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Abstract Inventory routing problems (IRPs) aim at minimizing the cost of the total

distance traveled over a time horizon discretized in periods, while guaranteeing that

the customers do not incur a stock-out event. In an optimal solution of an IRP, the

customers in general have no inventory at the end of the horizon. Some inventory

may remain only if this does not increase the cost of the distance traveled. To avoid

this ending drawback, we consider in this paper as objective function the so-called

logistic ratio, which is the ratio of the total routing cost to the total quantity dis-

tributed. The logistic ratio gives rise to a new optimization problem whose math-

ematical programming formulation is non-linear. Using a classical method, we can

solve exactly instances with up to 5 vehicles and 15 customers over 3 periods. The

solutions are compared with those of a classical IRP, both from the worst-case point

of view and computationally. The results show that on average the logistic ratio

increases by 20.4 % in the classical IRP on instances with 3 periods and that the

percentage decreases when the horizon length increases.
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1 Introduction

The inventory routing problems (IRPs) aim at minimizing the cost of the total

distance traveled, and possibly also the inventory cost, over a discretized time

horizon, while guaranteeing that the customers do not incur a stock-out event. In

vehicle routing problems (see Toth and Vigo 2014), one period is considered, the

demands of the customers who request a delivery in the period are given and the

routes of the vehicles are optimized. In IRPs, the daily consumption of the

customers is known and the supplier is responsible for the decisions related to the

timing of the deliveries and the quantities to deliver, besides the traditional vehicle

routes. More than the quantity consumed in a period may be delivered and stocked

for future need. IRPs model practical management policies such as the Vendor-

Managed Inventory (VMI). For a general introduction to IRPs and overviews of the

contributions, we refer to Bertazzi and Speranza (2012) and Bertazzi and Speranza

(2013), and to Bertazzi et al. (2008) and Coelho et al. (2014), respectively. For

applications, we refer to Andersson et al. (2010). Exact solution methods for IRPs

have been proposed recently by several authors (see Coelho et al. 2012a, b; Coelho

and Laporte 2013, 2014; Adulyasak et al. 2013; Archetti et al. 2014; Desaulniers

et al. 2015).

Let us consider IRPs where the routing cost only is minimized. To optimize the

routing cost which is usually proportional to the total distance traveled, the

customers tend to have no inventory at the end of the planning horizon in an optimal

solution. Some inventory may remain only if this does not increase the distance

traveled. This ending condition is not satisfactory as it implies that almost all

customers will need to be served the period immediately after the end of the horizon

considered. As a consequence, the routing cost will be excessively high after the end

of the planning horizon. The optimization of the routing cost over a certain period of

time, i.e., over the planning horizon, is likely to generate a solution that is far from

being optimal when the operations pursue after the end of the horizon. In fact,

companies usually assess the efficiency of a distribution policy through measures

that consider both the cost of distribution and the quantity distributed. The most

commonly used measure is the so-called logistic ratio, that is, the ratio of the cost of

the distribution to the total quantity distributed. The logistic ratio is the average cost

to distribute one unit of product and captures the long-term impact of a short-term

planning. When considering a long-term plan, the objective is to minimize the total

cost to satisfy the demand over the long term. This is achieved when minimizing the

cost per unit, which corresponds to minimizing the logistic ratio. Note that this

objective is similar to the one proposed by Air Liquide for the ROADEF/EURO

Challenge 2016 (ROADEF 2016) (their cost structure also includes driver shift

costs). Furthermore, Air Liquide, which is a multinational company distributing

different oil types, uses the logistic ratio to evaluate distribution plans generated by

the logistic department for the replenishment of warehouses and customers. A

similar measure was proposed in Golden et al. (1984) to evaluate distribution plans

of a large company distributing liquid propane to both residential and industrial
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customers. In particular, the ratio between the total number of gallons distributed

and the total number of hours spent in the delivery operations was used.

In this paper, we study an IRP with multiple vehicles over a planning horizon

discretized in periods. The objective function is the logistic ratio. We consider a

single product and a single depot where the vehicles start and end their routes. The

depot is located at the supplier and the quantity produced in each period is known.

The product is consumed by a set of customers and the quantity consumed in each

period is known for each customer. The consumed product can be delivered from

the depot at the beginning of the period or beforehand, in which case it is stored in

inventory. Stock-out at the customers or the supplier is not allowed. Each customer

has an inventory capacity that must be respected after each delivery, before

consuming the product. We assume that the inventory capacity at the supplier is

unlimited. At the supplier and at each customer, there might be an initial inventory.

In typical IRPs, an inventory holding cost, which may vary from one location to

another, is incurred for each unit of product in inventory at the supplier and the

customers at the end of each period. Here, we assume that the holding costs are

equal everywhere and can, thus, be omitted. Indeed, given that the total quantities

produced and consumed in each period are known, the total quantity in inventory in

each period is also known and the total holding cost is thus a constant (see, for

example, Bertazzi and Speranza 2013 for a proof of this property). We consider a

homogeneous fleet of vehicles with given capacity. A route starts and ends at the

depot and visits a subset of the customers, all within the same period. We assume

that each customer is visited at most once per period. Each movement between two

locations incurs a travel cost.

