination node

in the time–space network is node ðdk; lkÞ:

4.2 Service network design model

As both of our formulations are based on the SNDP, we next present that model,

using the notation just presented. We recall that the SNDP seeks to route a given set

of commodities, each from its origin to its destination, through a directed network.

To support such routes, one must install (potentially multiple) copies of each arc,

which corresponds to choosing a level of capacity. Each installation yields capacity

but also comes at a cost. There are many variants of the SNDP, including whether a

commodity must follow a single path from its origin to its destination or may

instead be ‘‘split’’ across multiple paths. In this work, we focus on the variant

wherein a commodity must follow a single path.

In the SNDP, commodities travel between terminals on the line-haul network.

Regarding our problem, suppliers play the role of terminals and are the origins of

commodities. Destinations are breakbulks. As we focus on a problem wherein a

commodity must follow a single path from its origin to its destination, we let the

binary variable xkttij represent whether commodity k uses arc ðði; tÞ; ðj; tÞÞ 2 AT . In

the SNDP, a variable cost cij is paid for each unit of flow on arc ði; jÞ 2 A. Regarding
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capacity, we let the variable yttij represent the number of vehicles that travel on arc

ðði; tÞ; ðj; tÞÞ 2 AT . The fixed cost, fij; and capacity level, uij; are associated with

these variables. In short, the SNDP seeks to

min Z ¼
X

ðði;tÞ;ðj;tÞÞ2AT

fij y
tt
ij þ

X

k2K

X

ðði;tÞ;ðj;tÞÞ2AT

cij qk x
ktt
ij ð1Þ

s:t:
X

ðði;tÞ;ðj;tÞÞ2AT [HT

xkttij �
X

ððj;tÞ;ði;tÞÞ2AT [HT

xkttji

¼
1 ifði; tÞ ¼ ðok; ekÞ
�1 ifði; tÞ ¼ ðdk; lkÞ
0 otherwise:

8
><

>:
8k 2 K; 8ði; tÞ 2 NT

ð2Þ

X

k2K
qkx

ktt
ij � uijy

tt
ij 8ðði; tÞ; ðj; tÞÞ 2 AT ; ð3Þ

xkttij 2 f0; 1g 8ðði; tÞ; ðj; tÞÞ 2 AT [ HT ; k 2 K; ð4Þ

yttij 2 N; ðði; tÞ; ðj; tÞÞ 2 AT : ð5Þ

The objective function (1) is the sum of the fixed transportation costs as well as any

variable costs associated with commodities transported by vehicles. Note that as the

network spans both the line-haul and local delivery routes, the transportation costs

include costs at both levels, as well. Constraints (3) ensure that each commodity is

routed from origin to destination through the time–space network. Constraints (4)

ensure sufficient capacity for each commodity move.

To formulate the SNDRP correctly, we must ensure that we accurately model the

routing, and corresponding costs, of shipments at both the line-haul and local

delivery routes. At the line-haul level, we must ensure that the shipment is routed

from the supplier location to the destination terminal and that the appropriate costs

are paid. This is modeled correctly (under the usual assumptions) by formulation

(1)–(5). However, the local delivery routes present further additional features that

we must model. Specifically, we must ensure that deliveries are made by vehicle

routes and that the capacity of each vehicle is satisfied. As such, we next discuss

how we construct a time–space network based upon known routes, such that our

problem can be formulated directly as an SNDP. After that, we discuss how we

adapt the variant of the SNDP presented above to our problem with an arc-based

VRP-type formulation.

4.3 Route-based formulation

In the route-based formulation, denoted FR, we presume a known set of routes. We

add a fourth set of (virtual) nodes, Nr; with each such node representing a local

delivery route. Specifically, for each BB i, we assume a set of routes Ri that visit
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customers in NcðiÞ: For each such route, r, we add the node vr to NR: Our network
then consists of the node set NFR ¼ Ns [ Nbb [ Nc [ NR:

We then let AR denote the set of arcs connecting these virtual nodes to the rest of

the network. Specifically, for each route r 2 Ri departing from breakbulk i, we add

two types of arcs to the set AR. The first is an arc of the form ði; vrÞ; from the

breakbulk to the node representing the route. Assuming that the transportation cost

of the route is given by cr; we associate with arc ði; vrÞ the fixed cost fivr ¼ cr and

the variable cost civr ¼ 0: We treat these arcs as uncapacitated and associate a travel

time of 0 with each such arc. The second type of arc we add to AR connects the node

modeling the route to the customers that it serves. Specifically, given a route r 2 Ri

that delivers commodities k 2 Kr , we add the arc ðvr; dkÞ to AR. We associate with

this arc fvrdk ¼ cvrdk ¼ 0: We associate with these arcs the travel time ttvrdk which is

equal to the sum of travel and service times on route r between its departure from

breakbulk i and its arrival on dk. We then define the set AFR ¼ A [ AR:
Note that given a route r 2 Ri that delivers commodities in the set Kr � K; by

examining the corresponding deadlines lk, we can compute a latest departure time,

sr; for that route from the breakbulk i. In this formulation, when representing this

route in the time–space network, we only consider nodes of the form (v, t) where

t� sr:
This modeling of the delivery routes is illustrated below for the problem of

Fig. 2c.

