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Abstract Building on the work of Gendreau et al. (Oper Res 44(3):469–477, 1996),

and complementing the first part of this survey, we review the solution methods

used for the past 20 years in the scientific literature on stochastic vehicle routing

problems (SVRP). We describe the methods and indicate how they are used when

dealing with stochastic vehicle routing problems.
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1 Introduction

The vehicle routing problem (VRP) was proposed as a generalization of the

traveling salesman problem by Dantzig and Ramser (1959), though the name used

back then was ‘‘the truck dispatching problem.’’ Also the name ‘‘clover leaf

problem’’ was suggested, because of the shape of a solution: a set of loops with a

point in common. The term ‘‘vehicle routing’’ did not appear in the literature until

the early 1970s (Eksioglu et al. 2009).

Several versions of the vehicle routing problem have been proposed, such as the

capacitated vehicle routing problem (CVRP) (Toth and Vigo 2002). Different

authors—e.g., Cordeau et al. (2002) and Toth and Vigo (1998)—have defined this

version of the problem given an undirected graph G ¼ fV ;Eg, where V ¼
fv0; v1; . . .; vng is the vertex set, and E ¼ fðvi; vjÞ : vi; vj 2 V; i\jg is the edge set.
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v0 represents the depot, and the other vertices represent the customers, each having a

non-negative demand, qi. The set E has an associated cost matrix cij, representing

the cost of traveling from vertex i to vertex j ðcij ¼ cjiÞ, in the symmetric case. A

fleet of m vehicles with equal capacity Q is based at the depot. The solution to the

problem is the one that minimizes the total routing cost, and the total demand of the

customers in one route can not be greater than Q. Every customer is visited once by

just one vehicle. Each tour includes the depot.

Several other versions can be found, depending on considerations and/or

constraints included in the problem, e.g., the vehicle routing problem with time

windows (VRPTW), vehicle routing problem with pickups and deliveries (VRPPD),

vehicle routing problem with backhauling (VRPB), vehicle routing problem with

distance constraints (DCVRP) (Toth and Vigo 2002).

To better describe the real world, stochastic data may be included in the model.

In this case a new problem arises, the stochastic (capacitated) vehicle routing

problem (SVRP or SCVRP). A tutorial with a synthesis of some recent literature can

be found in Gendreau et al. (2014). A detailed description of the different problems

found in the recent literature was presented in the first part of this survey (Oyola

et al. 2016). Due to the complexity of the problem, considerable efforts have been

put into solving the different versions of VRPs. Here, we attempt to provide a

description of the different solution methods used in the latest formulations of the

SVRP.

This survey proceeds in Sect. 2 with a summary of the various solution methods

applied for solving SVRP variants. Tables summarizing the literature are presented

in Sect. 3. Finally, Sect. 4 provides a brief summary of this work review.

2 Solution methods

Several approaches have been used for solving (or dealing with) different variants of

the stochastic VRP. Here a review of these approaches is presented, trying to cover

most of the methods designed to tackle such problems. The major dichotomy in

terms of solution methods is of course between exact methods on one side versus

heuristic methods on the other.

2.1 Exact methods

Although realistic stochastic VRP problems are often hard to solve, exact methods

have been employed with some success. These methods view the problem as special

case of an integer-, or mixed-integer program and employ some form of branching,

so that eventually a probably optimal solution will be found. Even when employed

on instances that are too large for full convergence, the methods can often find very

good solutions.
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2.1.1 Integer L-shaped method

The integer L-shaped method is a branch-and-cut algorithm that can be described in

seven steps (Hjorring and Holt 1999; Laporte et al. 2002; Jabali et al. 2014). It can

start using a previously found feasible solution (by another heuristic) as in Hjorring

and Holt (1999) or with no initial feasible solution as in Laporte et al. (2002) and

Jabali et al. (2014). General steps given here are those described in Laporte et al.

(2002). The methods operate at each node of the search tree on a subproblem called

the ‘‘current problem’’ (CP). Initially, it is the result of relaxing integrality, subtour

elimination and capacity constraints in the original problem. In addition a lower

bound h replaces the expected recourse cost in the objective function. CP is

modified by adding constraints once violations are found.

1. The iteration count is set equal to zero. A new constraint, h� L, is added to the

original problem, with L a lower bound on the expected recourse cost. The

objective value of the best found solution is set to 1. The only pendent node in

the search tree corresponds to the initial current problem.

2. A pendent node is selected from the tree. If no pendent node exists, stop.

3. The iteration count is increased by one. The CP is solved, finding an optimal

solution to it.

4. If there are any capacity or subtour elimination constraint violations, then at

least one constraint is added. A lower bounding functional (LBF) may also be

generated and added and the algorithm returns to Step 3. Otherwise, if the

objective function of CP is greater than or equal to the objective function of the

best solution found so far, the current node is fathomed and the algorithm

returns to Step 2. LBFs are constraints that strengthen the lower bound of the

recourse cost, and are associated with partial routes, which is to say: routes

where a subset of customers are ordered in a particular way.

5. If integrality constraints are violated, branching is done on a fractional variable.

The corresponding subproblems are added to the pendent nodes in the search

tree and algorithm goes to Step 2.

6. The expected cost of the recourse is computed for the optimal solution of the

current problem, and added to the objective function, instead of h. The objective

function value of the CP is compared to the objective function value of the best

found solution, from that comparison optimal solution to the CP can become the

best found solution.

7. If the lower bound, h, for the expected recourse cost of the optimal solution to

the CP, is greater than or equal to its actual expected recourse cost, the current

node is fathomed and the algorithm goes to Step 2. Otherwise, an optimality cut

is imposed and the algorithm goes to Step 3. The optimality cut just forces the

algorithm to move to another solution that differs with the current in at least two

edges not incident to the depot. The reason for that is that better solutions may

exist since the lower bound h is strictly less than the actual expected recourse

cost.
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In Hjorring and Holt (1999) the L-shaped method was used to solve the single

vehicle CVRPSD. Just one route is evaluated at the time, since the model is dealing

with just one vehicle. A general lower bound for the expected value of the recourse

action is imposed as optimality cuts. They use the concept of partial routes, where

the same cut will improve the lower bound for all the solutions that share specific

sequences of customers. The lower bound for a partial route is equal to the

contributions from sequenced customers and bounds for exact stockouts (for the

case of the discrete demand distributions) and normal stockouts in the subset of

unsequenced customers. In general, the customers in the sequence are those near the

depot, at the beginning and the end of the route. A subset of unsequenced customers

is between them. A tighter lower bound was determined by considering just the

customers at the end of the route. Starting from empty sequences, a greedy strategy

is used to determine the partial routes. Two customers not included yet in the partial

route are evaluated for insertion into it: the customer that according to the sequence

in the current solution is closer to the depot at the beginning of the route and the one

closer to the depot and the end of the route. The one that increases the value of the

lower bound for the partial route is selected. The selected customer will have the

same position, with respect to the depot, in the partial route and in the current

solution. From all partial routes contained in the current solution, one is selected for

use in the optimality cut to be added. The selection takes into account the lower

bound value and the number of edges, where the idea is to have a small number of

edges, but greater lower bound than the actual solution. Two versions of the

algorithm are compared, one using specific optimality cuts and the other using cuts

obtained from partial routes. The latter version managed to solve more problems to

optimality and was generally faster. Instances with up to 90 customers and 105% of

mean total demand computed as percentage of vehicle capacity, were solved to

optimality.

The integer L-shaped method was used in Laporte et al. (2002) to solve the

CVRPSD. The lower bounds are computed assuming that at most one stockout will

occur per route. The problem of finding L is presented in a general way, for any

probability distribution. It is then solved for demands that follow Poisson

distributions and normal distributions. The LBFs are defined using the concept of

lower bounds of the expected recourse cost of partial routes. In the routes where it

exists, it is computed with a method similar to that used by Hjorring and Holt

(1999), in the routes where that lower bound does not exist, it is computed as L, but

using just the customers in such routes and the number of routes as the number of

vehicles. The result is a constraint that establishes another lower bound for h. A

separation procedure uses a heuristic to define the subsets of customers that will be

treated as consecutive (two; one on each end of the route) and unstructured subsets,

for each partial route. Instances with a number of customer varying from 25 to 100

vertices and a number of vehicles between two and four were solved to optimality.

An extension of the integer L-shaped method in Hjorring and Holt (1999) and

Laporte et al. (2002) was used in Jabali et al. (2014) for solving the CVRPSD

exactly. In this version LBFs are used to eliminate infeasible solutions. Applied to

CVRPSD, the LBFs strengthen the lower bound of the recourse cost associated with

partial routes found during the process. The construction of the LBF exploits the
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information provided by partial routes and are developed based on the structure of

the partial route. An exact separation procedure identifies partial routes and

generates the corresponding bounds. A basic LBF implementation is compared with

an integer L-shaped algorithm with no LBF. The version with LBF was able to solve

more instances to optimality, and the run-times are less than half the ones used by

the implementation with no LBF. The exact separation procedure generates better

results than the heuristic used in Laporte et al. (2002). The LBF reduces the number

of cuts added to the relaxed problem. The algorithm is able to solve instances with

up to 60 vertices and four vehicles, and 80 vertices and two vehicles. The recourse

cost is computed analytically.

The L-shaped method is also used in Chang (2005) to find solutions to a VRP

with time windows and stochastic demands (VRPTWSD) was studied in Chang

(2005). Recourse cost is computed analytically. A lower bound searching module is

introduced, as well as a current solution calculation module. The method is tested on

modified versions of Solomon’s instances, with experiments performed on instances

with up to 40 customers and four vehicles.

2.1.2 Integer L-shaped method with local branching descent

Local branching for the 0–1 integer L-shaped method is introduced in Rei et al.

(2007). General principles of the algorithm are presented for solving integer

stochastic problems, which are applied to the single vehicle CVRPSD. The main

departure from the regular integer L-shaped method is a branching process when the

optimal solution to a subproblem is not integer. The result is a method that tackles

stochastic optimization problems with binary first stage variables. From a CP, two

subproblems are obtained by adding constraints that divide the feasible space. One

subproblem will have as a feasible space the solutions with no more than a given

number of elements that are different from the binary elements in the optimal

solution to the CP. The other subproblem corresponds to a larger feasible space; the

solutions with more than a given number of elements that are different from the

binary elements in the optimal solution to the CP. This larger feasible space can

later be divided by adding more constraints of the same kind. When the smaller

problem is not feasible, the parameter that indicates the maximum number of

elements different from the optimal solution may be increased. Lower bounds are

generated for each explored subregion of the feasible space. The standard L-shaped

algorithm with partial route cuts (Hjorring and Holt 1999) is compared with two

implementations of local branching, using cuts either locally or globally generated.

Local branching with cuts generated locally outperforms the other implementations,

solving instances with up to 90 nodes.

2.1.3 Branch-and-cut

A method that solves the deterministic equivalent of the stochastic problem was

proposed to solve the VRP with stochastic travel times (Kenyon and Morton 2003).