The problem we study consists in determining in which period(s) each customer

must be visited, the quantity delivered at each visit, and the delivery routes to

perform in each period. The objective is the minimization of the logistic ratio that is

the total routing cost divided by the total delivered quantity. To the best of our

knowledge, the problem has never been studied. We call it IRP with logistic ratio

(IRP-LR). The objective function of the IRP-LR yields a non-linear mathematical

programming formulation. In this paper, we focus on the exact solution of the

problem and on the comparison with the classical IRP with no inventory costs. In

fact, among the multiple optimal solutions of the IRP, we consider the one that

maximizes the total quantity delivered. We call the problem where distance is

optimized first and quantity after, the Cost-first Quantity-second IRP (CQ-IRP).

From a theoretical point of view, we show that the logistic ratio of the CQ-IRP

optimal solution can be infinitely higher than the logistic ratio of the IRP-LR

solution. Using a classical method due to Dinkelbach (1967) that can handle the

non-linear objective function, we solve the problem exactly on instances with up to

5 vehicles and 15 customers on a horizon of 3 periods, and up to 10 customers on a

horizon of 4 or 5 periods. Computational experiments show that the logistic ratio is

on average 20.4 % higher in the IRP with respect to the IRP-LR on instances with a

planning horizon of 3 periods and tends to decrease with the increase of the length

of the planning horizon.

The paper is organized as follows. In Sect. 2, the problem notation is introduced

and the optimal solutions of the CQ-IRP and of the IRP-LR are compared from the
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worst-case point of view. A mathematical programming formulation for the IRP-LR

is presented in Sect. 3 and the proposed solution algorithm in Sect. 4. Section 5 is

devoted to the computational experiments. Finally, some conclusions are drawn in

Sect. 6.

2 Notation and worst-case analysis

The IRP-LR is represented on a complete undirected graph G ¼ ðN;EÞ. N ¼
f0g [ N 0 is the set of locations (nodes), where 0 is the depot and N 0 is the customer

set while E is the set of edges between locations. A cost cij is associated with each

edge hi; ji. Each customer i 2 N 0 has an associated inventory capacity Ui. We

consider a planning horizon T ¼ f1; . . .;Hg of H time periods. The quantity

consumed (or the demand) at customer i in period t is denoted as dit, i 2 N 0, t 2 T ,

while d0t is the quantity produced at the depot at period t. Ii0 represents the initial

inventory level at location i, i 2 N. A fleet of K homogeneous vehicles of capacity

Q is available to distribute the goods from the depot to the customers.

In the classical IRP, the objective function is given by the minimization of the

sum of the traveling cost and the inventory cost. If the inventory cost is not

considered, then only the traveling cost is minimized. In the following, we give an

example of how the solution changes when considering the minimization of the

logistic ratio, like in the IRP-LR, with respect to the case when the traveling cost is

minimized, like in the classical IRP with no inventory holding cost. As mentioned

above, there may exist many IRP optimal solutions, but we consider the ones

maximizing the quantity delivered, i.e., CQ-IRP optimal solutions.

Example 1 Let us consider the following instance. H ¼ 2, jN 0j ¼ 2, K ¼ 1 and

Q ¼ 25. The demands of the customers are dit ¼ 10, i ¼ 1; 2, t ¼ 1; 2 while

maximum inventory levels are U1 ¼ U2 ¼ 20. The initial inventory levels at the

customers are I1;0 ¼ 10 and I2;0 ¼ 0. The production rate at the supplier is not

binding. The edge costs are as follows: c0i ¼ 1, i ¼ 1; 2 and c1;2 ¼ �. Let us now

determine the solution of the CQ-IRP. We need to deliver at least 10 units to

customer 1 (which are given by the total demand over the planning horizon minus

the starting inventory level) and 20 units to customer 2. Thus, the minimum number

of routes is equal to 2 and both customers have to be visited at least once. Note also

that 2 is the maximum number of routes as H ¼ 2 and K ¼ 1. Each route can visit

one or two customers. The optimal solution of the CQ-IRP is the one that visits

customer 2 at period 1 delivering 20 units and customer 1 at period 2 delivering

20 units. Thus, the solution has a cost of 4 and delivers 40 units. The logistic ratio is
4

40
. Note that 40 units is the maximum quantity that can be delivered if you use two

routes visiting one customer each. To increase the quantity delivered, we have to

visit both customers in one or two routes. If only one route visits two customers, the

maximum quantity that can be delivered is 45 and the cost is 4 þ �. If both routes

visit both customers, the maximum quantity that can be delivered is 50 and the cost

is 4 þ 2�. When � tends to 0, the solution of the IRP-LRis the latter with value 4þ2�
50

.
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The routes performed by the two solutions are depicted in Fig. 1. The numbers close

to the edges represent the traveling cost.

We now study the maximum increase in the value of the logistic ratio when the

CQ-IRP is considered instead of the IRP-LR.