In this example, we first presume three commodities, k1, k2, and k3, associated

with breakbulk i. For the sake of readability, the respective destinations of these

commodities are also denoted by k1, k2, and k3. The times at which shipments to

those destinations must be delivered are given in Fig. 2a. Similarly, Fig. 2b gives the

travel time matrix between the breakbulk i and the destinations of all commodities.

Commodities lk
k1 2 p.m.
k2 4 p.m.
k3 2 p.m.

(a) Commodities

tt i k1 k2 k3
i 0 1:00 2:00 0:30

k1 1:00 0 3:00 -
k2 2:00 3:00 0 1:45
k3 0:30 - 1:45 0

(b) Travel times between customer
locations (in hours)

i

k1

k2

k3
0:30

2:00

1:00

1:45

3:00

l1 = 2p.m.

l2 = 4p.m.

l3 = 2p.m.

(c) Network

Fig. 2 Example of network creation: data of the problem
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Next, we model three potential delivery routes. In Fig. 3a, we present the sequence

of commodities delivered by each route and the corresponding latest departure time

for that route from the depot. As an example of this calculation, route r1 must

deliver commodity k2 by 4 p.m. but it takes 1 h to travel from i to the delivery

location of k1 and then 3 h between the delivery points of k1 and k2. Thus, the latest

time at which the route can depart from i is 12 p.m. We illustrate the network that

we create with virtual nodes in Fig. 3b. By constructing a network in this manner,

we are able to model the SNDRP as a classical Service Network Design Problem

defined on graph DFR ¼ ðNFR ;AFRÞ.

4.4 Arc-based formulation

We create a set of local arcs, denoted AL. This set contains arcs of the form

ðbbðjÞ; jÞ, where bbðjÞ 2 Nbb and j 2 Nc, that model a move from a breakbulk to a

customer location. It also includes arcs (i, j) between two customers, such that

bbðiÞ ¼ bbðjÞ. We then define AFA ¼ A [ AL and NFA ¼ Ns [ Nbb [ Nc. The arc-

based formulation of the SNDRP, denoted FA, is defined on graph

DFA ¼ ðNFA ;AFAÞ, In addition, we let ALT represent the arcs corresponding to AL

in the time–space network and HLT represent the set of waiting arcs for each

customer in Nc.

We then add constraints to the SNDP formulation (1)–(5) presented above to

ensure that the vehicle moves defined by the value of variables yttij; ði; jÞ 2 AL form

feasible routes. In our time–space network, a vehicle route begins at a breakbulk

r Commodity τr
r1 k1, k2 12:00 p.m.
r2 k2 2:00 p.m.
r3 k3, k2 1:30 p.m.

(a) Routes Ri

i

k1

k2

k3r3

r2

r1 l1 = 2p.m.

l2 = 4p.m.

l3 = 2p.m.

(fir3 = cr3 , ttir3 = 0)

(fir2 = cr2 , ttir2 = 0)

(fir1 = cr1 , ttir1 = 0)

fr3k3 = 0, ttr3k3 = 0 : 30

fr3k2 = 0, ttr3k2 = 2 : 15

fr2k2 = 0, ttr2k2 = 2 : 00

fr1k2 = 0, ttr1k2 = 4 : 00

fr1k1 = 0, ttr1k1 = 1 : 00

(b) Network with virtual nodes

Fig. 3 Enumerated routes and resulting network
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b 2 Nbb, and then take at path of arcs of the form ðði; tÞ; ðj; �tÞÞ, where i; j 2 NcðbÞ
and �t[ t.

We illustrate such a route in Fig. 4a, with details regarding the commodities to

deliver in Fig. 4a. In this figure, the route begins at ðbb1; t1Þ, delivers commodities

k1; k2; and k3, and then returns to the associated breakbulk at time t9.