This method is applicable when the cardinality of the sample space is not large and

it is proposed to deal with the two versions of the problem: the minimization of the
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completion time and the maximization of the probability of being completed within

a target time. However, the tests were done just for the first case. A probability of

occurrence is assigned to each of the realizations of the stochastic parameters. The

problem is then modeled as the minimization of the expected value of the objective

function. For each possible realization of the parameters, a deterministic problem is

solved. The method is based on branch-and-cut and it is applied to a model where

the subtour elimination constraints are relaxed. The optimization problem is solved

and if no subtours exist, the solution is optimal. If there are subtours not including

the depot, a new solution is built joining each subtour with the main tour assigned to

the same vehicle. The new solution is evaluated and if it is within a preselected

percentage from the optimal solution, the algorithm stops. The percentage is

computed using the objective function of the solution to the relaxed problem (lower

bound) as a reference. If the new solution is not within the given percentage of the

optimal solution, subtour elimination constraints are added and the procedure is

repeated. The method was tested on four instances, each of which was a nine node

network and had a fleet of two vehicles. Travel time follows a discrete distribution.

The results were compared with the optimal solutions to the problem where mean

values for the parameters are used. Solutions to the stochastic models (completion

time) were better.

For the VRP with stochastic travel times, where the sample space is large, a

method that integrates a branch-and-cut scheme in a Monte Carlo sampling

procedure has been proposed (Kenyon and Morton 2003). In general, this method

does not find an optimal solution. However, it is possible to bound the gap between

the objective function of the solution found and the optimal value, with a confidence

level. To do that, a lower bound and an upper bound are computed. An upper bound

is computed (for the minimization of the completion time), taking a solution and

computing the mean completion time, using a given number of scenarios. A lower

bound is computed as the average of lower bounds estimators. Each of these lower

bounds estimators are computed using a predefined number of scenarios. The total

number of estimators (batch size) is also a parameter of the algorithm. Each lower

bound estimator is found using a modification of the method that solves the

deterministic equivalent of the stochastic problem, where subtour elimination

constraints are added immediately after subtours are found. On each batch another

upper bound is also used, the solutions already found in previous batches, are

evaluated under the realizations of the actual batch and the smallest is selected. The

method was tested on a 28 node non-completed graph, with two vehicles, and travel

times were assumed to follow a uniform distribution. Service times were

deterministic.

A similar approach as in Kenyon and Morton (2003) was used by Adulyasak and

Jaillet (2016) to solve the robust and the stochastic approach of the CVRP with

deadlines under travel time uncertainty. One of the main differences is how the cuts

are added, while in Kenyon and Morton (2003) constraints are added upfront, in

Adulyasak and Jaillet (2016) cuts are added iteratively when a feasible vector is

found. Test results were compared to an iterative algorithm developed for the robust

routing problem, similar to the classical Benders algorithm and to results obtained

by Kenyon and Morton (2003). Performance of the algorithms is measured on
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different stochastic problems. Travel times are assumed to follow different

probability distributions, Triangular, Normal and Uniform. Also different number

of deadlines are considered, at the last node, two nodes and all nodes. Depending on

the problem, optimal solutions to instances with up to 80 nodes were found. The

robust and the stochastic approach in general outperform the results by Kenyon and

Morton (2003) and the iterative algorithm for the robust routing problem.

A branch-and-cut based VRP solver was used to solve the RVRP in Sungur et al.

(2008). The robust formulation of the CVRP is obtained by replacing the constraint

imposing capacity and connectivity in the original CVRP formulation. As a result

the RVRP is more capacity constrained and may be infeasible even if the original

CVRP is feasible, particularly in tight instances, where total demand is very close to

the total capacity. The RVRP is solved as a deterministic problem and compared to

the best solution to the original CVRP, using the cost of the total cost and the ratio

of unmet demands as performance indicators. The comparison is done using

randomly generated scenarios. On tests performed using standard problems, it was

found that performance of the robust approach depends on the structure of the

network, but still robust outperformed deterministic in several cases, particularly

when the instances have clustered customers. Tests were also carried out on

randomly generated clustered instances, finding that the robust approach performs

better in instances with dense random zone around the depot. The robust solution

was also compared to a strategy that uniformly distributes the excess vehicle

capacity among all the vehicles. Solutions found using such strategy can have a

lower ratio of unmet demand, but the cost might be higher than the robust solution.

A similar approach was used to solve a different version of the RVRP (Gounaris

et al. 2013). The problem is solved using CPLEX 12.1 using cuts—called robust

rounded capacity inequalities (robust RCI)—, which are satisfied by all feasible

solutions to the RVRP, are added to the model. Violated cuts are identified using a

variant of tabu search. In some formulations RCI are already contained. In these

cases, the RCI are removed and dynamically reintroduced. It was found that the

same set of routes is robust in each formulation. However, some of the formulations

are more efficient than others, since less computational time is needed to solve

them, notably two-index vehicle flow formulation and the vehicle assignment

formulation (with RCI as subtour elimination). Most instances with less than 50

customers were solved to optimality. The optimality gap of the instances that were

not solved to optimality (with less than 50 customers) is below 5%. The average gap

on the other instances is 6.5%.

A branch-and-cut algorithm was used in Beraldi et al. (2015) to find solutions to

the mixed capacitated general routing problem with probabilistic constraints

(MCGRPPC). Tests were performed on randomly generated instances, based on

instances from the literature. The B&C algorithm was able to find an optimal

solution in three out of 23 instances within the limited computational time (4 h).

2.1.4 Branch-and-price

A new Dantzig–Wolfe solution method for the CVRPSD was proposed in

Christiansen and Lysgaard (2007), based on a partitioning formulation of the
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problem. The customer sequence for each route is known even when an integer

solution to the problem is not. So the expected failure cost can be calculated before

an integer solution is known.

Starting from a master program (PM), where the 0–1 integrality constraints are

relaxed, partitioning constraints are changed to covering constraints, allowing more

than one visit to the customers. Non-elementary routes are allowed (so not all

elements are different in the route). The coefficient air (1 if customer i is visited in

route r, 0 otherwise) is replaced by air (number of times customer i is visited in

route r). PM is initialized with n single customer routes. Solving PM, a vector of dual

prices is obtained. The dual prices are used in the search for columns with negative

reduced costs. If the columns are found, they are added to the LP and the problem is

re-optimized. The process is iterated until no more columns with negative reduced

costs exist. At this point, the current solution is optimal for PM. If the LP solution is

integer and constraints are satisfied with equality, then it is also optimal for original

problem. If constraints are inequalities, then they are changed to equalities and the

LP is resolved, continuing with the iterative process. If the LP solution is fractional,

then branching is done to eventually obtain an integer solution. The branch and

price algorithm is described as a variant of branch and bound, where column

generation is performed at each node in the branch and bound tree. Instances with

up to 60 customers and 16 vehicles are solved to optimality.

A similar decomposition is used to reformulate the robust CVRP with deadlines

and travel time/demand uncertainty (Lee et al. 2012). The problem is initially

formulated as a path based set covering problem, where the decision variable is

either to include or not to include a route in the solution. Integrality constraints are

then relaxed, and the problem is solved with a restricted set of feasible routes, since

the total number of feasible routes can be very large. In this context a feasible route

is the one that meets the deadlines and capacity constraints at each customer, while

most of the uncertain parameters are at their maximum deviations. The column

generation subproblem is solved to find a column with negative reduced cost and

when no column is found the procedure is terminated. A labeling algorithm

(dynamic programming) is used to find robustly feasible routes with negative

reduced cost. The existence of an optimal integer solution without cycles is not

guaranteed. If the optimal solution has cycles, a branching procedure is applied.

Solutions obtained by the robust model are compared to solutions obtained by a

deterministic equivalent CVRP. A set of scenarios are generated and the tests

estimate in which percentage of scenarios the solution feasibility is retained

(robustness). In three different sets of instances, the robust model improves

robustness by an average of about 48, 82 and 64% respectively, compared to the

deterministic approach.

The same formulation as in Christiansen and Lysgaard (2007) was used in

Gauvin et al. (2014) for solving the CVRPSD using a a branch-cut-and-price

algorithm. The bounds are computed by column generation solving a restricted PM,

with only a subset of all feasible routes, initialized by single routes (one for each

customer). New routes are dynamically generated by adding columns (routes) with

negative reduced costs, until no more such routes exist. If the solution is integer,

then it is also optimal for the original problem. If it is not, violations of valid
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inequalities are identified. If this is not possible, then branching is used. The

generation of routes with negative reduced costs is done by solving a shortest path

problem with resource constraints (SPPRC) as in Lee et al. (2012), executing a

dynamic programming bidirectional labeling algorithm. The concept of ng-routes is

used in combination with two-cycle elimination. Each customer has an associated

set of customers with specific cardinality. A given route is prohibited from

extension to include customers that belong to some of the sets associated with

customers already in the route. A new dominance rule is included and it is

considered to be valid when demands follow a Poisson distribution. This new rule

makes it possible to eliminate more labels (partial routes) that cannot lead to optimal

solutions. Solving the ng-route problem must be done at various nodes in the

branch-and-bound tree. A tabu search heuristic is used to generate negative reduced

cost columns, using moves that respect the current imposed branching. The search is

restarted after reaching a number of iterations. Two types of cuts are dynamically

added to accelerate the derivation of integer solutions. Capacity cuts imposing a

lower bound on the number of vehicles required to serve a subset of customers,

which is identified heuristically. Subset-row inequalities are used to prohibit the

coexistence of routes that cover at least two customers in any triplet of customers.

Violations to these inequalities are identified exactly. If still no violations in these

constraints are identified, branching is used. Two options are available, branching

on a sequence of two customers and branching on the number of arcs adjacent to a

subset of customers. Both decisions are evaluated and one of them is selected.

Results from this algorithm are compared to results in Christiansen and Lysgaard

(2007). This algorithm solves 20 additional instances and manages to solve

instances up to 86 times faster. Seventeen new instances are solved with up to 101

customers and 15 vehicles.

A similar approach was used in Taş et al. (2014b) for solving the CVRP with soft

time windows and stochastic travel times. The problem is modeled as a set

partitioning problem. A restricted PM with relaxed integer constraints is solved

using the routes of an initial feasible solution found as in Taş et al. (2013). The

pricing subproblem of finding columns (routes) with negative reduced cost is

modeled as the shortest path problem with resource constraints. If a new route with

negative reduced cost is found, it is then added to the PM and re-optimized. The

pricing subproblem is solved using the algorithm proposed in Feillet et al. (2004)

that extends a label correcting reaching algorithm (Desrochers 1988) including node

resources, so the subproblem can be solved optimally. Initially, multiple visits to the

customers are allowed, except for those in a given set S. If the optimal solution for

the relaxed subproblem is integer, then it is also optimal for the original. Otherwise,

the nodes that appear in the solution more than once are added to the set S. A new

dominance relation is used for selecting the routes. Non-dominated routes with non-

negative reduced costs and the dominated ones are added to a set called the

Intermediate Column Pool (ICP). After re-optimizing the relaxed PM, the reduced

costs of columns (route) in the ICP are recomputed and columns with negative

reduced cost are added to the relaxed PM. The pricing subproblem is solved if no

columns are found in the ICP. Routes stay in the ICP for a given number of

iterations and its size is kept below a threshold. Branching is used if the optimal
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solution to the relaxed PM is not integer. During the tests, two stopping criteria were

used, time and gap between best lower bound and best upper bound less than 5 %.

Test were performed using two types of branching, Depth-First (DF) and Breadth-

First (BF). It was found that BF provides better results. The algorithm is able to

solve instances with up to 100 customers.