Example 2 Let us consider the following instance. H ¼ 2, jN 0j ¼ 2, K ¼ 1, the

demands of the customers are d1t ¼ d1 and d2t ¼ d2, t ¼ 1; 2, with d2 � d1. The

maximum inventory levels are U1 ¼ 2d1 and U2 ¼ 3d2. The initial inventory levels

at the customers are I1;0 ¼ 0 and I2;0 ¼ 2d2. Vehicle capacity is Q ¼ 2d2. The

production rate at the supplier is not binding. The edge costs are as follows: c0i ¼ 1,

i ¼ 1; 2 and c1;2 ¼ �. Note that customer 2 does not need to be visited as its initial

inventory level is sufficient to cover the demand of the two periods. Thus, the

optimal solution of the CQ-IRP is the one that visits customer 1 in period 1 only and

delivers 2d1 units. The routing cost is 2 and the logistic ratio is 2
2d1

. A feasible

solution delivering a higher quantity is the one where customer 1 is served in period

1 with quantity 2d1 and customer 2 is served in period 2 with quantity 2d2. The cost

of this solution is 4 and the logistic ratio is 4
2d1þ2d2

. The ratio of the logistic ratios of

the two solutions is d1þd2

2d1
which tends to infinity when d2 tends to infinity.

Note that in the previous example one of the customers does not need to be

served and is not served by the solution of the CQ-IRP. Moreover, the ratio d1þd2

2d1

increases when the demand of one customer increases. Now, we show an example

where all customers need to be served and the ratio increases with the number of

customers.

Example 3 Let us consider the following instance. H ¼ 2 and K ¼ jN 0j. Customer

demands and maximum inventory levels are dit ¼ d, i ¼ 1; . . .; jN 0j, t ¼ 1; . . .;H
and Ui ¼ U, i ¼ 1; . . .; jN 0j, respectively. Moreover, the maximum inventory level

U is equal to the vehicle capacity Q and corresponds to dðjN 0j þ 1Þ. The initial

inventory levels are I1;0 ¼ 0 and Ii0 ¼ d, i ¼ 2; . . .; jN 0j. The cost cij of each edge

1                               2

0

1 1

(a) Solution of the CQ-IRP

0

1                                2

1 1

ε

(b) Solution of the IRP-LR

Fig. 1 Routes performed by the two solutions described in Example 1 (solid lines for period 1, dashed
lines for period 2)
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hi; ji is equal to �. The production rate at the supplier is not binding. Note that each

customer needs to be visited at least once and the optimal solution of the CQ-IRP is

the one that makes a single route in period 1 visiting all customers and delivering 2d

to customer 1 and d to all remaining customers. Thus, the cost is ðjN 0j þ 1Þ� and the

quantity delivered is U. When � tends to 0, the optimal solution of the IRP-LR is the

one which delivers the maximum quantity. The maximum deliverable quantity over

the two periods is equal to U for all customers i ¼ 2; . . .; jN 0j and U þ d for

customer 1. Thus, the solution that maximizes the delivered quantity is the one

where one route is performed in period 1 delivering U units to customer 1 and jN 0j
routes are performed in period 2, each one visiting a single customer and delivering

U units to customers i ¼ 2; . . .; jN 0j and d units to customer 1. The routing cost is

2�ðjN 0j þ 1Þ and the quantity delivered is jN 0jU þ d. The ratio of the logistic ratios

of the two solutions is thus
ðjN0 jþ1Þ�ðjN 0jUþdÞ

2U�ðjN 0jþ1Þ which goes to infinity when jN 0j tends to

infinity. The routes performed by the two solutions for the case where jN 0j ¼ 5 are

depicted in Fig. 2. In this case, we do not report the traveling cost of each edge as it

is identical for all edges and equal to �.

Let LR(s) be the logistic ratio of solution s and let s�P be the optimal solution of

problem P. Then, the following statement holds:

Proposition 1 There exists no finite bound to the ratio
LRðs�

CQ�IRP
Þ

LRðs�
IRP�LR

Þ.

3 A mathematical formulation for the IRP-LR

In this section, we provide a path-flow formulation for the IRP-LR that differs from

the IRP formulation proposed in Desaulniers et al. (2015) only by its linear

fractional objective function. We present it here entirely, using the notation

introduced at the beginning of Sect. 2, to make the paper self-contained.

The formulation of Desaulniers et al. (2015) relies on the key features of two

existing formulations. First, it relies on continuous variables that are each associated

0

3
4

51

2

(a) Solution of the CQ-IRP

0

3
4

51

2

(b) Solution of the IRP-LR

Fig. 2 Routes performed by the two solutions described in Example 3 (solid lines for period 1, dashed
lines for period 2)
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with a route and a delivery pattern as in the model of Desaulniers (2010) for the

split-delivery vehicle routing problem. This pattern indicates the quantity delivered

to each customer visited along the route. Only extreme delivery patterns (defined

below) need to be considered given that all the others can be obtained as convex

combinations of the extreme ones. Second, as in the facility location-based

formulation of the lot-sizing problem proposed by Krarup and Bilde (1977), the

model stipulates the exact usage of each delivery, i.e., which demand(s) it will fulfill

fully or partially and if some of it is dedicated to the end inventory. Hence, each

delivery can be seen as a set of sub-deliveries, one for each demand it can fulfill or

for the end inventory. Assuming without loss of optimality that each customer

consumes the product it receives following a first-in, first-out (FIFO) rule, the

number of potential sub-deliveries associated with a delivery is rather limited.