To ensure that the values of the yt�tij variables form such a path, we add the

following two constraints to the SNDP formulation (1)–(5):
X

ððj;tÞ;ði;tÞÞ2ALT [HLT

yttji ¼
X

ðði;tÞ;ðj;tÞÞ2ALT [HLT

yttij 8i 2 Nc; ði; tÞ 2 NT ð6Þ

X

t2Ti

X

ððj;tÞ;ði;tÞÞ2ALT

yttji ¼
X

t2Ti

X

ðði;tÞ;ðj;tÞÞ2ALT

yttij 8i 2 Nbb: ð7Þ

Constraints (6) ensure that every arrival at a customer location is followed by a

departure to another node. These constraints ensure that the variables form a path

for each vehicle. Constraints (7) enforce that the number of routes starting from a

breakbulk equals the number of routes arrival at the same breakbulk. Recall that

distribution routes have only two types of arcs in the physical network: (1) arcs

between customers associated with the same breakbulk and (2) arcs between a

customer and its associated breakbulk. An arc leaving a customer either goes to

another customer associated with the same breakbulk or to the breakbulk itself.

Hence, a path that starts at a breakbulk ends at the same breakbulk.

Note that constraints (6) and (7) do not forbid a path that consists solely of moves

between customers (i.e., sub-tours on the physical network). Nevertheless,

constraints (3) impose a path for each commodity between its origin and its

destination. Hence, sub-tours never appear in an optimal solution.

Finally, we comment on how the formulation models the use of vehicles.

Specifically, we note that constraints (4), which link the flow of commodities to that

of vehicles, are only defined over arcs, AT are only defined on arcs that model

physical transportation. As a result, the model allows a commodity to flow on a

‘‘waiting’’ arc of HLT without an accompanying vehicle. For example in Fig. 4a,

commodity k2 is delivered to the customer one period early (t6Þ: The optimization

model allows for commodity k2 to travel on a waiting arc to its destination ðk2; t7Þ
without the use of a vehicle, with the vehicle continuing on its route to ðk3; t9Þ.

t1 t2 t3 t4 t5 t6 t7 t8 t9

bb1

k1

k2

k3

(a) Vehicle route in time-space network that begins at bb1

k dk lk
1 k1 t3
2 k2 t7
3 k3 t9

(b) Commodities

Fig. 4 Arc-based formulation
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Finally, we note that the capacity of the vehicles on local delivery routes is modeled

with the capacities on the arcs ði; jÞ 2 AL.

4.5 About model sizes

The SNDRP has the SNDP as a special case and is, therefore, NP-Hard. Both the

route-based formulation and the arc-based formulation suppose that local deliveries

are modeled on a time-expanded network. They necessitate a thinner level of

discretization than is usually needed in SNDP at the tactical level. Hence, the

theoretical models sizes make them too high to be solved by a solver. In this paper,

both models are solved with the DDD algorithm which is introduced in the

following section. DDD performs a progressive discretization of time which allow

to reduce the size of the models that are actually sent to the solver.

5 Solution approach

Historically, when modeling with a time–space network, the choice of time points to

model at each location was made a priori, and represented a trade-off between

model size and accuracy. For example, to model activities during a day, one could

choose to have two nodes, one that models activities from midnight to noon and

another that models activities from noon until midnight. This approach has the

advantage of only requiring two nodes, but may not accurately model when exactly

activities occur. This is particularly important in a setting wherein consolidation is

critical, as consolidation occurs not only in space but in time. If two shipments are

transported from terminal A to terminal B, with the first having to depart before 9

am and the second after 11 am, then consolidation cannot occur. Yet, in our two-

node discretization of a day, both would depart from the same node, and an SNDP

defined on that time–space network would perceive them as consolidating. Another

choice is to model the day with 24 nodes, one for each hour (e.g., (A, 0:00), (A,

1:00), . . .). Such an approach leads to a network and resulting SNDP that is

significantly larger. However, the SNDP defined on that network will have a more

accurate perception of consolidation opportunities.

The recent work of Boland et al. (2017) has shown that when solving SNDPs,

one can instead determine this discretization of time dynamically during the search

for an optimal solution in both space and time. The algorithm presented in that paper

referred to as a Dynamic Discretization Discovery (DDD) scheme requires three

inputs: (1) a network representing physical locations and transportation between

them, (2) a set of shipments, each with an available and due time that must be routed

through that network, and (3) a smallest possible time window to model at each

node. As an example, a smallest window of time could be 5 min, meaning that we

ideally wish to solve a SNDP defined on a time–space network that contains the

nodes (A, 9:00), (A, 9:05), (A, 9:10), etc. for each location A. Such a problem is

referred to as the Continuous Time Service Network Design Problem (CTSNDP).

As such, the DDD algorithm will produce a solution to the CTSNDP time problem

without enumerating all time points a priori. Specifically, its output is a route for
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each shipment both in space (the physical transportation moves) and time (when it

dispatches from each terminal). As time is a critical feature of the SNDRP, we seek

to leverage the capabilities of this algorithm (Fig. 5).

We do not describe in this paper the workings of the DDD algorithm in detail.