In Christiansen et al. (2009) a branch-and-price algorithm was proposed to solve

the CARPSD where pricing is done by dynamic programming and an estimator of

the total expected cost (lower bound) is computed analytically. The problem is

modeled as a set partitioning problem, where the decision variables are the selection

of routes to become part of the optimal solution. The problem is solved initially for

a set of columns corresponding to the set of feasible routes, but the constraints

related to the number of times that an edge must be serviced and the integrality

constraints are relaxed. At each iteration the set of columns corresponding to the

dual vector of constraints regarding the number of times the edge are visited, with

an expected negative reduced cost, are added to the initial set of columns. The

problem is iteratively re-solved (pricing) until no more columns with negative

expected reduced costs are found. If the solution is integer, then it is optimal for the

modified problem. If the solution is fractional, then branching and pricing is

continued. An optimal integer solution to the modified problem is also optimal to

the original one within some precision level, which depends on the quality of the

lower bounds for the expected cost of the routes. The pricing problem is formulated

as a shortest path problem and it is solved by dynamic programming. The branching

rule is applied when an optimal solution to the modified problem has fractional

values. The largest instance that was solved included 40 vertices and 69 service

edges.

The VRP with hard time windows and stochastic service times was formulated as

a set partitioning problem and solved by branch-cut-and-price algorithms in Errico

et al. (2016). Valid inequalities are dynamically included at the end of the column

generation procedure as a mechanism for tightening the lower bounds. Tests were

performed on 56 instances, based on Solomon’s instances. The algorithm is able to

solve a few of the large instances (with 100 customers). Reduced size instances are

obtained by considering the first 25 and 50 customers in the original instances (29

instances of each type). Tests show that instances with a larger support of the

probability distribution are more difficult to solve. Regarding the two recourse

actions, in the instances with smaller support of the probability distributions,

obtained solutions are almost equivalent. However, the problem is harder to solve

when it is formulated using skip next recourse. In instances with larger support of

the probability distributions, the model including skip next recourse action has

advantages, leading to improvements in the solutions’ quality. The probabilities of

the routes being feasible are computed analytically and the expected costs of the

non-servicing penalties, this is done using labeling algorithms.

2.1.5 Other algorithms

An algorithm including a problem decomposition/collapsing method integrated with

CPLEX was used to find solutions to a cash transportation vehicle routing and
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scheduling problem under stochastic travel times (Yan et al. 2014). The main

problem is decomposed into subproblems by separating it into several time periods.

These subproblems are solved using CPLEX. At each iteration a new subproblem is

added and optimized, keeping unchanged the departures and arcs selected in the

previous subproblem. The solutions are evaluated analytically. A modified

deterministic version of the model is presented. Both are compared by evaluating

the best found solutions using scenarios. Tests are performed using data from a

security carrier that serves the Chungli zone in Taiwan. The average gap between

objective values and the lower bound is 1.32% for the stochastic version and 0.97%

for the deterministic version of the problem. When the best found solutions are

evaluated across the scenarios, as expected, the solution to the stochastic version of

the problem has a better performance.

2.2 Heuristic approaches

There are many stochastic problems with no exact solution method known to work

for reasonable sized problems. This creates the need for heuristics, which, even

though they do not guarantee to find an optimal solution to the problems, may be

able to find a good solution to them. This is a popular and growing area in the

literature.

2.2.1 Adaptive large neighborhood search (ALNS)

An adaptive large neighborhood search heuristic was used to solve the capacitated

arc routing problem with stochastic demands (Laporte et al. 2010) starting from an

initial solution constructed by an algorithm called stochastic path scanning, which

is a modified version of the path scanning (PS) method. At each iteration, one

heuristic is selected randomly to destroy the current solution (removing q serviced

edges), and then one insertion heuristic is selected randomly to repair the damaged

solution, re-inserting the removed edges. The selection of q is also random. The

acceptance of a new best solution is given by the record-to-record travel (RRT)

algorithm (Dueck 1993). The total expected cost is calculated analytically. The

efficiency of the algorithm is evaluated comparing the performance of the best

found solution with the optimal solution to the deterministic version of the problem.

Both solutions are evaluated and compared in stochastic simulation and the

expected recourse cost is considered in both cases. Solutions found by ALNS show

a better performance.

An ALNS heuristic was also used to solve the CVRP with stochastic demand and

time windows in Lei et al. (2011). A modified version of the push forward insertion

(PFI) heuristic is used to generate the initial solution. At each iteration, q vertices

are removed by a removal heuristic, which is randomly selected. The solution is

later repaired by an insertion heuristic. As in the previous case, the selection of q is

random and the acceptance of a new best solution is given by the RRT algorithm.

The objective function is to minimize the total expected cost, which is calculated

analytically. The efficiency of the algorithm is compared against the best known
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solution to the deterministic counterpart plus the expected recourse cost associated

with it.

An adaptive large neighborhood search (ALNS) was proposed to deal with the

CARP with stochastic service and travel times in Chen et al. (2014). A branch-and-

cut algorithm for the CCP formulation of the problem was not able to find the

optimum for some instances with 10 vertices and 25 arcs, within one hour. The

initial solution is built by constructing one route at a time. Each route is constructed

by adding the arc that has not been serviced yet and is closest to the end vertex of

the current route. The distance is defined by the shortest path problem. During the

search, the removal and insertion heuristics are randomly selected under the control

of a weight that determines the selection probability. The weights are updated

periodically during the search and depend on how successful each heuristic has

been. Solutions are evaluated using the objective function for the SPR model. The

algorithm terminates if there is no improvement after a certain number of iterations

or the total number of iterations reaches a predefined value. Four removal heuristics

are used: deterministic worst removal, random removal, reduce-number-of-vehicle

removal and probabilistic worst removal. The four insertion heuristics used in the

search are deterministic greedy insertion, probabilistic insertion, probabilistic

insertion with recourse and probabilistic sorting insertion. The ALNS is used in both

models, but in the case of SPR, the chance constraint can be violated. Experiments

are conducted on instances with 5–25 vertices. For small instances with up to 10

vertices and 20 required arcs, tests were performed using the branch-and-cut

algorithm and the ALNS. The branch-and-cut algorithm found the optimum in 31

out of 40 instances. ALNS found it in 30. The gap between the two methods for

instances where optimum was not found range between 1.45 and 3.15%. For the

instance with 10 vertices and 20 required arcs, the computer ran out of memory

when using branch-and-cut. The ALNS was tested using both models. It was found

that CCP requires the use of more vehicles. The SPR with recourse including the

penalty for rescheduling services for the next day and also the excess duration of the

work, shows better results, and it is suggested for real life application.

2.2.2 Dynamic programming

In contrast to stochastic programming, dynamic programming methods are typically

used to find a policy rather than a one-time solution. By ‘‘policy’’, we mean a

function that maps the state of the system (e.g., the capacity remaining in a vehicle

and the mean demand for stops remaining on a route) to an action (e.g., return to the

depot).

A dynamic programming algorithm was used to solve the stochastic CVRP with

optimal restocking (Yang et al. 2000). The problem posed was to find the optimal

restocking policy, i.e., the right moment for a vehicle to return to the depot and

restock before a route failure occurs. At every customer there are two options, to go

back to the depot and restock or go on to the next customer in the route. Even

though stockouts might occur, one of these two options is optimal. A solution is

built using two different approaches: (1) starting with a single route through all the

customers, obtained using a combined method (insertion þ Or-opt), it is later
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partitioned into small subroutes using dynamic programming. (2) By clustering first

and then routing. Both approaches are compared with a lower bound obtained by

solving the LP relaxation of a set partitioning formulation of the original problem.

This was possible for instances with up to 15 vertices, for larger instances the two

algorithms were compared to each other. The approach number 1 (route-first-

cluster-next) shows better results when compared to the lower bounds; it found

solutions within 2% of optimal. The same approach was found to perform better for

larger problems. The results obtained were also compared against the solutions to

the deterministic version of the problem, found by the Clarke–Wright savings

algorithm (Clarke and Wright 1964). Average improvements up to 25% were

observed.

Dynamic programming was also part of an algorithm used to solve the single

vehicle CVRPSD with reoptimization (Secomandi and Margot 2009), formulating

the problem as a Markov decision process (MDP). To overcome the computational

challenges involved in solving large problems, just a subset of the states in the full

MDP is considered, this methodology is called partial reoptimization. Starting from

an initial sequence of customers, the tour is divided into sets/blocks where each

block is re-optimized as a MDP. Two ways of dividing the blocks led to two

different proposed heuristics. Given a parameter M and an initial sequence of

customers, the blocks are formed with no more than M customers each. In the

second approach, every block is formed with no more than 2M þ 1 customers, in

this case the same customer can be in several blocks. The performance of the

heuristics is compared against the optimal reoptimization policy for instances with

10–15 customers. For bigger problems, it is compared with two rollout policies

(Secomandi 2001, 2003) and an estimator for the lower bound, which is found

solving the deterministic problem to optimality with unsplit delivery, i.e., if the

demand of a particular customer is greater than the residual capacity of the vehicle,

a trip to the depot for restocking is required before serving the customer. The

proposed algorithms perform better than rollout policies and compared with the

lower bound, the solutions obtained are on average within 10 and 13% for different

type of instances.

A two-step rollout algorithm is developed for the VRPSD in Novoa and Storer

(2009). In addition to the minimum cost at state xk, a minimum is found for all the

possible states xkþ1 that can be generated from xk. A cyclic heuristic is used. A

dynamic programming recursion is used to compute the cost-to-go functions

exactly. In addition, a Monte Carlo simulation is used to approximate the

evaluation. To reduce the computation requirement an evaluation strategy is used.

At a given state, if the probability of failure is lower than a given low threshold, just

cases where the next customer is visited directly (without visiting the depot first) are

considered. If the probability of failure is greater than a certain high threshold, the

cases selected for evaluation are these where the next customer is visited after

visiting the depot. Tests were performed on 120 instances, with a number of

customers varying from 5 to 60. Compared with the method in Secomandi (2001)

the two-step look-ahead method achieves improvements close to 5%. CPU time is

reduced by the use of the evaluation strategy and the Monte Carlo simulation.

Routing costs of solutions found by the Monte Carlo simulation are as good as
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solutions found by exact computation. This was tested on 20 instances with 100 and

150 customers.

In Secomandi (2000), after formulating the single CVRPSD as a stochastic

shortest path problem, the size of the resulting dynamic programming problem is

found to be computationally prohibitive. To deal with that, a neuro-dynamic

methodology is employed. Instead of computing the optimal cost-to-go for every

stage, an approximation is used. In principle two similar policies are used. With

approximate policy iteration (API), the cost-to-go values and pairs of states

(training set) in a particular policy are found through simulation. Then least-square

fitting is used to approximate the cost-to-go of the policy for all states, which is a

vector of parameters. A new policy is found in a greedy fashion, together with a

training set and sample cost-to-go values. The process is repeated, either until it

converges or until a predefined number of iterations is reached. Convergence is not

guaranteed. The other policy is the optimistic approximate policy iteration (OAPI),

which is a variation of the previous policy. The training set is smaller and least-

square problems are solved more frequently. The vector of parameters that define

the cost-to-go of the policy for all states is found as an interpolation between the one

used in the previous iteration and the one that would be used in the API policy. Only

the results for OAPI are reported, since it always performs better. It is compared

with a rollout policy, which performs over 7% better, attributed by the author to the

fact that it uses an exact evaluation, and the OAPI uses and approximation in which

approximation errors may lead to poor solutions.