Given this FIFO rule, the initial inventory at each customer must be used to

satisfy its demands in the first periods. Consequently, for each customer i 2 N 0, we

determine the rest Iti0 of its initial inventory Ii0 left at the end of each period t 2 T :

Iti0 ¼ maxf0; Ii0 �
Pt

s¼1 disg. Knowing the demands covered by the initial inven-

tory, we define the residual demand �dit for customer i 2 N 0 in period t 2 T as

follows:

�dit ¼
maxf0; dit � Ii0g if t ¼ 1

maxf0; dit � It�1
i0 g otherwise;

�

8t 2 T :

A positive residual demand cannot be covered by the initial inventory and must,

therefore, be covered by delivered quantities.

Furthermore, according to the FIFO rule, for each customer i 2 N 0 and each

period t 2 T , we establish an upper bound on the quantity that can be delivered in

each sub-delivery of a delivery to customer i in period t. More precisely, an upper

bound usit on the quantity that can be delivered in period t and that is dedicated to

satisfy the demand of a period s 2 T is given by

usit ¼
0 if s\t

minf�dis;Ui � Is�1
i0 g if s ¼ t

minf�dis;Ui �
Ps�1

‘¼t di‘ � Is�1
i0 g otherwise:

8
><

>:

We also define the upper bound uHþ1
it ¼ Ui �

PH
‘¼t di‘ � IHi0 on the quantity deliv-

ered in period t and that is dedicated to the end inventory (associated with an extra

period H þ 1).

Let R be the set of feasible routes. A feasible route is an elementary path in G

starting and ending at depot 0 and visiting exactly once some customers in N 0. The

cost of a route r 2 R, denoted cr, is equal to the sum of the costs cij of its edges hi; ji.
Moreover, let N 0

r � N 0 be the subset of customers visited in route r and let ari be a

binary parameter equal to 1 if i 2 N 0
r and 0 otherwise. Note that a route can be used

in any period.

With each route r 2 R and period t 2 T , we associate a set of possible delivery

patterns Wrt. A delivery pattern w 2 Wrt indicates for each customer i 2 N 0
r and for

each period s 2 T [ fH þ 1g the quantity qswi 2 ½0; usit� delivered in period t to
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customer i along route r that is dedicated to satisfy the demand of period s if s 2 T

or that is destined to the end inventory if s ¼ H þ 1. It is sufficient to restrict the set

Wrt to extreme delivery patterns, i.e., patterns with at most one value qswi that is

strictly within its lower and upper bounds (0\qswi\usit). Indeed, convex combi-

nations of these patterns can yield all non-extreme patterns. For a pattern w 2 Wrt,

let qw ¼
P

i2N 0
r

PHþ1
s¼t qswi be the total quantity delivered along route r in period t.

Furthermore, let bswi ¼
PHþ1

‘¼sþ1 q
‘
wi be the quantity delivered in period t to customer

i 2 N 0
r that is still in inventory at the end of period s 2 T , i.e., the quantity dedicated

to satisfy the demands of the periods after s.

The path-flow formulation involves two types of variables. Non-negative

variables I0t, t 2 T indicate the inventory at the depot at the end of period t.

Continuous variables ywrt, r 2 R, t 2 T , w 2 Wrt, bounded in [0, 1], specify the

proportion of route r operated in period t with delivery pattern w.

Using this notation, we can formulate the IRP-LR as follows:

min
X

t2T

X

r2R

X

w2Wrt

cry
w
rt

 !
. X

t2T

X

r2R

X

w2Wrt

qwy
w
rt

 !

ð1aÞ

s:t:
X

t2T

X

r2R

X

w2Wrt

qs
wiy

w
rt ¼ dis; 8i 2 N0; s 2 T; ð1bÞ

I0;t�1 þ d0t �
X

r2R

X

w2Wrt

qwy
w
rt ¼ I0t; 8t 2 T; ð1cÞ

I0t � 0; 8t 2 T; ð1dÞ

Isi0 þ
X

t2T

X

r2R

X

w2Wrt

bswiy
w
rt þ dis �Ui; 8i 2 N 0; s 2 T ; ð1eÞ

X

r2R

X

w2Wrt

ariy
w
rt � 1; 8i 2 N 0; t 2 T ; ð1fÞ

X

r2R

X

w2Wrt

ywrt �K; 8t 2 T ; ð1gÞ

ywrt � 0; 8t 2 T; r 2 R; w 2 Wrt; ð1hÞ
X

w2Wrt

ywrt 2 f0; 1g; 8t 2 T ; r 2 R: ð1iÞ

The objective function (1a) aims at minimizing the logistic ratio. Constraints (1b)

ensure that the residual demand of each customer (i.e., the demand not covered by

the initial inventory) is met in each period. Constraints (1c) define the inventory

level at the depot in each period while non-negativity requirements (1d) avoid

stock-out situations at the depot. Inventory capacity at each customer in each period

is imposed through constraints (1e). Recall that the maximum inventory in a period
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s (the left-hand side term of (1e)) is reached before demand consumption and after a

possible delivery. It is, thus, equal to the inventory at the end of the period s, arising

from the initial inventory or from past and current deliveries, plus the demand in this

period. Constraints (1f) ensure that each customer is visited by at most one vehicle

in each period, while constraints (1g) limit to K the number of vehicles that can be

used in each period. Non-negativity requirements on the ywrt variables are given by

(1h). Binary requirements are not imposed directly on these variables, but rather on

the routes themselves with (1i), allowing convex combinations of the extreme

delivery patterns.