The interested reader should consult (Boland et al. 2017). Instead, we will describe

the steps the algorithm performs at a high level. Fundamentally, the algorithm is

relaxation-based, as it repeatedly solves a relaxation of the CTSNDP, checks to see

if the solution to the relaxation can be converted to a solution to the CTSNDP of the

same cost, and if not refines the relaxation. If it can, the algorithm terminates, as it

has found a solution that is optimal. A flow chart of the algorithm is given in Fig. 6.

That said, the relaxation is in itself an instance of the SNDP defined over what

the authors refer to as a partially time-expanded network. A partially time-expanded

network is one where locations are not all represented at every point in time; an

example is given in Fig. 7, wherein location j is only represented at time point 1,

location k at time points 2 and 3, and location l at time point 2. By starting with a

relatively small partially time-expanded network, and carefully refining it at each

iteration, the algorithm avoids the computational challenges associated with

performing a full enumeration of time points at locations.

However, for the resulting SNDP to be a relaxation of the CTSNDP, care must be

taken when constructing a partially time-expanded network. Boland et al. (2017)

prove the theoretical properties, but fundamentally, the partially time-expanded

network must be created in such a way that all paths that are feasible for the

CTSNDP have a corresponding path in the partially time-expanded network whose

travel time, as modeled by the nodes in the network, is shorter. Such paths are called

Early arrival paths. To further explain, we illustrate in Fig. 8a a network with four

nodes, and three arcs, with the travel times listed below each arc. Then, in Fig. 8b,

we depict two early arrival paths. The first, from i ! j ! k should take 2þ 2 ¼ 4

units of time, yet the network models it as taking only 3 as the arc ((j, 3), (k, 4))

underestimates the actual travel time of arcs of the form ððj; tÞ; ðk; t þ 2ÞÞ. Similarly,

the path from j ! k ! l is also an early arrival path as again, arc ((j, 3), (k, 4)) is

‘‘too short’’. Essentially, and in terms of the notation we have already introduced, to

create a partially time-expanded network that induces an SNDP that is a relaxation

of the CTSNDP, one must ensure that for every node ði; tÞ 2 NT and every arc

ði; jÞ 2 A; there must be an arc ðði; tÞ; ðj; t0ÞÞ 2 AT , such that t0 � t� ttij:
Next, we illustrate how a partially time-expanded network is refined when a

solution to the resulting relaxation cannot be converted to a solution to the CTSNDP

of equal cost. We first give in Fig. 9a the commodities that are to be routed, and in

Fig. 9b, we illustrate the physical network over which they are to be routed. We

presume that all arcs have capacity uij = 5, fixed cost fij = 10, and zero variable cost

Input:

– Physical network
– Shipments
– Smallest window of time

to model

Dynamic
Discretization

Discovery
(DDD)

Output:
Optimal shipment
routes in space and
time: xktt̄∗

ij and ytt̄∗
ij .

Fig. 5 Use of DDD algorithm
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(cij ¼ 0). We then illustrate in Fig. 9c a solution to the relaxation SNDP at an

iteration.

We observe that in this solution to the relaxation, commodities k1 and k2 are able

to consolidate on the arc ((j, 3), (l, 6)), meaning that the fixed charge for arc (j, l)

Solve SNDP defined over a partially
time-expanded network constructed so

as to produce a relaxation to
“continuous” time problem

Determine whether solution to
relaxation can be converted to a solution to

continuous time problem of same cost

STOP.
Solution is optimal

Refine partially time-expanded network
to more accurately reflect cost of

solution to relaxation

Yes No

Fig. 6 DDD flow chart

Fig. 7 Partially time-expanded
network

(a)

(b)

Fig. 8 Example network and early arrival paths
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need only be paid once. We next note that because k1 must arrive at l by time period

6, and arc (j, l) has travel time of 3, k1 cannot depart node j later than time period 3.

At the same time, we note that as commodity k2 becomes available at time 2 and the

arc (k, j) has travel time 2, k2 cannot arrive at node j until time period 4. Thus, in

this partially time-expanded network, arc ((k, 2), (j, 3)) being too short is enabling a

consolidation on arc ((j, 3), (l, 6)) that is not truly achievable. Thus, this solution

cannot be converted to one to the CTSNDP of the same cost.

The reason why arc ((k, 2), (j, 3)) is too short is because there is no node in the

current partially time-expanded network that enables us to model the actual travel

time. Thus, this is how the algorithm refines the network. It discovers an arc that is

enabling a phantom consolidation (e.g., the consolidation on arc ((j, 3), (l, 6)) in our

example), because it is too short and then adds a new node to the partially time-

expanded network that enables the true travel time of the arc to be modeled. In

Fig. 9d, we see that the node (j, 4) has been added, which enables the arc

((k, 2), (j, 3)) to be replaced with the arc ((k, 2), (j, 4)) which is the correct length.

Similarly, as arc ðj; lÞ 2 A; arc ((j, 4), (l, 7)) is added to the network. Now, the

consolidation that occurred in the solution to the previous relaxation cannot occur.