A bilevel Markov decision process (MDP) is used to model the coordination

between vehicles in the paired cooperative reoptimization (PCR) for the two-vehicle

CVRPSD (Zhu et al. 2014). In the PCR strategy multiple customers can be assigned

to one vehicle. The vehicles operate independently until information is shared, this

is after any one of the vehicles finishes serving its assigned customers. The process

starts dividing the customers into two groups, and assigns a group to each vehicle.

When one vehicle has completed its assignment, the remaining customers (not

served yet by the second vehicle) are divided into two groups and reassigned to each

vehicle. This process is repeated until all customers are served. The sequence of the

visits in each group is determined by partial reoptimization (Secomandi and Margot

2009). At each stage of the higher level (partitioning and communication), the

remaining customers are divided into two groups. At the lower level the problem is

formulated as MDP as in Secomandi and Margot (2009). The bilevel MPD can be

solved by dynamic-programming backward recursion, and at each stage the

expected cost-to-go values can be calculated. At a higher level all possible partitions

are evaluated, using an approximation approach based on an a priori route that

traverse all unassigned customers in a particular stage. The cost-to-go value is

approximated using the DTD recourse action in the a priori route. Such an a priori

route is generated by the rollout algorithm in Secomandi (2003). Two versions of

PLC (Ak and Erera 2007) were implemented to be compared with the PCR: one

with two vehicles and one more that finds the number of vehicle to achieve a given

service level. PCR outperforms the other two approaches, with a cost improvement

ranging from 20 to 30%.
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2.2.3 Rollout algorithms

The single vehicle CVRPSD with reoptimization as recourse policy was solved

using a rollout algorithm in Secomandi (2001). The customer that must be visited

first is selected from a sequence of customers, previously found by the cyclic

heuristic (Bertsimas et al. 1995). For each customer a new sequence is obtained.

The customers will keep the order given in the initial sequence, however, in every

new sequence a different customer will be selected as the first. The expected total

length for each arrangement is computed and the first customer in the arrangement

with the lowest cost is selected as the first customer in the route. Once the first

customer is selected and visited (its demand becomes known) the next customer to

be visited is selected. Two options are considered, the customer j that minimizes the

expected value of the total length (computed as before) and the customer k that

minimizes the expected total cost when visited after going to the depot for

replenishment. The option with lower expected total cost is selected and the process

is repeated until all customers have been served. The algorithm is described as based

on neuro-dynamic programming/reinforcement learning methodology. The total

expected cost of an a priori solution is computed analytically. Two experiments are

carried out, one with small instances where the value of an optimal reoptimization

policy is known, and a second experiment with large instances. Two versions of the

rollout policy are analyzed in the first experiment. In the first version, in case of a

route failure, the current customer is fully served by performing a trip to the depot

and restocking before moving on to the next customer. In the second version at a

given time, there may be more than one unserved customer whose demand is known

but not yet served, so in case of a route failure, the customer may not be served

immediately. Both versions generate near-optimal solutions. For the second

experiment with large instances, just the first version of the rollout policy is tested,

using three different a priori solutions; a nearest neighborhood heuristic together

with 2-Int improvement steps, a cyclic heuristic enhanced by dynamic programming

and the static rollout heuristic initialized by the tour produced by the former one.

The best results are generated when using the solutions generated by the static

rollout heuristic.

A rollout approach was proposed to deal with sequencing problems with

stochastic routing applications in Secomandi (2003). As particular applications, the

proposed algorithms are used with the TSP with stochastic travel times and the

CVRPSD. A regular rollout algorithm is compared with iterated versions of it.

Where the best found solution is later used as initial solution and the process is

repeated. Tests were performed iterating the algorithm two and three times,

obtaining better results in the latter version.

2.2.4 Local search

A tabu search heuristic was used to design delivery districts for the CVRPSD in

Haugland et al. (2007). The districts are designed considering a long term

perspective where they will stay fixed, to be used for various demand realizations.

The routing every day is deterministic, since demand is known before vehicles leave
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the depot. Districts are constructed so the expected travel cost within each district

never exceeds an upper bound. A multi-start heuristic was also implemented and

compared, but the tabu search heuristics performed better in the instances tested.

The expected cost of the solutions is approximated using an upper bound.

An insertion-based solution heuristic called master and daily scheduler (MADS)

(Sungur et al. 2010) was proposed to create the master plan to the VRPSTW with

stochastic service times and probabilistic customers. A tabu search procedure is

used to try to improve the solution. The solution process has two phases. Given a

number of scenarios, in the first phase, a preliminary master plan and daily routes

for each scenario are created. Two routing problems are considered, one for the

master plan that serves high frequency customers using worst case service time and

one for each scenario of daily schedule. The master plan is built using an insertion

heuristic which works in a greedy fashion, inserting the cheapest of all feasible

insertions. The cost of an insertion in the master plan is given by the increment in

total time and TW penalty. The master plan is then used to construct daily schedules

with a partial rescheduling recourse, for every scenario. Customers not present in

the scenario are skipped and those not included in the master plan are inserted.

Insertion in the daily routes incurs an additional cost, the reduction in similarity to

the master plan. Daily schedules are improved with a tabu search heuristic. The

second phase is iterative. Every scenario reports to the master plan which customers

could not be inserted. Then the master plan prioritizes the unscheduled customers by

the number of scenarios for which they could not be scheduled. Maximum priority

feasible insertions are performed. Scenarios construct daily routes based on the

updated master plan and the process is iterated until no further improvement is

achieved. A buffer capacity is used in the first phase by reducing the latest time at

the depot time window. It is used in the second phase to schedule additional

customers. The solution obtained by the MADS is compared to a solution obtained

by a algorithm that treats each scenario independently, which is called independent

daily insertion (IDI). The objective function is to maximize the number of served

customers and to minimize total time and time windows’ penalties (weighted sum).

Two real-world instances from UPS were solved by MADS and the solution is

compared with IDI and the current practice. MADS is modified and results are also

compared over consistent VRP (ConVRP) instances against the algorithm ConRTR

proposed in Groër et al. (2009). Compared to IDI, MADS generates more similar

routes at a cost of total time and total number of served customers, but the objective

function shows a general better performance. When real-world data is used,

solutions from MADS (given different levels of buffer capacity) are better than

solutions from IDI and the current practice (obtained by a territory planning based

routing algorithm). Compared with IDI, total time is increased, but similarity is

improved. For the comparison over ConVRP instances, three criteria are used: total

time, average arrival time difference and maximum arrival time difference. In

average MADS performs better than ConRTR in all criteria.

The CVRP with stochastic travel times, soft time windows and service costs was

solved using a tabu search heuristic in Taş et al. (2013). An initial solution is

constructed by means of an insertion heuristic, then a tabu search heuristic is applied

to the solution. A post-optimization procedure consisting of delaying the
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dispatching time of the vehicles in each route is also applied. The solutions are

evaluated through an analytic approximation of the expected cost. Different

versions of the algorithm are tested, where different initial feasible solutions are

used: solutions obtained by the insertion heuristic, with minimum total transporta-

tion cost; solutions obtained by the insertion heuristic, with minimum total weighted

cost; and solutions obtained in the literature as optimal/best known for the

deterministic problem. Better results are obtained by the algorithm when using

initial solutions constructed by the insertion heuristic.

A location routing problem with disruption risk was solved by a two-step

heuristic (Ahmadi-Javid and Seddighi 2013). During the first step, a solution is

randomly built. In the second step there are two phases, location and routing. In

each of those a simulated annealing heuristic is used. A 2-opt procedure is used to

attempt to improve the routing. The quality of the solution is evaluated analytically.

The heuristic was able to find optimal solutions found by CPLEX for small

instances. It is also compared against lower bounds and to a different heuristic based

on a solver for location routing problems. Optimal solutions are found, error bounds

are relatively small and the location routing-based heuristic is outperformed.

Simulated annealing was also used to find solutions to the CVRPSD in Goodson

et al. (2012). The main purpose is to show the potential of the cyclic-order

neighborhoods using a heuristic with a simple structure. A cycle-order solution

encoding is a permutation or ordering of the set of customers. Given a cyclic-order

permutation p of the customers, a set RðpÞ represents the feasible candidate routes

consisting of contiguous elements of p. These candidate routes are generated using a

sweep algorithm and their cost is computed analytically. The best solution that can

be built using the routes in RðpÞ is found by solving a set partitioning problem.

Several cyclic-order neighborhoods are used. In the k-shift neighborhood structure

the k contiguous elements, starting from selected index i, are moved to the positions

immediately prior to a selected index j. In the reverse neighborhood, the order of the

contiguous elements from index i to index j is reversed. The exchange neighborhood

consists of exchanging the position of two elements. To reduce the computational

effort, an updating procedure is used to obtain the set of feasible routes associated

with one cyclic-order if the routes associated with a neighbor are known. The

simulated annealing is executed in two phases. In the first phase, the classical

deterministic CVRP is solved. The second phase attempts to improve the best found

solution from phase I by taking into account the cost of recourse actions. Results

were compared to Christiansen and Lysgaard (2007) where optimal solutions were

reported for 19 out of 40 instances. The simulated annealing algorithm found 16

optimal solutions out of the 19 reported by Christiansen and Lysgaard (2007). In the

21 instances where Christiansen and Lysgaard (2007) did not find a provably

optimal solution, the two phase procedure matches or improves the best found

solution or the expected value of the best known deterministic solution.

In Goodson (2015), the cyclic-order simulated annealing procedure was modified

to solve the multi-compartment vehicle routing problem with stochastic demands

(MCVRPSD). A two-stage simulated annealing is used. In the first phase, solutions

are evaluated by scenarios. While the second phase attempts to improve the solution

by exactly calculating the quality of the solution. The method is compared with the
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results reported by Mendoza et al. (2010) and Mendoza et al. (2011). Out of 180

instances, the cyclic-order simulated annealing procedure is able to improve the best

known value in 159 instances and it matches the best known solution in 21

instances.

A tabu search algorithm was used to solve the CVRP with time windows and

stochastic travel and service times in Li et al. (2010). No comparison is done with

results obtained by other methods but the evaluation is done by estimating the

expected values through Monte Carlo simulation.

A tabu search heuristic is proposed for the VRPSD with Pair Locally Coordinated

(PLC) recourse (Ak and Erera 2007). The neighborhood structure is very similar to

TABUSTOCH proposed by Gendreau et al. (1996), but moves are evaluated

exactly, not approximately. This computation is done analytically, as the expected

value of all the vehicles travel cost. The initial solution is found by a sweep

algorithm. A service level parameter, pa, is set that is used to determine the number

of customers in an a priori type II route. The probability that the vehicle serves all

the customers in its route without a recourse detour before serving any of the

customers of its paired vehicle must be greater than or equal to pa, which restricts

the number of customers in the route. The number of customers in the type I route is

also found using pa. The idea is that the probability of serving all customers in the

paired tours, with the combined capacity and without any detours to depot, must be

greater than or equal to pa. More vehicles are assigned to type I routes than to type II

routes. The sweep algorithm assigns in a counterclockwise order, first the customers

in a type I route, then those in the type II route. At the conclusion, each type I route

will be operated in the counterclockwise direction and the type II routes are

operated in the clockwise direction. The neighborhood of a solution x, N(p, r, q, x),

contains a set of solutions generated by modifying routes as follows: (i) A set A of q

customers is randomly chosen. (ii) 8a 2 A let B(a) be the set of p randomly chosen

customers among the r nearest neighbors of a. (iii) 8a 2 A, 8b 2 BðaÞ: remove a

from its position and reinsert it immediately before or after b in b’s route. All the

solutions generated by removing a customer from its tour and re-inserting it

somewhere else. Here, each of q randomly selected customers is removed and

reinserted, either immediately after or before one of p randomly selected customer

neighbors from the set of its nearest r neighbors ðq� rÞ. New partner tours can be

created for unpaired vehicles and new tour pairs can be also generated. The PLC

recourse strategy is compared with the DTD recourse strategy. Tests were

conducted using instances with uniformly distributed customers and homogeneous

demand distributions. In addition, a test was performed with real-world customer

location data from grocery stores in Istanbul, Turkey, but using homogeneous

demand distributions, as in the previous case. Results show better performance for

the PLC recourse strategy.