Given the non-linear objective function (1a), formulation (1a)–(1i) cannot be

solved through a standard solution algorithm for mixed integer linear programs.

This is the reason why we opted to solve the IRP-LR using an algorithm based on a

variant of formulation (1a)–(1i) as described in the following section.

4 A solution algorithm for the IRP-LR

Model (1a)–(1i) is a linear fractional program. We propose to solve it using an

algorithm that follows the general scheme developed by Dinkelbach (1967) for the

solution of fractional programming problems. The basic idea of Dinkelbach’s

algorithm is the following. Let x be the vector of decision variables, S the feasible

domain that is compact and connected, CðxÞ and DðxÞ the two continuous functions

of x such that DðxÞ[ 0 for all x 2 S. Given the fractional programming problem:

minfCðxÞ=DðxÞ j x 2 Sg

the algorithm solves, at each iteration k, the following problem:

minfCðxÞ � rk�1DðxÞ j x 2 Sg

where rk�1 is the ratio Cðxk�1Þ=Dðxk�1Þ provided by the optimal solution xk�1 at

iteration k � 1. Let xk be the computed optimal solution. The algorithm stops if

CðxkÞ � rk�1DðxkÞ ¼ 0. Otherwise, CðxkÞ � rk�1DðxkÞ\0, which means that rk ¼
CðxkÞ=DðxkÞ yields a better ratio than rk�1. Dinkelbach (1967) proves the conver-

gence of the algorithm under the hypotheses stated above. In our case, S is not

connected but our computational results show that the algorithm converges towards

an optimal solution in a few iterations.

Now, let us discuss how Dinkelbach’s algorithm can be applied to the IRP-LR.

Let y ¼ ðywrtÞr2R;t2T
w2Wrt

and I ¼ ðI0tÞt2T . Thus

x :¼ ðy; IÞ ð2Þ

Cðy; IÞ 	 CðyÞ :¼
X

t2T

X

r2R

X

w2Wrt

cry
w
rt ð3Þ
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Dðy; IÞ 	 DðyÞ :¼
X

t2T

X

r2R

X

w2Wrt

qwy
w
rt ð4Þ

S is defined by ð1bÞ�ð1iÞ: ð5Þ

Given a logistic ratio r, the algorithm solves at each iteration the following mixed

integer linear program:

ðMILPðrÞÞ zðrÞ ¼ min CðyÞ � rDðyÞ ð6aÞ

s:t: ðy; IÞ 2 S: ð6bÞ

To solve it, we use the branch-price-and-cut algorithm developed in Desaulniers

et al. (2015). We refer the reader to Desaulniers et al. (2015) for details on the

branch-price-and-cut algorithm. We simply mention that in Desaulniers et al.

(2015) the authors show that the algorithm outperforms branch-and-cut algorithms

previously proposed in the literature for the IRP when the number of vehicles is

large, i.e., K ¼ 4; 5 while branch-and-cut (Coelho and Laporte 2014) tends to be

better for a lower number of vehicles. Anyway, for our tests, the branch-price-and-

cut algorithm turned out to be sufficiently efficient when the number of vehicles is

low and, thus, we decided to use this algorithm for all values of K.

The pseudo-code of Dinkelbach’s algorithm for the IRP-LR is given in

Algorithm 1.

Algorithm 1 Dinkelbach’s algorithm
1: Solve MILP (0) to yield an optimal solution (y∗, I∗)
2: repeat
3: r∗ := C(y∗)/D(y∗)
4: Solve MILP (r∗) to yield an optimal solution (y∗, I∗) and an optimal value z(r∗)
5: until z(r∗) = 0

5 Computational experiments

To the best of our knowledge, this is the first study on the IRP-LR. Our aim is to

gain insights into problem properties and solution characteristics and this is the

reason why we proposed an exact solution approach. In fact, while on one side

optimal solutions can be obtained only on small-sized instances, and on the other

side optimal solutions allow us to perform a consistent and reliable analysis of the

solution characteristics.

All computational experiments were conducted on a Linux computer equipped

with an Intel Core i7-4770 processor clocked at 3.4 GHz (a single core was used).

The branch-price-and-cut algorithm of Desaulniers et al. (2015) used to solve the

MILP(r) problems in Algorithm 1 relied on CPLEX 12.4.0.0 for solving the

restricted master problems.

298 C. Archetti et al.

123



5.1 Test instances

We performed computational tests on benchmark instances for the IRP proposed in

Archetti et al. (2007) for the single-vehicle case, adapted to the multiple-vehicle

case in Archetti et al. (2014) and used also in Coelho and Laporte (2013) and

Desaulniers et al. (2015). The instances have the following characteristics. The

value of H is equal to 3 and the number of customers is jN 0j ¼ 5‘ with ‘ ¼ 1; 2; 3.