We refer the interested reader to Boland et al. (2017) to see details, regarding

how to discover such phantom consolidations as well as the arcs that enable them,

and methods for converting solutions to relaxations to solutions of CTSNDP of

potentially greater cost, but still high-quality. However, fundamentally, we are able

to use this algorithm as a black box for solving our problem, and we next discuss our

computational experiences doing so.

6 Computational results

This section presents the computational results for both formulations FR and FA.

We first describe the instances generated for these experiments. Then, we compare

(a)
(b)

(d)(c)

Fig. 9 Example of refining a partially time-expanded network
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the performance of the DDD algorithm on each formulation, and finally, we validate

the integration of the SNDP and VRP.

6.1 Experimental setting

Both the geographic and temporal aspects of the instances used in our computational

study are based on the logistics network of a French 3PL named 4S Network. In this

setting, customer locations correspond to distribution platforms for retail stores and

supplier locations correspond to areas wherein there are a large number of factories.

The 4S Network breakbulk facilities are called Collaborative Routing Centers

(CRCs).1

To be precise, we generate instances with the following characteristics:

– The total number of commodities is either 25, 50, 100, or 200. We recall that a

customer can receive only one commodity; hence, there are as many customer

locations as commodities. Ten sets of commodities are created for each instance

size, which gives 10� 4 ¼ 40 different commodity sets.

– The width of the time windows ½ek; lk� either varies between 12 and 24 h (tight

time windows category) or between 24 and 36 h (wide time windows category),

according to the distance between the origin and destination of the commodities.

– For each commodity set, four instances are generated, using different number of

BB (4, 6, 8, and 10). To allow a better comparison, the logistics network which

integrates 4 BB is included in the logistics network with 6 BB, etc. This permits

us to observe the costs variations related to the number of BB in the network,

although customers assignment may differ when the number of BB increases.

Thus, 40� 2� 4 ¼ 320 instances are generated. Instances are available at http://

www.vrp-rep.org/datasets/item/2017-0030.html and the solutions are available upon

request.

To limit the number of variables in the formulation FR, the set of vehicle routes

has been restricted. As generally observed in the practical application that motivated

this study, the maximal number of customers per route is limited to four. Hence, in

our experimentations, both formulations are not strictly equivalent and the

resolution of FR gives an upper bound of the resolution of the SNDRP.

Regarding our experimental setting, we execute the DDD algorithm on each

instance of each formulation for a maximum of 2 h and an optimality gap of 1%. We

also allowed each execution of the algorithm at most 1 GB of RAM. We note that

DDD’s guarantee of convergence is predicated upon the ability to build and solve an

MIP at each iteration. As a result, it is possible that with an MIP exceeding the

memory limit allowed, the algorithm can terminate without finding a feasible

solution. In the next section, we first study the ability of the DDD algorithm to solve

instances of each formulation. Finally, recall that the problem we seek to solve

integrates two problems, the SNDP and the VRP, that are traditionally solved in a

separate and sequential manner (i.e., SNDP then VRP). Thus, we finish the next

section by validating the use of the integrated problem we propose to solve. To do

1 http://www.crc-services.com/.
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so, we compare the quality of the solution produced when solving the arc-based

formulation of this problem with the one produced by solving the separate problems

in a sequential manner.

6.2 Ability of DDD to solve route and arc-based formulations

We first study the ability of the DDD algorithm to solve instances of the route-based

formulation, FR: Specifically, we report in Fig. 1, for each value of the number of

commodities and of the number of CRC, the following four statistics: (1) the

percentage of instances for which the algorithm was able to produce a feasible

solution (i.e., did not exceed the memory limit when solving an MIP at an iteration),

(2) the percentage of instances it could solve to optimality, (3) the average amount

of time, in seconds, that DDD required to solve those instances to optimality, and

(4) the optimality gap DDD reported at termination, averaged over all instances.

We see that while FR allows us to model rich rules governing local delivery

routes, it is very difficult to solve. This is primarily due to the large size of these

instances that results from enumerating routes a priori. We see that the number of

commodities has a significant impact on the ability of DDD to solve an instance.

That said, we see that the number of CRCs also has an impact on DDDs

Table 1 Computational results with the route-based formulation (FR)

# Commodities # CRCs % Feasible % Optimal Time to optimal (s) Optimality gap (%)

25 4 100 100 240 0.86

6 100 100 205 0.88

8 100 83 2247 1.54

10 100 5 5106 7.22

Average 100 72 1895.5 2.63

50 4 78 78 1084 0.94

6 80 23 2983 3.44

8 85 0 – 9.42

10 85 0 – 25.28

Average 82 25.25 2033.5 9.77

100 4 50 18 1971 1.77

6 50 0 – 7.30

8 50 0 – 14.58

10 50 0 – 24.91

Average 50 4.5 1971 12.14

200 4 25 3.00 774 2.32

6 25 0 – 6.87

8 25 0 – 14.76

10 25 0 – 20.23

Average 25 0.75 774 11.05
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performance, as the percentage of instances with 25 commodities that it can solve

decreases as the number of CRCs increases. Similarly, we see that for instances with

four CRCs, DDD is able to produce a solution of relatively high quality in a

reasonable run-time.