Another example of the application of TABUSTOCH (Gendreau et al. 1996) is

found in Erera et al. (2010), where it is used to find solutions for the vehicle routing

problem with stochastic demands and duration constraints (VRPSD-DC). The

solution method relies on solving an adversarial optimization problem, which

determines a customer demand realization that maximizes the actual execution

duration of an a priori tour, for checking if the maximum duration of a tour is
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respected. The expected additional travel time due to recourse actions is computed

analytically. The problem was tested against the unconstrained version CVRPSD in

54 instances. It was found that the number of vehicles required for serving the

customers increased in 22 of the instances with duration constrains. An increment in

the total expected travel time of more than 7% was observed in the small

constrained instances. In general, however, this increment was relatively small. In

some cases, as the fleet size increased, the total expected travel time decreased. This

was more likely to be observed in large instances (60 or 100 customers) with large

vehicle capacity.

A generalized variable neighborhood search (GVNS) was proposed to solve the

VRP with stochastic service times in Lei et al. (2012). A Clarke–Wright algorithm

is used to obtain an initial solution. The local search is driven by a variable

neighborhood descent scheme where six neighborhoods are used, three inter-route

and three intra-route. The algorithms proceeds through the neighborhoods in a non-

decreasing order by their cardinality. The search does not consider infeasible

solutions. As part of the local search there is a granular search mechanism, which

discards long edges and focuses on short edges that have a higher probability of

appearing in high-quality solutions. The process is repeated following a variable

neighborhood search scheme. A move is accepted applying the best improvement

rule and as long as its value is within a certain threshold of the incumbent solution

(best found solution in the current neighborhood). Solutions are evaluated

analytically by means of a closed-form expression. GVNS was compared with

variable neighborhood search and variable neighborhood descent, obtaining better

results at a higher computational cost.

Five different metaheuristics were used in Bianchi et al. (2005) to deal with the

single vehicle CVRPSD: simulated annealing (SA), Tabu search (TS), iterated local

search (ILS), ant colony optimization (ACO) and evolutionary algorithm (EA).

Tests are conducted to determine if using the a priori tour distance as an

approximation of the objective function will generate better results than evaluating

the solutions by means of dynamic programming recursion. It is found that EA, ILS

and ACO perform better with the approximation. The TS and SA metaheuristics

perform better with the evaluation by dynamic programming recursion. In general,

the metaheuristics with better performance are EA, ILS and TS. An additional test is

conducted where ILS and EA are hybridized with the 3-opt local search operator.

While the local search is based on the a priori tour distance approximation, the

acceptance and selection criteria are based on the dynamic programming recursion.

Results are compared with the CYCLIC heuristic, and an iterated local search that

uses a 3-opt exchange neighborhood, solving the problem as a TSP. Results show

that hybridized versions of ILS and EA perform better.

A hybrid heuristic was proposed to solve the single vehicle CVRPSD in Rei et al.

(2010), using exact algorithms (local branching) and Monte Carlo sampling. This

Monte Carlo local branching algorithm follows a multi-descent scheme. Different

solutions obtained from the TSP formulation of the problem are used as starting

points, then local branching search phases are performed iteratively. The decision

used for the branching criteria, and in that way limiting the feasible space in a

subproblem, is fixing the maximum hamming distance relative of the solutions in
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the feasible space to a given reference solution. At the first branching step, the

optimal solution to the TSP, where the feasible region is limited to the unexplored

region in previous descents is used as a reference. In the following steps it is

replaced by the optimum solution to the previous subproblem and a fixed number of

local branching steps is applied.

The recourse function is approximated using scenarios. The original recourse

function is replaced by the approximation in the original problem, and the

approximated problem is solved to optimality or until a specified time limit is

reached. Each subproblem is solved applying the L-shaped branch-and-cut

algorithm from Rei et al. (2007). Three types of cuts are generated by the

algorithm, one of them is valid in all the subproblems, the others depend on the

sample. A different sample is generated for each subproblem. At the end of the

complete descent a number of solutions equal to the number of branching steps are

produced. To identify the best one, each of them must be either evaluated using the

routing cost and the actual recourse function, if possible, otherwise more sampling

is required to produce an estimator of the expected total cost for each of the

solutions. The procedure is repeated a certain number of times.

Comparisons were done against results from L-shaped branch-and-cut algorithm

(Rei et al. 2007) and the Or-opt algorithm used to build a initial single route in a

Route-First-Cluster-Next algorithm (Yang et al. 2000). Computational experiments

show that the algorithm is able to obtain better results than the Or-opt algorithm and

same results as L-shaped algorithm, but using less computer time.

The probabilistic multi-vehicle pickup and delivery problem (MPDP) was solved

by a local search algorithm in Beraldi et al. (2010), where an insertion algorithm is

used to build the initial solution. The efficient neighborhood search takes advantage

of the previous computation of the expected objective function, which is done

analytically. Moves are evaluated taking a vertex from a tour and moving it a

position forward or backwards, up to a certain level. Another option is removing a

vertex from a tour and inserting it at the first position of another tour. At every move

not all the neighbors’ solutions have to be evaluated, just the cost should be updated

(analytically), depending the move that is performed. Equity of workload among

vehicles is computed as percentage deviation of the total cost. This aspect is just

calculated and results presented, but not considered as a constraint or extra objective

in the problem. Two ways of evaluating the neighboring solutions are tested. In one,

the expected cost is computed from scratch, in the second, the efficient

neighborhood search is used, which is shown to be computationally more efficient.

For the construction of the planned and operational routes in the CVRPSD with

time windows, different local search heuristics are used in Erera et al. (2009). The

planned primary routes are constructed by an insertion heuristic, which starts with

m routes serving m seed customers, and the rest of the customers are inserted one by

one. Local search is used during the process to improve the partial solution. During

the construction phase, the capacity constraints are checked, trying to keep the

probability of the solution being feasible greater than or equal to a given parameter.

This is done analytically. The assessment of the time window constraints is done by

random sampling, the probability of satisfying the time windows constraints is

estimated and a solution is considered to be time window feasible if the probability
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is above certain value. During the insertion, two aspects are considered regarding

the quality of a solution, the expected travel time and expected duration (may be

different due to waiting times). A local search improvement procedure is applied.

There is a vehicle reduction procedure that tries to eliminate the routes with the

shortest average route duration. For the construction of the planned backup routes,

demand scenarios are generated. Backup routes are not actual routes, since

customers assigned to them are not sequenced. For each scenario, customers not

placing orders are skipped. If all routes are feasible, no information is obtained and

the next scenario is generated. If one or more routes are infeasible, then a customer

is selected randomly to be removed from the route and reinserted in the route that

minimizes the change in route quality. The process stops when the solution is

feasible or when a given number of moves have failed to make it feasible. If the

solution is infeasible, then no information is obtained, but if feasible, a local search

procedure attempts to improve the solution and then irregular customers are inserted

into the solutions, starting with the ones furthest from the depot. For every scenario

the route serving regular customers is recorded. Vehicles with the highest count, not

including the primary vehicle, are selected as backup vehicles.

The construction of the delivery (operational) routes follows the same strategy as

selecting the secondary routes. But for achieving feasibility, customers can be

moved from their primary route to their backup route. Service times are taken into

consideration in this process. Several aspects determine the quality of a solution if a

feasible operational set of routes can be produced: total travel time, duration of all

routes, number of vehicles used, number of customers visited by primary vehicle.

The results of using the methodology are compared with historical data. Two days

of the week are compared: Thursdays, with the highest demand, and Mondays, with

the lowest demand. For Thursdays, the proposed delivery routes are shorter and, in

addition, three fourths of historical routes are infeasible. The proposed delivery

schedules reduce the number of miles and the travel time. If the actual requirement

of the customers being visited by just a primary or backup driver is dropped, and

instead of that, any driver is allowed to visit any customer, the average total miles is

reduced by 4%. For Mondays, the improvements are more evident. Fewer routes are

used. There is a cost connected to serving a regular customer just with a primary or

backup driver since total miles will be reduced by more than 8% if more drivers are

allowed to serve such customers.

The problem of package delivery with driver learning was solved in two steps by

Zhong et al. (2007). In the first step the strategic decision of designing the core areas

is taken. In the second step, the cell routing is done. Here a tabu search heuristic is

used to solve an assignment problem whose objective is to minimize the cost of

assigning the cells to core areas. This tabu search is allowed to visit the infeasible

region, and in addition to simple moves, compound moves are also allowed. The

probability of serving a core area within the duration of a work shift is required to be

below a certain threshold. The operational routing is done by first routing the cells

within the core areas and later adding the rest of the cells to the partial routes, at the

lowest cost. More routes are added if needed and the learning curve model is

introduced. Cells closest to the depot are not assigned to any core zone. A fixed

number of core areas is used, which is taken from historical data and is equal to the
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minimum number of drivers used over a certain period. When designing the core

zones, the objective is to minimize the expected total time (service and travel time)

used to satisfy the demand of cells in the core areas. Cells not assigned to any

particular core area are also taken into the objective as part of one additional core

area with a lower learning curve and higher service time. Expected total time is

approximated analytically. The operational routes are built using a deterministic

routing algorithm that incorporates, instead of a single customer, the cell concept

and the drivers’ learning curve. The performance of the tabu search heuristic is

compared to a lower bound found by solving to optimality a problem where the

nonlinear constraints have been replaced by linear ones. On average, solutions

found by the tabu search are 3% above the lower bound. The approach using core

areas is tested against a policy of deciding a different routing every day. It is

assumed that drivers will not reach maximum learning level on this new policy. On

average the core area model uses 4% fewer drivers and its total duration time is 4%

less. If in the non-core area model drivers are allowed to get the maximum learning

level, the solution obtained represents a lower bound. On average the core area

model uses 6% more vehicles, total duration time is 7% longer and total distance is

5% greater, compared to the lower bound, which is considered to be good

performance.

A local search heuristic was used to solve the CVRP with soft time windows and

stochastic travel times (SCVRPSTW) in Russell and Urban (2008). The solution

procedure is a tabu search with three phases. First, an initial solution is obtained,

which is improved in the second phase by a tabu search. In the last phase a

postprocessing procedure is used to optimize the waiting times before visiting each

customer. The initial solution is built using a deterministic tabu search with a mixed

neighborhood search procedure that uses node exchanges and edge exchanges.

Waiting time is allowed at the depot, but not at customer locations. Once the initial

solution is obtained, a tabu search heuristic that evaluate moves analytically is

applied to it. This heuristic uses basically two types of moves. One move is to

remove a node from its position in route ri and insert it in route rj (ri may or may not

be different from rj). The second move is to swap the position of two nodes. As a

diversification strategy, the tabu tenure is increased if solutions are found to be

repeating too often. In case it happens extremely often, the search is diversified by

making random moves. The post-optimization tries to find optimal waiting values

before each customer.