The number of vehicles K varies from 1 to 5. The vehicle capacity is obtained by

dividing the vehicle capacity of the corresponding instance for the single-vehicle

case (defined in Archetti et al. 2007) by the number of vehicles. For each instance

characteristic (number of customers, number of vehicles), 5 random instances were

generated, for a total of 75 instances. Note that in Archetti et al. (2007, (2014),

Coelho and Laporte (2013) and Desaulniers et al. (2015), larger instances were also

considered, with up to 50 customers and a planning horizon of 6 periods. We did not

consider these larger instances in our computational tests since, as shown in the

following section, the IRP-LR proved to be very hard to solve and only small

instances could be solved to optimality. The reason for which the IRP-LR is much

harder to solve than the standard IRP can be explained by the objective function

(6a). The value of the objective function tends to be flat around the optimal solution,

i.e., there exist many solutions whose objective function value is close to the one of

the optimal solution, and this creates difficulties in the solution algorithm as it is

much harder to prune branch-and-bound nodes. Moreover, to gain some insights on

the impact of the value of H on the logistic ratio, we solved the same set of instances

where H was increased to 4 and 5. Unfortunately, the complexity of the problem

increased dramatically with the value of H and, thus, we were not able to solve, in a

reasonable amount of time, most instances with jN 0j ¼ 15 when H ¼ 4 and H ¼ 5.

5.2 Computational results

A summary of the computational results is presented in Tables 1, 2 and 3 for H ¼ 3,

H ¼ 4 and H ¼ 5, respectively. The tables are organized as follows. Each group of

three rows reports the results on instances with the same number of vehicles K. In

each group, each row provides the average results over the five instances with the

same number of customers jN 0j. The third column reports the computational time in

seconds while the fourth shows the number of iterations performed by the algorithm

described in Sect. 4 to reach the optimal solution. The fifth and sixth columns report

the value of the logistic ratio of the solution of the CQ-IRP and of the solution of the

IRP-LR, respectively. To obtain an optimal solution of the CQ-IRP, we first solved

the IRP where the objective function is the minimization of the routing cost. We

then solved the problem again, imposing the same routing cost found in the previous

solution and maximizing the delivered quantity. The following column reports the

ratio of the logistic ratios of the CQ-IRP solution and the IRP-LR solution. Columns

eight, nine and ten show the ratio of the total costs (Cost), the total quantities

delivered (TotQ) and the numbers of routes (# of routes) of the solutions of the CQ-

IRP and the IRP-LR, respectively. Finally, the last column shows the ratio of the
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difference between the total quantity delivered in the IRP-LR solution and Dmin to

the difference between Dmax and Dmin, where Dmin and Dmax are a lower and an

upper bound on the total quantity delivered, respectively. They were computed as

Table 1 Computational results on instances with H ¼ 3

K jN 0j Time

(s)

Iterations Log.

ratio

CQ-

IRP

Log.

ratio

IRP-

LR

Log.

ratio

CQ-

IRP/

IRP-

LR

Cost

CQ-

IRP/

IRP-

LR

TotQ

CQ-

IRP/

IRP-

LR

# of

routes

CQ-

IRP/

IRP-

LR

(TotQIRP�LR � Dmin)/

(Dmax � Dmin)

1 5 0.1 3.0 3.18 2.54 1.27 0.86 0.70 0.80 0.70

10 93.8 3.2 1.76 1.42 1.22 0.85 0.71 0.90 0.63

15 8022.8 3.4 1.48 1.15 1.29 0.82 0.63 0.90 0.70

2 5 0.2 3.2 3.79 3.18 1.20 0.86 0.73 0.72 0.70

10 8.7 3.2 2.09 1.86 1.12 0.85 0.77 0.72 0.61

15 422.8 3.2 1.59 1.41 1.13 0.86 0.77 0.75 0.56

3 5 0.2 3.2 5.01 4.19 1.20 0.84 0.70 0.64 0.68

10 32.4 3.4 2.66 2.35 1.13 0.85 0.76 0.73 0.57

15 1320.6 3.0 1.94 1.68 1.16 0.83 0.72 0.74 0.60

4 5 0.1 3.0 6.48 5.06 1.28 0.83 0.66 0.63 0.61

10 10.8 3.6 3.32 2.79 1.19 0.87 0.73 0.71 0.55

15 231.6 3.6 2.39 1.97 1.21 0.85 0.71 0.69 0.58

5 5 0.2 3.4 7.52 6.03 1.26 0.84 0.67 0.67 0.57

10 8.3 3.2 3.78 3.26 1.16 0.83 0.72 0.71 0.56

15 1564.0 3.8 2.83 2.29 1.24 0.83 0.67 0.68 0.61

Table 2 Computational results on instances with H ¼ 4

K jN 0j Time

(s)

Iterations Log.

ratio

CQ-

IRP

Log.

ratio

IRP-

LR

Log.

ratio

CQ-

IRP/

IRP-

LR

Cost

CQ-

IRP/

IRP-

LR

TotQ

CQ-

IRP/

IRP-

LR

# of

routes

CQ-

IRP/

IRP-

LR

(TotQIRP�LR � Dmin)/

(Dmax � Dmin)