We next turn our attention to the ability of DDD to solve instances of the arc-

based formulation, FA. Table 2 presents the same statistics reported in Table 1,

however, derived from solving instances of formulation FA.

We see that, on instances of this formulation, DDD produces a feasible solution

for every instance, and solves many of them in a short amount of time. We also note

that overall but the largest instances DDD is able to produce a solution with a small

optimality gap. Like the route-based formulation, DDD’s performance depends on

both the number of commodities and the number of CRCs. While the percentage of

instances for a given number of commodities that are solved to optimality remains

roughly the same as the number of CRCs increases, the time DDD needs increases.

We next turn our attention to the sensitivity of DDD’s performance to

commodity time window width when solving the arc-based formulation. Specif-

ically, we report in Table 3 the % optimal and time to optimal statistics, averaged

over instances with the same number of commodities and time window width.

Table 2 Computational results with the arc-based formulation (FA)

# Commodities # CRCs % Feasible % Optimal Time to optimal (s) Optimality gap (%)

25 4 100 100 7 0.44

6 100 100 8 0.42

8 100 100 13 0.49

10 100 100 20 0.37

Average 100 100 12 0.43

50 4 100 100 75 0.51

6 100 90 680 2.55

8 100 80 1119 1.07

10 100 60 808 1.75

Average 100 82.50 670.5 1.47

100 4 100 80 1398 0.59

6 100 40 56 3.15

8 100 45 89 4.64

10 100 45 145 7.54

Average 100 52.5 422 3.98

200 4 100 50 901 1.55

6 100 40 402 3.60

8 100 45 670 8.49

10 100 45 1223 13.59

Average 100 45 799 6.81
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We see that the performance of DDD is highly sensitive to the width of

commodity time windows, as it is able to solve nearly all instances with 24 h time

windows, regardless of the number of commodities in the instance. To be precise,

DDD is able to solve 97.06% of instances that have a 24 h time window, and needs

only 216.99 s, on average, to do so. However, DDD is only able to solve 48.57% of

instances that have a 36 h time window, and needs 3358.76 s, on average, to do so.

We finish with a direct comparison of DDDs ability to solve instances of each

formulation. We repeat in Table 4 the % optimal statistics from the previous tables,

by number of commodities and number of CRCs, for each formulation. The results

in Table 4 clearly show that DDD is able to solve many more instances of the arc-

based formulation than the route-based formulation. It also highlights that the arc-

based formulation is more robust with respect to the number of CRCs. While DDDs

performance when solving instances of the arc-based formulation does degrade as

the number of CRCs increases, it does so at a much slower rate than when solving

instances of the route-based formulation.

As mentioned earlier, one drawback of the route-based formulation is that it

relies on an enumeration of routes, which in turn greatly increases instance size. To

study that further, we report, in Table 5, the size, in terms of numbers of variables

and constraints, of the last integer program solved by DDD in the course of solving

an instance of each formulation. We see that the route-based formulation does,

indeed, induce much larger integer programs, which in turn hampers DDDs ability

to solve instances of that formulation. We also see that the differences in numbers of

variables and constraints grow in the number of commodities.

6.3 Validating the SNDRP

We finish by validating the solution of the SNDRP, which integrates the decisions

prescribed independently by the SNDP and the VRP. To do so, we consider the arc-

based formulation of the SNDRP and decompose an instance of this formulation

into one SNDP instance and one VRP instance. We solve the SNDP instance (with

DDD) to determine the path each commodity follows through the line-haul network.

These paths partially determine arrival times for commodities at their respective

destination terminals, which can then be used to formulate and solve an instance of

the VRP.

Table 3 Sensitivity of DDD performance to time window width

Time

window

width

25 commodities 50 commodities 100 commodities 200 commodities

%

Optimal

Time to

optimal

(s)

%

Optimal

Time to

optimal

(s)

%

Optimal

Time to

optimal

(s)

%

Optimal

Time to

optimal

(s)

12–24 h 100 2.25 89 194.13 100 80.89 100 624.66

24–36 h 100 21.70 56 3181.48 33 6369.80 0 3862.05

Average 100 11.98 72 1687.80 65 3434.97 50 2351.27
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That said, these commodity arrival times constrain the feasible region of the

resulting VRP, as they, along with the commodity due times, dictate the amount of

time available for routing the commodity to its destination. As the SNDP does not

recognize the impact of these arrival times on the cost of the resulting VRP, we

solve an auxiliary optimization problem that determines dispatch times for each

commodity on each arc in its respective path in such a way that it arrives at its

destination as early as possible, while the consolidations in the optimal solution to

the SNDP are maintained. As such, we create an alternative optimal solution to the

SNDP that allows for greater flexibility in the resulting VRP instance. This instance

of the VRP is also solved with DDD (i.e., it is formulated as an arc-based

formulation of the SNDP). We present the auxiliary optimization problem that we

solve in Appendix A.