The objective function used to guide the search is a weighted sum of the

objective functions. Tests are performed using two different objective functions,

1000V þ 0:5Dþ 0:5P and 1000V þ Dþ 0:2P, with V equal to the total number of

vehicles, D the total traveled distance and P the penalties associated with servicing

customers outside their time windows. Expected penalties are computed in closed

form. Results are compared with the solution obtained in the first phase. When the

first objective was used, the stochastic travel time approach was able to reduce the

number of vehicles in 10 out of 16 instances. The total distance was reduced in 11

instances and the time windows penalty was reduced in 12 instances. If more

priority was given to the total travel distance than to the expected penalty, as in the
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second objective, solutions with fewer vehicles and less distance traveled are

obtained, however, the time windows penalty increases. For this case the stochastic

travel time approach was able to reduce the number of vehicles in 12 out of 16

instances, the total distance was reduced in 14 instances and the time windows

penalty increased in 12 cases.

Solutions to a VRP with stochastic time-dependent travel times were obtained by

a tabu search algorithm in Lecluyse et al. (2009). A k-interchange is used as a

neighborhood structure, where up to two customers are exchanged between two

routes (k is set to be equal to two). The times are approximated and the simulations

show that total travel time of a route follows a lognormal distribution, when the

travel times between two customers is also lognormal. Variances are determined

heuristically (approximated). A tradeoff solutions set between the expected travel

time, the standard deviation and the 95th-percentile of the travel time, is presented.

An iterated tabu search (ITS) heuristic was developed in Zhang et al. (2013) to

solve the stochastic vehicle routing problem with soft time windows under travel

and service time uncertainties. Arrival time distributions are generated using an

approximation method called a-discrete. The ITS is basically a tabu search

embedded into an iterated local search procedure. It includes a route reduction

mechanism that attempts to reduce the number of required vehicles. A record of

move costs is kept to avoid repetitive computation, so at every iteration just the

possible moves from/to the two routes edited in the previous iteration are computed.

Tests were performed on variants of Solomon’s instances (Solomon 1987). The

accuracy of the a-discrete approximation method is compared against the method in

Chang et al. (2009), which was used for the stochastic dynamic traveling salesman

problem with hard time windows. A smaller estimation error was obtained by the a-

discrete method. The reference values for the comparison were obtained by

stochastic simulation in Li et al. (2010). Tests were performed using different

parameters settings, as a result a tradeoff solutions set between mean travel time and

tardiness penalty cost is obtained.

A tabu search algorithm was used in Taş et al. (2014a) to find solutions to a time-

dependent VRP with soft time windows and stochastic travel times. Two operators

were used, one that changes the location of a customer within a route, the other

removes a customer from a route and inserts it into another. A post-optimization

procedure is applied to each route; it shifts the starting time (time leaving the depot)

10 min. This is done repeatedly until the total cost of the route is no longer

improved. The algorithm was tested using Solomon’s instances (Solomon 1987) and

the results were compared against the performance of an implementation of an

adaptive large neighborhood search (ALNS). When service times are assumed to be

equal to zero, tabu search gives better results in clustered instances, random

instances with tight time windows and randomly clustered instances with tight time

windows. For the cases where the service times are assumed to be greater than zero,

tabu search gives better results in clustered instances and random instances with

tight time windows. In instances with 200 customers, tabu search performs better,

but it takes a longer time. Simulations are run to assess the quality of the estimations

of arrival time, lateness and earliness. The differences were at most 3.27%. The

ALNS algorithm was embedded into a simulated annealing framework, where an

The stochastic vehicle routing problem... 371

123



improving move is always accepted. A non-improving move is accepted with a

probability that depends on the quality the move and a temperature parameter that

decreases along the search. The same post-optimization procedure was applied, as

before. For the cases where the service times are assumed to be greater than zero,

ALNS gives better results in randomly clustered instances and random instances

with large time windows. In instances with 200 customers, ALNS is faster, but at the

cost of lower quality.

In Ehmke et al. (2015) a tabu search heuristic was implemented to find solutions

to a VRP with time windows and stochastic travel times. The algorithm is the

LANTIME tabu search that was introduced in Maden et al. (2010). At each

iteration, the neighborhood operators are randomly selected from a list (adapted

cross exchange, insertion/removal, one exchange and swap). Tests were done using

Solomon’s instances. Distributions of arrival times were approximated and

simulation was used to evaluate the approximations. In all cases the mean is

within one percent of the simulated value. The mean absolute percent error (MAPE)

is within one quarter of the one percent, for normally distributed travel times. The

percent error increases when the skewness of the travel time distribution increases

(normal—gamma—exponential). Numerical experiments were performed using

both normal and gamma distributions for the travel time.

Several local search heuristics are proposed to find solutions to the robust CVRP

with uncertain travel times (RVRP) in Solano-Charris et al. (2015). A Clarke and

Wright heuristic for the RVRP, starting with a trivial solution where each customer

is visited by a different vehicle and routes are merged in a variety of ways. A

randomized version is also used where before merging two routes, a perturbation is

randomly computed. A local search procedure is employed that uses intra-route and

inter-route moves: relocate (different versions), interchanges, 2-opt (two versions).

Four other metaheuristics are also used: GRASP, iterated local search (ILS), Multi-

Start ILS and Multi-Start ILS alternating between two search spaces, TSP tours

(giant tours) and RVRP solutions. This search works on a pair ðx; sÞ, where x is a

RVRP solution and s is a giant tour obtained concatenating the routes in x (no

copies of the depot are included). If s0 is obtained by perturbing s, a split process is

used and a solution x0 is obtained from s0. After applying local search to it, it is

compared to x. If found to be better, the latter is updated and a new giant tour is

obtained. The heuristics were tested on two sets of randomly generated instances.

The first set consists of 18 small instances, with 10–20 customers and 2–3 vehicles.

Results from these instances were compared to solutions to the MILP formulation of

the problem, obtained by GLPK. The second set consists of 24 instances with

50–100 customers and 5–10 vehicles. Ten out of eighteen instances were solved to

optimality by GLPK. The heuristics are very close to GLPK but faster. All ten

proven optima are found and three upper bounds are improved. For the larger

instances, the tests show that the best metaheuristic is MS-ILS with giant tours,

followed by MS-ILS, ILS and GRASP.

A neighborhood search algorithm was proposed for the mixed capacitated

general routing problem with probabilistic constraints (MCGRPPC) in Beraldi et al.

(2015). It has three main elements: a diversification strategy, intensification phase

and an exact local search. Diversification may allow the search to explore more
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promising areas of the feasible space. In the intensification phase, several

neighborhoods are used following a Variable Neighborhood Descent (VND)

strategy. In this phase, moves leading to infeasible solutions are accepted as a

strategy for escaping from local optima. The exact local search is a route

optimization that uses the B&C algorithm to improve portions of the solutions. It is

also used to recover feasibility, selecting a subset of routes, optimizing them and

keeping the rest of the routes fixed. Tests were performed on randomly generated

instances, based on instances from the literature. Results were compared to a B&C

algorithm. The proposed method outperforms B&C, especially in instances with

more than six customers.

In the framework of the vehicle routing problem with hard time windows and

stochastic travel and service times, an iterated local search procedure is used in

Miranda and Conceição (2016), mainly to find solutions where a method employed

to approximate the service levels (probability of arriving before li) is evaluated.

Such a method is a statistic model that calculates the cumulative probability

function of the arrival time as a sum of a truncated non-normal with a normal

variable. It is compared to the a-discrete method (Zhang et al. 2013), using the

accuracy of the estimates for the service levels and the computational times as

performance indicators. The error of each method is obtained from the difference

between their results and results obtained by stochastic simulation. The proposed

method produces slightly better results and is about 3.6 times faster.

2.2.5 Constructive algorithms

The multi-compartment CVRPSD was solved by three different constructive

heuristics in Mendoza et al. (2011). One of them is a stochastic Clarke–Wright

heuristic, which starts from a solution with round trips to every customer and

merges the routes that will have a better impact on the total expected cost. The two

other heuristics are different approaches of a look-ahead heuristic with two steps. In

the first, the traveling salesman problem is solved and in the second a clustering

procedure is performed. The preferred iterative look-ahead technique (pilot method)

(Voß et al. 2005) is used to avoid suboptimal moves of the greedy heuristics used in

the routing step (nearest neighbor and nearest insertion). The difference between the

two different approaches is given by the heuristic used in the routing step. For the

clustering step a dynamic programming algorithm is used. The total expected cost is

calculated analytically. A stochastic 2-Opt procedure is applied as post-optimization

to the three heuristics, it evaluates the moves using the deterministic values, and just

promising moves are evaluated in terms of the stochastic values. Results from the

algorithms are compared with the results obtained by a memetic algorithm

(Mendoza et al. 2010), where tests show that even though the quality of the solution

is not necessarily better, the algorithms are much faster. The algorithm is also tested

for the CVRPSD and compared with results reported by Christiansen and Lysgaard

(2007). The two approaches of the look-ahead heuristic algorithms were able to find

some new best known solutions, and for instances with a reported optimal solution,

the three algorithms were able to find a good solution in short time.
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In Juan et al. (2011), the CVRPSD was solved by a multi-start search procedure,

combined with the Clarke–Wright heuristic, which the authors report to have

behavior similar to GRASP (M.G.C. Resende 2010). However, the methodology

used to solve the problem can be applied with any efficient algorithm for the CVRP.

The strategy is to use part of the vehicle capacity as a safety stock, while the

remaining capacity is used during the routing step. The CVRPSD is solved as a

CVRP and the vehicle capacity is set to the actual capacity minus the safety stock.

Once the solution to the CVRP is obtained, simulation is used to evaluate it. The

reliability of the solution is also computed as the probability of not having failures.

Although no comparison is done with other methods, the algorithm is tested on

different types of instances. The only comparison is with the best found solution to

the deterministic CVRP counterpart of the problem, but measuring the performance

of the solution in the stochastic framework.

A multispace sampling heuristic (MSSH) is proposed by Mendoza and

Villegas (2013) to find solutions to the CVRPSD. It follows a two phase solution

strategy. In the first phase, it samples multiple solutions. In the second phase it

uses the sampled elements to build a solution. It combines a set of randomized

heuristics for the TSP, a tour partitioning procedure and a set partitioning model.

In phase one it uses a randomized TSP heuristics to build a sample of giant tours

(TSP-like). From each tour, every feasible route that can be extracted without

changing the order of the customers is added to a set of routes. The objective

function value of the best found solution is used in phase two as an upper bound.

In phase two a set partitioning formulation of the problem is solved and a

solution is assembled using the routes built in phase one. The sampling heuristics

are randomized nearest neighbor, randomized nearest insertion, randomized best

insertion and randomized farthest insertion. Results are compared to Christiansen

and Lysgaard (2007), Mendoza et al. (2011) and Goodson et al. (2012). Instance

size ranges from 16 to 60 customers and the demand follows a Poisson

distribution. Goodson et al. (2012) is able to find more best known solutions, but

MSSH is more stable, since it finds solutions close to the best known solution

more often.