1 5 0.4 3.0 2.98 2.66 1.12 0.82 0.73 0.67 0.87

10 2577.6 3.2 1.62 1.43 1.13 0.89 0.79 0.67 0.71

2 5 0.40 3.2 3.78 3.28 1.14 0.88 0.77 0.73 0.69

10 101.4 3.0 2.08 1.87 1.11 0.85 0.77 0.84 0.69

3 5 0.6 3.4 4.81 4.15 1.17 0.89 0.77 0.74 0.60

10� 76.7 3.3 2.43 2.27 1.07 0.87 0.82 0.79 0.58

4 5 1.3 3.0 6.06 5.34 1.13 0.85 0.75 0.73 0.71

10 1046.8 3.4 3.09 2.78 1.11 0.90 0.81 0.81 0.56

5 5 2.0 3.0 7.14 6.38 1.13 0.90 0.79 0.77 0.56

10 630.4 3.8 3.70 3.27 1.13 0.88 0.78 0.76 0.53
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follows. The lower bound Dmin is the sum of the demands that cannot be satisfied by

the initial inventory, i.e.,

Dmin ¼
X

i2N 0
max 0;

X

t2T
dit � Ii0

( )

: ð7Þ

A simple upper bound Dmax can be computed as:

Dmax ¼
X

i2N0
Dmax

i ;

where

Dmax
i ¼ ðUi � diHÞ þ

X

t2T
dit � Ii0

 !

is the upper bound on the maximum quantity that can be delivered to customer i.

The quantity Dmax
i depends on whether the initial inventory Ii0 is sufficient to satisfy

the total demand of the customer or not. It is the maximum final inventory Ui � diH
plus the demand that exceeds the initial inventory, if

P
t2T dit � Ii0 � 0. Otherwise,

it is the maximum final inventory minus the initial inventory that exceeds the

demand.

The ratio TotQIRP�LR�Dmin

Dmax�Dmin represents the total quantity left in the customers end

inventory by the solution of the IRP-LR with respect to the total inventory capacity

at the customers. The asterisk (*) in the sixth row of Table 2 is due to the fact that

one instance of this group was not solved to optimality and, thus, data refer to the

Table 3 Computational results on instances with H ¼ 5

K jN 0j Time

(s)

Iterations Log.

ratio

CQ-

IRP

Log.

ratio

IRP-

LR

Log.

ratio

CQ-

IRP/

IRP-

LR

Cost

CQ-

IRP/

IRP-

LR

TotQ

CQ-

IRP/

IRP-

LR

# of

routes

CQ-

IRP/

IRP-

LR

(TotQIRP�LR � Dmin)/

(Dmax � Dmin)

1 5 0.7 3.0 2.72 2.59 1.06 0.95 0.90 0.90 0.46

10 240.0 3.0 1.51 1.42 1.06 0.90 0.85 0.85 0.56

2 5 4.0 3.0 3.44 3.19 1.08 0.92 0.85 0.85 0.49

10 791.8 3.4 1.96 1.86 1.05 0.91 0.87 0.84 0.51

3 5 2.5 3.6 4.71 4.26 1.10 0.92 0.83 0.81 0.64

10 3644.2 3.2 2.50 2.34 1.06 0.88 0.83 0.82 0.56

4 5 7.5 3.0 5.70 5.31 1.08 0.91 0.84 0.83 0.59

10 2114.8 3.2 2.96 2.81 1.05 0.92 0.88 0.88 0.46

5 5* 2.3 3.3 6.68 6.10 1.10 0.92 0.84 0.83 0.52

10 4485.6 3.4 3.51 3.29 1.07 0.91 0.85 0.87 0.50
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remaining four instances. The same happens in the ninth row of Table 3. In this

case, one instance turned out to be infeasible.

The tables show that Dinkelbach’s algorithm converges in a few iterations

(between 3.0 and 3.8 on average). Even if the number of iterations does not vary

much, the computational time increases dramatically with the number of

customers. The logistic ratio decreases with the number of customers and

increases with the number of vehicles for both the CQ-IRP and the IRP-LR

solutions. Also, when considering the ratio of the two logistic ratios, we notice

that there is no clear relation either with the number of vehicles or with the

number of customers. The ratios of the total costs, the total quantities delivered

and the numbers of routes indicate that the solutions of the CQ-IRP cost less than

the solution of the IRP-LR but deliver less and use fewer routes. These three

ratios seem to be more or less stable for the same value of H. When the value of

H increases, these ratios increase, meaning that the two solutions tend to be more

similar. This is due to the fact that, when H increases, Dmin increases and the

relative difference between Dmax and Dmin decreases. This reduces the difference

between the solutions of the CQ-IRP and the IRP-LR. Finally, the ratio

ðTotQIRP�LR � DminÞ/ðDmax � DminÞ decreases with the number of vehicles and

with the value of H. This ratio shows that, to optimize the logistic ratio, we often

need to deliver more than the minimum quantity. The excess with respect to the

minimum quantity corresponds to the end inventory level and often amounts to

more than half of the total inventory capacity of the customers. Thus, contrary to

what typically happens in the classical IRP, some customers may have a positive

final inventory level in the optimal solution of the IRP-LR.

Table 4 shows a summary of the results reporting the computational time (in

seconds) and the ratio of the logistic ratios of the CQ-IRP and the IRP-LR. Columns

are organized by value of H while rows by values of K and jN 0j.
The table shows that the computational time is highly sensitive to the value of H.

Moreover, the ratio of the logistic ratios decreases when the value of H increases.