The solutions to the SNDP and VRP instances are then combined to construct a

feasible solution to the SNDRP, with objective function value zSNDPþVRP. We

compare this objective function value with the objective function value of a solution

to the SNDRP produced by DDD, denoted zSNDRP: Specifically, we compute the gap

ðzSNDPþVRP � zSNDRPÞ=zSNDPþVRP. We consider arc formulation instances with 25 or

50 commodities as we seek to validate the use of the SNDRP with optimal solutions

to the SNDRP and those are the instances that DDD is most likely to solve. We

report in Table 6a averages of these gaps, averaged over instances with the same

number of commodities and time window width. We also report in Table 6b the

average time DDD required to solve these instances. Specifically, the time DDD

Table 4 % of instances DDD can solve, by formulation

# Commodities 4 CRCs 6 CRCs 8 CRCs 10 CRCs

FR (%) FA (%) FR (%) FA (%) FR (%) FA (%) FR (%) FA (%)

25 100 100 100 100 83 100 5 100

50 78 100 23 90 0 80 0 60

100 18 80 0 40 0 45 0 45

200 3 50 0 40 0 45 0 45

Average 49.75 82.50 30.75 67.50 20.75 67.50 1.25 62.50

Table 5 Sizes of final integer programs solved by DDD, by formulation

# Commodities # Variables # Constraints

FR FA FR FA

25 6631.56 32,717.24 3153.25 9425.99

50 33,874.11 118,824.44 11,733.85 34,516.38

100 103,315.24 187,360.81 40,470.01 63,003.74

200 234,868.75 336,042.75 121,096.76 175,824.45
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required to solve instances of the SNDRP as well as the sum of the time DDD

required to solve an instance of the SNDP and the time required to solve the

corresponding VRP instance.

We see that solving the integrated problem yields nearly 3% in savings, on

average. Not surprisingly, the savings are greater with instances that have narrower

time windows, as those are the instances for which the paths through the line-haul

network have the greatest impact on the feasible region of the local delivery routes.

We also see that the savings increase, on average, as the number of commodities

increases, suggesting that similar if not greater savings may exist for larger

instances. We also see that the SNDRP is a harder problem to solve, as the time

required to do so is greater. The results also suggest that this increase in

computation time may also increase with the number of commodities. From these

results, we conclude that the SNDRP is worth solving, particularly given that it may

be solved in settings wherein planning is done for a weekly (if not shorter) time

period, and thus a 3% savings can yield significant annual savings. However,

heuristic methods may be necessary for such situations where run-times appropriate

for practice are short.

7 Conclusions and future work

In this paper, we introduced a new optimization problem that integrates a Service

Network Design Problem (SNDP) on a line-haul network, and one Vehicle Routing

Problem (VRP) in each local distribution networks starting from a breakbulk

location. We called this problem the Service Network Design and Routing Problem

(SNDRP).

We proposed two solution approaches for this problem. Both involve formulating

the problem as a variant of the SNDP, and then solving that variant with the

Table 6 Comparison of solving

SNDRP and SNDP ? VRP
(a) Savings produced by solving SNDRP vs SNDP ? VRP

# Commodities Time window width

24 h (%) 36 h (%) Average (%)

25 1.70 1.31 1.51

50 4.33 3.78 4.05

Average 3.02 2.55 2.78

(b) Solve time for SNDRP and SNDP ? VRP

# Commodities SNDRP (s) SNDRP ? VRP (s)

25 20.81 13.65

50 1939.18 1117.79

Average 979.99 565.72
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Dynamic Discretization Discovery (DDD) algorithm introduced in Boland et al.