A combination of GRASP and a heuristic concentration (HC) is proposed to find

solutions to the CVRPSD in Mendoza et al. (2015). The GRASP uses a set of

randomized route-first, cluster-second heuristics to generate starting solutions. A

variable neighborhood descent procedure is used for the local search phase. A

starting solution is constructed greedily using a randomized TSP heuristic that

builds a giant tour; then a split procedure is used to get a feasible solution. A VND

procedure is later applied to the solution. Once a local optimum is found, its routes

are added to a set of routes to be used later by the HC. The route-first heuristics are

similar to those used in Mendoza and Villegas (2013). The VND has two

neighborhoods, relocate and 2-opt. The evaluation process of the moves has three

steps. First it checks the affected routes for feasibility. If not feasible, the move is

discarded and not evaluated. If feasible, the second step evaluates the deterministic

part of the objective function. If the moves leads to a degraded solution

(deterministic), then it is discarded. If the move improves the deterministic

evaluation of the objective function, the third step consists of analytic evaluation of
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the objective function. The heuristic (GRASPþHC) was tested on 40 instances of

the classical CVRPSD from Christiansen and Lysgaard (2007) where demand

follows a Poisson distribution. The heuristic is able to find all the 40 best known

solutions, thus outperforming state-of-the-art metaheuristics (Goodson et al. 2012;

Mendoza and Villegas 2013) that did not succeed in finding all of them. The

instances for the CVRPSD with duration constraints were built by adding duration

constraints to 39 of the instances in Christiansen and Lysgaard (2007). Solutions

found using the GRASPþHC were compared to the solutions to the classical

CVRPSD. Using 0.05 as the maximum probability of violating the duration

constraint, just 3 out of 39 solutions to the classical CVRPSD remain feasible. On

the other hand the solutions that fulfill such constraint found by GRASPþHC

increase the cost by 2.10% in average. The penalty formulation was computed in

three different ways, linear, piecewise linear and quadratic. The performance of the

best known solutions to the CVRPSD, measured as total expected overtime and the

total expected overtime cost, was compared to the performance of the solutions

found by the penalty formulation of GRASPþHC. The linear penalty reduces the

expected overtime by 52.83%, the piecewise linear by 75.51% and quadratic by

93.52%. There is an increment on the expected duration of the routes; on average it

increases 0.79, 1.89 and 4.79% respectively.

As a way to illustrate the advantages of modeling stochastic time by phase-type

(PH) distributions, Gómez et al. (2016) uses a multispace sampling heuristic

(MSSH) (Mendoza and Villegas 2013) to deal with the distance-constrained CVRP

with stochastic travel and service times (DCVRPSTT). This selection was done for

convenience, since MSSH explores the same areas of the solution space

independently of the route evaluator being used. A route evaluator using PH

distributions and one based on normal distributions and Monte Carlo simulation are

embedded into an adaptation of MSSH employing a two phase solution strategy. In

the first part it samples multiple solutions. In the second phase it builds the best

possible solution using parts from the sample solutions. Instances were adapted

from the literature and for each instance three scenarios are assumed to have a

different probability distribution for the travel time in each scenario: Erlang,

lognormal and Burr distribution. The service level is the same in all cases. Two

alternatives are considered for service time: deterministic and exponentially

distributed. When travel time is modeled with an Erlang distribution, it was found

that the normal route evaluation is the best choice, and the simulation route

evaluation, the worst. When travel time is modeled with a lognormal distribution,

the PH route evaluator finds better routes, but is more computationally expensive.

When travel time is modeled with a lognormal distribution, the PH route evaluator

finds better routes, and normal route evaluation is not able to find feasible solutions.

In general it was found that the Normal route evaluator is a good option when the

travel times do not have a large skewness. Monte Carlo simulation leads to overly

optimistic solutions that do not satisfy the chance constraints. The PH route

evaluator leads the algorithm to find solutions with similar quality as Monte Carlo

simulation, but more reliable.
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2.2.6 Progressive hedging

In Hvattum et al. (2006) a dynamic CVRP with time windows and stochastic

customers and demands was solved using a sample scenario hedging heuristic,

called dynamic stochastic hedging heuristic (DSHH), based on progressive hedging

(Rockafellar and Wets 1991). Sample scenarios are used to guide the heuristics that

build a plan for each time interval. Each scenario is solved as a deterministic CVRP

using a simple insertion heuristic, common parts are used to build a solution to the

dynamic and stochastic problem. The algorithm is compared against two different

methods, a local search heuristic that solves the deterministic problem and a myopic

dynamic heuristic that solves the problem at each stage ignoring the stochastic

information. DSHH was able to find solutions with a travel distance more than 15%

shorter than the myopic dynamic heuristic.

2.2.7 Evolutionary algorithms

A genetic algorithm is used in Ando and Taniguchi (2006) to solve the CVRP with

soft time windows and stochastic travel times. However, a detailed description of

the algorithm is not presented. The quality of the solutions is evaluated using

simulation. The best found solution is compared against the usual operation, for

5 days. The solution found by the algorithm performs better. The average of the

total cost was reduced by about 4%, and its standard deviation was reduced by about

75%, i.e., more reliable routes.

The multi-compartment CVRPSD was solved using a memetic algorithm in

Mendoza et al. (2010), where the solutions obtained by a genetic algorithm are

improved by two local search procedures: relocate and 2-opt. The reparation and

fitness evaluation of the individuals in the population is performed in an analytic

way through stochastic split (s-split), which is an extension of the Prins algorithm

(Prins 2004). The results obtained by the memetic algorithm were compared with

the stochastic Clarke–Wright, where all possible merges are recalculated at each

iteration, and with a spare capacity strategy, which consists of solving the

deterministic version of the problem (using a memetic algorithm in this particular

case), but preserving some free capacity on each compartment. The proposed

memetic algorithm is shown to find better solutions; however, it is more time

consuming. The algorithm was also tested on a set of instances for the multi-

compartment CVRP, and the results were compared against a tabu search and a

memetic algorithm reported by Fallahi et al. (2008). Some new best solutions were

obtained and on average, results show a gap of about 1% with respect to the best

known solutions.

A multi-objective CVRPSD was solved using a multi-objective evolutionary

algorithm in Tan et al. (2007). The quality of a solution is computed by means of a

route simulation method, where several sets of demands for all customers are

generated. The solution is evaluated on each set and an average value is obtained for

each objective. The obtained averages are used to rank the solutions based on the

Pareto dominance concept, using for this purpose the expected values of the

objectives.
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In Zhang et al. (2012), the stochastic travel time CVRP with simultaneous pick-

ups and deliveries is solved using a scatter search heuristic, with the initial set of

solutions created using a variant of the Clarke–Wright algorithm. In this problem

the chance constraints (time limit constraints) are transformed into fixed constraints

and the problem can be solved as a deterministic problem. The results are compared

against results obtained by a genetic algorithm, the proposed algorithm produces

solutions that are on average up to 13% better than the genetic algorithm.

In Sörensen and Sevaux (2009), a memetic algorithm with population manage-

ment was used to deal with robustness and flexibility of the CVRP with stochastic

demands and travel cost, and the VRP with stochastic customers, respectively. The

algorithm consists of a genetic algorithm hybridized with two versions of tabu

search that are used alternatively. The diversity of the population is controlled with

a distance measure. This allows the population to be small, but keeps it diverse. The

edit distance that measure the number of steps (add character, remove character,

substitute character) that would be performed in one solution to become another, is

used to measure the average distance between a solution and the population. The

distance is required to be above a certain threshold, before the solution is added to

the population. The threshold is decreased to intensify the search and it is increased

again when the search is stuck in a local optimum. The two tabu search heuristics

are insert tabu search, and swap tabu search. The former attempts to insert any

customer at any other tour and the latter attempts to swap any pair of customers in

the solution. Robustness evaluation was used in the binary tournament of the genetic

algorithm (by simulation), however, it was not used in the tabu search procedures,

where the deterministic objective function is used to select the next move. It was

found that robust solutions to the CVRP with stochastic demands and travel cost

will have a good deterministic objective function value, the reverse is not always

true. For the CVRP with stochastic customers, it was found that the robust approach

is not profit maximizing, since the best solution to the deterministic problem, when

all customers require the service, is also likely to be the best solution to the problem

with a reduced set of customers.

The SCARP was solved by a process consisting of two parts (Fleury et al.

2002, 2005b), optimization and robustness evaluation. The optimization is done by a

genetic algorithm that uses a local search as a mutation operator, designed for

solving the deterministic CARP (Lacomme et al. 2001), but not all solutions are

subject to local search. The algorithm stops after a specific number of iterations, or

after a certain number of iterations with no improvement or when reaching a lower

bound. If the lower bound is not reached in the main phase, several short restarts are

performed with a higher probability for the solutions to be subjected to a local

search procedure that performs best-improvement moves and stops when no more

improvements are available. Local search moves include removal of one or two

consecutive edges (that require service) from a route, and reinsertion in another

position, exchange of two edges, and 2-opt moves. The robustness evaluation is

performed on the best solution found by the optimization process. It consists of a

statistic evaluation of performance indicators such as the average cost, average

number of trips, percentage of solutions requiring extra trips to the depot, standard

deviation of the total cost and standard deviation of the total number of trips. For

The stochastic vehicle routing problem... 377

123



statistical purposes, the solution is evaluated in several independent scenarios. The

optimization part is done using three different approaches, tight and slack. In both

cases, the deterministic problem is solved using the expected values of the demands

as parameters. In the slack approach, just a percentage of the vehicle’s capacity is

utilized when making routing decisions. The slack approach shows reduction of the

variability when compared with the tight approach.

In addition to the tight and slack approaches, a memetic algorithm where the

objective function is computed analytically was used in Fleury et al. (2004), a

similar approach was called law in Fleury et al. (2005a). In the law approach, two

objective functions are considered to be minimized: the average cost of the solution

and the average cost plus a fixed constant multiplied by the standard deviation of the

cost. Even though different instances were used in Fleury et al. (2005b, 2005a), the

results were similar. The law approach, when the average cost is minimized,

produces solutions with less variability than the tight approach, but not as good as

the slack approach. However, when it uses as its objective function the average cost

plus a fixed constant multiplied by the standard deviation of the cost, it generates

solutions with less variability.

2.2.8 Other nature-inspired heuristics

In Marinakis et al. (2013), the CVRPSD was solved by particle swarm optimization,

a methodology based on simulating the social behavior of swarming organisms. The

method includes some other heuristics, since in addition to the particle swarm, it

also uses path relinking and local search (2-opt and 3-opt). Thus, in some sense it

can be viewed as a multi-descent algorithm. In the model of the problem it was

assumed that route failures could be avoided by the ‘‘optimum choice’’ of a

threshold value to decide whether to travel to the depot for preventive restocking or

not. The fitness of a solution is deterministic and evaluated analytically. The results

are compared against results obtained by two other evolutionary algorithms, and the

particle swarm optimization heuristic was able to outperform them.

In Chepuri and Homem-de Mello (2005) the single vehicle CVRPSD was solved

using the Cross Entropy (CE) method (Rubinstein 1999). This method considers that

the actual optimization problem is connected to a problem of estimating rare-event

probabilities. The idea behind CE is to see the selection of the optimal solution as a

rare event. At every iteration a set of routes are generated according to transition

probabilities, the cost of the routes is evaluated and probabilities are updated

depending on that cost. For the CVRPSD the algorithm starts from an initial

transition matrix so any route has the same probability to be generated, and a set of

routes is generated. The routes are then evaluated using a demand sample, which is

the same for each route. The best route so far is kept and compared to the one

generated at each iteration. If no improvement is achieved for a given number of

iterations, the algorithm stops. Lower bounds and exact solutions are computed and

several type of analysis are done for different cases: demands are IID and penalties

are identical; demands are IID and penalties are not identical; demands are non-IID

and penalties are identical; demands are non-IID and penalties are non-identical. If

demands are IID, the expected cost can be computed analytically. If demands are
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non-IID, expected cost of going back to depot is ignored and a lower bound is

obtained for the total cost. Demands are drawn from the same family of

distributions, but the parameters depend on the node. A lower bound is also

obtained for the case where demands nor non-IID and the penalties are non-uniform.

