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Abstract The airline crew scheduling problem has received extensive attention,

particularly in the last 60 years. This problem is frequently divided into crew

pairing and crew assignment because of its large size and the complex safety

agreements and contractual rules. Several solution methodologies have been de-

veloped, but many objectives and constraints are treated approximately and research

is ongoing. In this paper, we present a comprehensive problem definition for the

airline crew scheduling problem, and we review existing problem formulations and

solution methodologies. In addition, we formulate the personalized cockpit crew

scheduling problem as a set covering problem and we solve it using column gen-

eration. We present computational results for real data from a major US carrier, and

we describe the data sets (available on the internet) in detail to establish a basis for

future research.
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Montréal, Succ. Centre-Ville, C.P. 6079, Montreal, QC H3C 3A7, Canada

e-mail: atoosa.kasirzadeh@gerad.ca

M. Saddoune

e-mail: mohammed.saddoune@polymtl.ca

F. Soumis

e-mail: francois.soumis@gerad.ca

M. Saddoune
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1 Introduction

The airline industry and its operations have been a major focus of operation

researchers, especially since the advent of the jet age in the late 1950s, which was

followed by major technological advances. The industry has become a significant

economic force from two perspectives: its own operations and its impact on related

industries such as tourism and aircraft manufacturing. The revenue mainly comes

from passenger tickets, while the costs include airplane expenses, fuel, crew, and

equipment. The total profit is a complicated function of all of the operations. Data

from the Air Transport Association (2008) indicate that the largest administrative

cost is fuel expenses, and the second largest is labor costs (23.4 %) (Belobaba et al.

2009). Minimizing the crew costs is therefore an essential task in today’s

competitive airline industry, and even a small reduction can lead to significant

savings. In addition, the recent appearance of low-fare airlines has increased the

pressure to provide affordable tickets and reemphasized the importance of

minimizing expenses. As a result, the airline crew scheduling problem has received

much attention in both industry and academia.

Airline crew scheduling is the problem of assigning a group of crew members to

a set of scheduled flights such that all the scheduled flights are covered while the

rules and collective agreements, imposed mainly by safety and labor organizations,

are respected. The complex restrictions make this one of the most difficult crew

scheduling problems in the transportation industry.

We present an extensive review of research into the airline crew scheduling problem,

andwe observe that authors do not compare theirmethods on the same data.We present

a newmodel and solution approach for the personalized pilot assignment problem with

pre-assigned activities and preferences that have not yet been introduced in the

literature. Our model is a set partitioning model that we solve via column generation

(CG). The remainder of this paper is structured as follows. In Sect. 2, we define the

airline crew scheduling terminology that we use. Section 3 explains the different

decision problems faced by airlines. In Sect. 4,we present an extensive reviewof airline

crew scheduling. Section 5 discusses the different rules and agreements that generally

apply. In Sect. 6, we give a detailed mathematical description of our problem,

personalized pilot assignment, and Sect. 7 describes our solution approach in detail. In

Sect. 8, we present numerical results for seven data sets. Our clear description of the

problems (the rules and agreements) and the available data sets will allow other

researchers to test theirmethods on the samedata sets. InSect. 9,wediscuss the data sets

and potential directions for future research. Section 10 presents concluding remarks.

2 Airline crew scheduling terminology

In this section, we define the terminology that we use in our discussion.

– Air leg A nonstop flight segment. Each air leg is characterized by five features:

the flight number, the origin airport, the destination airport, the departure time,

and the arrival time.
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– Deadhead An air leg in which a crew member flies as a passenger for relocation

purposes.

– Duty A sequence of consecutive air legs (and/or deadheads) comprising a

working day for a single crew member. Two consecutive duties should begin

and end at the same airport. Duties are separated by layovers.

– Layover A rest period (an overnight stop) between duties that typically lasts for

at least 10 h.

– Pairing A sequence of duties and layovers for an unspecified crew member that

starts and ends at a base. In short- and medium-haul problems, pairings typically

last 1–5 days; in long-haul problems, longer pairings are allowed.

– Base A large airport. Each crew member is associated with a base, which means

that all his/her associated pairings must begin and end at that airport.

– Elapsed time A period of time in which a crew member is away from the base,

referred to as Time Away From Base (TAFB).

– Credited flying time in a duty The active flying time plus a specific percentage of

deadhead flying time (typically 50 %).

– Monthly schedule (schedule) A sequence of pairings separated by time off that

covers a given time horizon (usually a standardized planning month). In this

paper, the term schedule refers to a monthly schedule.

– Briefing time A period of time before the start of each duty that is spent on

instructions and crew discussions with the goal of transforming a group of

individuals into an effective team.