This is consistent with the increase, with respect to the value of H, of the ratio of the

total quantity delivered to the total cost. We want to note that the instances with

H ¼ 4 and H ¼ 5 were generated by taking the instances with H ¼ 3 and simply

increasing the value of H. Thus, when H increases, Dmin increases and the relative

difference between Dmax and Dmin decreases. This reduces the ratio of the logistic

ratios of the CQ-IRP and the IRP-LR. Clearly, results would change in case of

changes in the value of other instance parameters. In particular, increasing the value

of Q or Ui would lead to larger differences between the logistic ratios of the

solutions of the two problems.

In Fig. 3, we report the logistic ratios of the CQ-IRP and IRP-LR solutions for

all instances with H ¼ 3. We show a plot for each value of K. In each plot, we

compare the 15 instances with the corresponding number of vehicles. The first 5

pairs of bars are related to instances with 5 customers, the second 5 pairs of bars

refer to instances with 10 customers and the last 5 to instances with 15 customers.

We can notice that the trend is similar for all plots. Thus, the difference between

the two logistic ratios is higher for instances with fewer customers. However, in
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terms of absolute values, we can see that the logistic ratios of both solutions

increase with the number of vehicles. This is due to the fact that instances with a

higher number of vehicles are obtained by dividing the capacity of the single-

vehicle instances by K. Thus, the higher the number of vehicles, the smaller is the

vehicle capacity and, as a consequence, the routing cost increases with the number

of vehicles.

To provide further insights, we analyze in detail one instance for which the CQ-

IRP solution substantially differs from the IRP-LR solution. The instance is

‘abs3n10’ with H ¼ 3, K ¼ 3 and jN 0j ¼ 10. The CQ-IRP solution performs 3

routes all in period 2 while the IRP-LR solution performs two routes in period 2 and

3 routes in period 3. The routes of the CQ-IRP and IRP-LR solutions are depicted in

Figs. 4 and 5, respectively. The CQ-IRP solution has a routing cost of 2409 and

delivers a total quantity of 656. The logistic ratio is 3.67. The IRP-LR solution has a

routing cost of 2836 and delivers a total quantity of 1092. The logistic ratio is 2.60.

Thus, the ratio of the two logistic ratios is 1.41. As a consequence, the cost per unit

delivered increases by 41 % in the CQ-IRP solution with respect to the IRP-LR

solution.

6 Conclusions

In this paper, we introduce the inventory routing problem with logistic ratio (IRP-

LR), which is a variant of the classical inventory routing problem (IRP) where the

objective function is the minimization of the logistic ratio, i.e., the ratio of the

Table 4 Summary of results
K jN 0j Time (s) Log. ratio CQ-IRP/IRP-LR

H ¼ 3 H ¼ 4 H ¼ 5 H ¼ 3 H ¼ 4 H ¼ 5

1 5 0.1 0.4 0.7 1.27 1.12 1.06

10 93.8 2577.6 240.0 1.22 1.13 1.06

15 8022.8 1.29

2 5 0.2 0.4 4.0 1.20 1.14 1.08

10 8.7 101.4 791.8 1.12 1.11 1.05

15 422.8 1.13

3 5 0.2 0.6 2.5 1.20 1.17 1.10

10 32.4 76.7 3644.2 1.13 1.07 1.06

15 1320.6 1.16

4 5 0.1 1.3 7.5 1.28 1.13 1.08

10 10.8 1046.8 2114.8 1.19 1.11 1.05

15 231.6 1.21

5 5 0.2 2.0 2.3 1.26 1.13 1.10

10 8.3 630.4 4485.6 1.16 1.13 1.07

15 1564.0 1.24
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routing cost to the quantity delivered. The study of this problem is motivated by

practical reasons: companies are more interested in minimizing the unitary

distribution cost, that is the logistic ratio, than the routing cost only as the former

measure captures the long-term impact of a distribution policy. In fact, in an optimal

solution of a classical IRP, the customers in general have no stock at the end of the

horizon. Thus, while the solution is optimal over the considered horizon, it is not

when a longer horizon is considered.

The contribution of this paper is the formulation and the solution of the IRP-LR.

Moreover, the solutions of the classical IRP are compared with the solutions of the

IRP-LR. In fact, among the multiple optimal solutions of the IRP, we consider the

Fig. 3 Logistic ratios of the CQ-IRP and the IRP-LR solutions for instances with H ¼ 3
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one that maximizes the total quantity delivered. We call the problem where routing

cost is optimized first and quantity after, the Cost-first Quantity-second IRP (CQ-

IRP). This favors the IRP in the comparison. From the theoretical point of view, we

show that the logistic ratio in the optimal solution of the CQ-IRP can be infinitely

higher than the logistic ratio in the IRP-LR. Instances with up to 5 vehicles and 15

customers on a horizon of 3 periods, and up to 10 customers on a horizon of 4 or 5

periods were solved to optimality. Computational experiments show that the logistic

ratio is on average 20.4 % higher for the IRP with respect to the IRP-LR on

instances with a planning horizon of 3 periods and tends to decrease with the

increase of the length of the horizon.

Future research should address the design of more efficient exact methods and of

heuristics. Also, the adoption of the logistic ratio as objective function could be

extended to other inventory routing problems.
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Fig. 4 Routes performed by the CQ-IRP solution for instance ‘abs3n10’ with H ¼ 3 and K ¼ 3

Fig. 5 Routes performed by the IRP-LR solution for instance ‘abs3n10’ with H ¼ 3 and K ¼ 3
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