For IID demands, the algorithm is compared with results of a branch-and-bound

technique using the ILOG SOLVER 4.4. In most of the cases the algorithm is able to

find solutions within 5% of the optimal solution. The solver is not able to find exact

solutions for more than 16 nodes. For non-IID demands and uniform penalties, a

lower bound of the problem is found by ILOG SOLVER 4.4. In tighter problems,

where the total demand is close to total capacity, the values are closer to the lower

bound. For non-IID demands and non-uniform penalties, no lower bound is

available, but a similar conclusion is obtained regarding solution quality of tighter

problems. In elite sampling, some randomly generated routes are replaced by the

best routes found so far, which improves the performance of the algorithm.

Ant colony optimization is used in Woensel et al. (2007) to solve the routing

problems with time-dependent travel times. A 2-opt procedure is used together with

a mechanism that splits the tours by adding a depot between two customers. This is

done until no improvement is achieved or the maximum number of trucks is

reached. In addition, the starting time may be shifted if that represents an

improvement. The quality of the obtained solutions was compared with the quality

of the solutions when just the total distance is minimized. In addition, explicit

enumeration is done for small instances to validate the approach. Tests are done

using both objective functions: with and without variance of the travel times (except

for complete enumeration which does not include the variance in the objective

function.) The algorithm was tested on 28 instances from the literature with 32–100

customers in addition to the depot. On average there is a reduction of 22.2% in the

travel time. For tests of the second objective function, the roads are randomly

selected to have either a high or low coefficient of variation: 50% of roads have high

and 50% low. The coefficient of variation of the travel time decreased on average

54.30% with a weight associated to the variance in the interval [0, 0.1]. The cost of

that reduction is an increment in the average travel time of 27.87%. In the tests, the

fleet size is considered unlimited.

3 Tables

A list of all abbreviations and acronyms used in this section can be found in Table 1.

In Table 2 there is a summary of the solution methods used in the surveyed papers

where customers demand is assumed to be stochastic.

In Table 3 there is a summary of the solution methods used in the surveyed

papers where customers and customer demands are assumed to be stochastic.

In Table 4 there is a summary of the solution methods used to deal with the

stochastic CARP in the surveyed papers.

In Table 5 there is a summary of the solutions methods used in the surveyed

papers where time is assumed to be stochastic.
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Table 1 Notation

Abbreviation/acronym Method

ACO Ant colony optimization

ALNS Adaptive large neighborhood search

B&C Branch-and-cut

B&P Branch-and-price

BC&P Branch-cut-and-price

CCP Chance constraint programming

CE Cross entropy

CO Cyclic-order

CARPSD Capacitated arc routing problem with stochastic demands

CVRPSCD Capacitated vehicle routing problem with stochastic customers and demands

CVRPSD Capacitated vehicle routing problem with stochastic demands

CW Clarke–Wright

DP Dynamic programming

DTD Detour to depot

EA Evolutionary algorithm

HC Heuristic concentration

ILS Iterated local search

LAH Look ahead heuristic

LBD Local branching descent

LS Local search

LSM L-shaped method

MA Memetic algorithm

MCGRPPC Mixed capacitated general routing problem with probabilistic constraints

MDLB Multidescent local branching

MOEA Multi-objective evolutionary algorithm

MPDP Multi-vehicle pickup and delivery problem

MSH Multi-start heuristic

MS-ILS Multi-start iterated local search

MSSH Multispace sampling heuristics

MSSP Multi-start search procedure

NDM Neuro-dynamic methodology

PHH Progressive hedging heuristic

PLC Pair locally coordinated

PSO Particle swarm optimization

SA Simulated annealing

SCW Stochastic Clarke–Wright

SS Scatter search

TS Tabu search

VRPSTT Vehicle routing problem with stochastic travel times
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Table 2 Summary of papers where demands are assumed to be stochastic

Author Type of problem Solution method Evaluation

Hjorring and Holt (1999) CVRPSD LSM AN

Yang et al. (2000) CVRPSD DP AN

Secomandi (2000) CVRPSD NDM AN

Secomandi (2001) CVRPSD RA AN

Laporte et al. (2002) CVRPSD LSM AN

Secomandi (2003) CVRPSD RA AN

Chang (2005) CVRPSD LSM AN

Bianchi et al. (2005) CVRPSD ACO, EA, SA, TS and

ILS

AN

Chepuri and Homem-de Mello

(2005)

CVRPSD CE SI

Ak and Erera (2007) CVRPSD TS AN

Christiansen and Lysgaard

(2007)

CVRPSD B&P AN

Haugland et al. (2007) CVRPSD TS, MSH AN

Rei et al. (2007) CVRPSD LBD AN

Tan et al. (2007) CVRPSD MOEA SI

Sungur et al. (2008) CVRPSD B&C SI

Secomandi and Margot (2009) CVRPSD DP AN

Sörensen and Sevaux (2009) CVRPSD and stochastic travel

costs

MA SI

Novoa and Storer (2009) CVRPSD DP SI

Erera et al. (2010) CVRPSD TS AN

Rei et al. (2010) CVRPSD MDLB, LSM SI

Mendoza et al. (2010) CVRPSD MA AN

Lei et al. (2011) CVRPSD ALNS AN

Mendoza et al. (2011) CVRPSD SCW, LAH and DP AN

Juan et al. (2011) CVRPSD MSSP þ CW SI

Goodson et al. (2012) CVRPSD SA þ CO AN

Lee et al. (2012) CVRPSD B&P AN

Gounaris et al. (2013) CVRPSD B&C SI

Mendoza and Villegas (2013) CVRPSD MSSH AN

Marinakis et al. (2013) CVRPSD PSO AN

Jabali et al. (2014) CVRPSD LSM AN

Gauvin et al. (2014) CVRPSD BC&P AN

Zhu et al. (2014) CVRPSD DP, RA AN

Goodson (2015) CVRPSD SA þ CO AN

Mendoza et al. (2015) CVRPSD GRASP þ HC AN
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Table 6 shows how often the different methods have been used in the literature.

In a single paper more than one method may be used, so the counting here is not

done per paper, but per number of times in general. Values are rounded to the

closest integer.

4 Conclusions

The different methods used in the past 20 years of research on stochastic VRPs have

been described and classified. Although both exact and heuristic methods have been

used, heuristics are more common. This is probably due to the difficulties inherent

in the VRP that are exacerbated by the addition of stochastic elements. Within

heuristics, we found that the most common type of methods are classified as local

Table 3 Summary of papers where customers and customer demands are stochastic

Author Type of problem Solution

method

Evaluation

Hvattum et al. (2006) CVRPSCD PHH SI

Zhong et al. (2007) CVRPSCD TS AN

Erera et al. (2009) CVRPSCD LS SI

Sörensen and Sevaux

(2009)

CVRPSCD MA SI

Beraldi et al. (2010) Probabilistic multi-vehicle pickup and

delivery problem

LS AN

Ahmadi-Javid and Seddighi

(2013)

Location, allocation and routing problem with

disruptions

LS AN

Table 4 Summary of papers on stochastic CARP

Author Type of problem Solution

method

Evaluation

Fleury et al. (2002) CARPSD GA SI

Fleury et al. (2004) CARPSD GA AN

Fleury et al. (2005b) CARPSD GA SI

Fleury et al. (2005a) CARPSD GA SI

Christiansen et al.

(2009)

CARPSD B&P AN

Laporte et al. (2010) CARPSD ALNS AN

Beraldi et al. (2015) MCGRPPC B&C, VND SI

Chen et al. (2014) CARP with stochastic travel and service

times

ALNS SI
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search. In this group, tabu search has been the most popular and arguably the most

effective.

The SVRP is a computationally demanding problem, so looking to the future we

expect to see methods based on simple but effective ideas. In fact, one of the most

effective methods for the CVRPSD is based on a relatively simple procedure. A

pool of feasible routes is built and feasible solutions are constructed based on such

pool.

Another aspect that we expect to become more popular in the SVRP literature is

the evaluation of solutions using methods more accurate than simulation but less

Table 5 Summary of papers with time as stochastic parameter

Author Type of problem Solution method Evaluation

Kenyon and Morton

(2003)

VRP with stochastic travel and

service times

B&C AN

Ando and Taniguchi

(2006)

VRPSTT GA SI

Woensel et al. (2007) VRPSTT ACO AN

Russell and Urban

(2008)

VRPSTT TS AN

Lecluyse et al. (2009) VRPSTT TS AN

(aprox)

Li et al. (2010) VRP with stochastic travel and

service times

TS SI

Lei et al. (2012) VRP with stochastic service times GVNS AN

Lee et al. (2012) VRPSTT B&P AN

Zhang et al. (2012) VRPSTT SS AN

Taş et al. (2013) VRPSTT TS AN

Zhang et al. (2013) VRP with stochastic travel and

service times

TS AN

(aprox)

Taş et al. (2014b) VRPSTT B&P AN

Adulyasak and Jaillet

(2016)

VRPSTT B&C AN

Taş et al. (2014a) VRPSTT TS, ALNS AN

(aprox)

Yan et al. (2014) Cash transportation under stochastic

travel time

Problem decomposition ?

CPLEX

AN

Ehmke et al. (2015) VRPSTT TS AN

(aprox)

Solano-Charris et al.

(2015)

VRPSTT ILS, MS-ILS, CW,

GRASP

AN

Gómez et al. (2016) VRP with stochastic travel and

service times

MSSH SI

Errico et al. (2016) VRP with stochastic service times BC&P AN

Miranda and

Conceição (2016)

VRPSTT ILS AN

(aprox)

The stochastic vehicle routing problem... 383

123



computationally demanding and that are more flexible than the analytic evaluation

by closed forms.

Finally, we expect trends in the stochastic programming literature towards more

effective use of parallel computing to find their way into the SVRP literature at an

accelerating pace. Although the future is uncertain, we can predict with confidence

Table 6 Solution methods

Optimization method Percentage of papers (%)

Local search 36

Tabu search 41

Simulated annealing 14

Adaptive large neighborhood search 14

Iterated local search 10

Other local search algorithms 7

Multidescent local branching 4

Multi-start heuristic 4

Multi-start iterated local search 4

VNS 4

Exact algorithms 25

L-shaped method 35

Branch-and-price 25

Branch-and-cut 25

Branch-cut-and-price 10

Other (problem decomposition þ CPLEX) 5

Evolutionary algorithms 11

Genetic algorithm 66

Memetic algorithm 22

Scatter search 11

Constructive algorithms 10

Multispace sampling heuristics 25

GRASP 25

Clarke–Wright 25

Look ahead heuristic 13

Multi-start search procedure þ Clarke–Wright 13

Other nature-inspired heuristics 5

Ant colony optimization 50

Particle swarm optimization 25

Cross entropy 25

Other methods 13

Dynamic programming 50

Rollout algorithm 40

Progressive hedging heuristic 10
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that modeling and solving stochastic vehicle routing problems will remain an area

of active and important research. After completion of this survey, we became aware

of a related survey that provides a dynamic VRP perspective on the literature

(Ritzinger et al. 2016).
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