(2017). While similar in structure, the approaches differ in their modeling

capabilities and computational complexity. The first, a route-based formulation, is

based on a given set of potential local distribution routes, and thus enables the

modeling of many real-life constraints and cost structures. However, similar to

route-based formulations of the VRP, instances of this formulation suffer from an

explosion in size when there are many potential routes, and thus are hard to solve for

all, but the smallest instance sizes. That said, for a carrier that already has a

reasonably small set of potential candidate routes, solving the route-based

formulation may not be overly time-consuming. The second, an arc-based

formulation, employs variables and constraints that are analogous to those seen in

a compact VRP formulation. While this formulation is less amenable to modeling

real-life considerations, it does not suffer from the same explosion in instance size,

and thus is much easier to solve. For a carrier with operational constraints that

cannot be modeled with this formulation, this arc-based solution approach could be

used as a tool for determining shipment paths through the line-haul network as well

as dispatch times for local delivery routes. These dispatch times as well as the

shipments that are to be picked up for local delivery at those times could then be

used as input to a more classical VRP-type model. Such an approach could yield

savings for the carrier as it would still approximate the time needed for local

delivery when determining shipment paths through the line-haul network, and thus

produce shipment paths that are amenable to cost-effective delivery routes.

Several research directions emerge from this work. Regarding the route-based

formulation, dynamically generating routes instead with column generation

techniques could reduce the number of variables and thus enable the solution of

larger instances. A second direction is to extend the modeling capability of the arc-

based formulation. The prior assignment of each customer location to a unique

breakbulk could be avoided by integrating new constraints stating that vehicle must

start and finish their route at a same (yet to be defined) breakbulk. Another direction

of great practical interest concerns modeling pickup and delivery routes instead of

routes that only perform deliveries. Finally, a last direction concerns an integrated

model for the location of breakbulks that recognizes the impact of those locations on

routing through the line-haul network as well as local delivery areas.
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A Optimization problem solved to determine commodity arrival times
in SNDP 1 VRP

In this section, we present the optimization problem that is solved in the SNDP ?

VRP solution approach described in Sect. 6.3. Recall that in that solution approach,

an instance of the SNDRP is decomposed into an instance of the SNDP, which is

solved to (partially) determine the corresponding instance of the VRP that must be

solved. Specifically, the SNDP instance is solved to determine the paths for

commodities through the line-haul network from their origin terminal to their

destination terminal. While the corresponding instance of the VRP that must be

solved is partially determined by the times at which commodities arrive at

destination terminals, a given collection of commodity paths may yield sets of

potential arrival times. As mentioned in Sect. 6.3, to implement SNDRP ? VRP, we

solve an auxiliary optimization problem which seeks to determine dispatch times for

each commodity on each arc in its respective path in such a way that the commodity

arrives at its destination as early as possible, while the consolidations in the optimal

solution to the SNDP are maintained. We next present this optimization problem.

Having solved the SNDP instance for the optimal solution ð�y; �xÞ, we denote the

path taken by commodity k in that solution by pk ¼ fi0; . . .; imk
g, where i0 is k0s

origin terminal and imk
its destination terminal. Namely, pk consists of the arcs

ði; jÞ 2 A and times t 2 Ti, such that �xkt�tij ¼ 1: Next, for arc ði; jÞ 2 A; t 2 Ti, we let

Kt
ij represent the set of commodities that dispatch at time t on arc (i, j) in the optimal

solution to the SNDP. Formally, Kt
ij consists of all commodities k, such that �xkt�tij ¼ 1:

We let the set Tij denote the set of time points t at which arc (i, j) dispatches in the

optimal solution to the SNDP, or, the set of time points t, such that �xkt�tij ¼ 1 for some

k 2 K: The set Kt
ij represents the consolidations that we seek to maintain. We let the

continuous variable dkiv�1;iv
denote the time at which commodity k dispatches on arc

ðiv�1; ivÞ in its path, pk: Then, to determine the times at which commodities arrive at

destination terminals, we solve the following optimization problem:

minimize
X

k2K
dkmk�1;mk

þ ttkmk�1;mk

subject to

dki0;i1 � ek 8k 2 K; ð8Þ

dkiv�1;iv
þ ttiv�1;iv � dkiv;ivþ1

8v ¼ 0; . . .;mk � 1; k 2 K ð9Þ

dkimk�1;imk
þ ttimk�1;imk

� lk 8k 2 K; ð10Þ

dki;j ¼ dk
0

i;j 8ði; jÞ 2 A; t 2 Tij; k; k
0 2 Kt

ij; ð11Þ
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dkiv�1;iv
� 0 8v ¼ 0; . . .;mk � 1; k 2 K: ð12Þ

The objective seeks to minimize the sum of times at which commodities arrive at

destination terminals. Constraints (8) ensure that each commodity departs from its

origin terminal after the time at which it is available. Constraints (9) ensure that the

dispatch times observe arc travel times, whereas constraints (10) ensure that each

commodity arrives at its destination before it is due. Constraints (11) ensure that if

commodities travel on an arc at the same time in the optimal solution to the SNDP,

they still do so with these new dispatch times. Finally, constraints (12) define the

decision variables for the optimization problem and their domain. After solving this

optimization problem for the dispatch times �dkiv�1;iv
, the times �dkmk�1;mk

þ ttkmk�1;mk
are

the times at which commodities are available for delivery in the local distribution

network.
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