– Debriefing time A period of time at the end of each duty that gives the crew

members an understanding of the events that occurred and their implications.

– Crew members Generally divided into two groups based on their role: the

cockpit crew members are the pilot (captain), copilot (first officer), and flight

engineer, all of whom are qualified to fly one or more aircraft types. The cabin

crew members are the cabin captain and the flight attendants.

– Post-pairing rest A rest period between two consecutive pairings that respects a

minimum and a maximum duration.

– Post-pairing A rest period between two consecutive pairings that contains a

complete day off (from midnight to midnight).

– Aircraft route A sequence of air legs flown by a specific aircraft.

3 Airline decision process

Because of its complexity and the potential perturbations, most major airlines divide

the overall decision problem into two closely related procedures: planning and

recovery. Each procedure is then divided into several steps that are often treated

separately. The planning procedure consists of flight scheduling, fleet assignment,

aircraft maintenance and routing, and crew scheduling. The recovery procedure has

three steps that adjust the plans to take into account unexpected perturbations:

aircraft recovery, crew recovery, and passenger recovery (see Fig. 1).
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3.1 Airline planning procedure

The steps of this procedure are interrelated, but because of their complexity they are

often solved sequentially. The solution of each step becomes input data for the next

step. Recently, some researchers have integrated two or more of these steps; this is

discussed in Sect. 4. The first step is the flight scheduling problem in which the air

legs to be flown for a specific time horizon are scheduled with the objective of

maximizing the expected profit. In the second step, fleet assignment, the various

aircraft types such as the Boeing 707 and the Airbus A318 are assigned to the

flights, taking into account the estimated passenger demand, the aircraft availability,

and aircraft flow conservation. In the third step, aircraft maintenance and routing,

individual aircraft are assigned to each scheduled flight, and the solution ensures

that each aircraft spends adequate time at specific airports for routine maintenance.

The fourth step, crew scheduling, is separable by crew category and aircraft type or

family. It finds crew schedules that cover all the scheduled flights and satisfy the

constraints. As mentioned in Sect. 2, the cockpit crew fly the aircraft and the cabin

crew are responsible for passenger services and safety. A member of one group

cannot normally be substituted for a member of the other group. The two groups are

scheduled separately for three reasons. First, each cockpit crew is qualified to fly a

specific aircraft type or family, whereas cabin crews can be assigned to multiple

aircraft types. Second, the number of cabin crew required depends on the number of

passengers, whereas the size of the cockpit crew is fixed. Third, cockpit crews are

paid substantially more than cabin crews because of their level of expertise. As a

result, most of the research into crew cost optimization has focused on cockpit crew

scheduling. Hereinafter, we refer to cockpit crew members simply as crew members.

Because of its complexity and size, the crew scheduling problem is usually

separated into two steps: crew pairing and crew assignment. Traditionally, the steps

Airline Planning Procedure 

Flight Scheduling Airline Recovery Procedure 

Fleet Assignment 
Aircraft Recovery 

Aircraft Maintenance & Routing 

Crew Scheduling 

Crew Recovery 

Passenger Recovery 

Fig. 1 Airline decision process
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have been treated sequentially. The crew pairing forms a minimum-cost set of

anonymous feasible pairings from the scheduled flights such that all flights are

covered exactly once and all the pairing regulations and contractual rules are

respected. Different airlines have different rules, but the main characteristics of the

anonymous pairings are common to all airlines. Crew assignment combines the

anonymous pairings with rest periods, vacations, pre-assigned activities such as

training, and other breaks over a standardized month to produce a set of individual

schedules for the crew members. The schedules must satisfy all the safety

regulations and contractual rules. In contrast to the crew pairing problem, the crew

assignment problem is separable by crew base and fleet type, and one of two general

approaches is used:

1. Bidline schedules are constructed anonymously and the airline then announces

them to the crew members. The crew members bid on these schedules, and their

bids are used to complete the schedule allocation.

2. Personalized schedules take into account the crew members’ preferred tasks

and their needs for special activities such as vacations and training periods. The

pairings are combined to give monthly schedules respecting airline objectives

and providing a certain level of crew satisfaction. Two types of personalized

schedules are considered: rostering and seniority-based. Rostering aims to

maximize global satisfaction and may consider a second objective of fairness,

measured in terms of the number of satisfied preferences. Seniority-based

personalized schedules give priority to the satisfaction of the more senior crew

members.

Historically, bidline scheduling has been the most common approach in the US

whereas personalized scheduling is more common in the rest of the world. However,

personalized schedules are now increasingly accepted at North American airlines

because they offer advantages for both crew members and airlines. From the crew

member’s perspective, this approach considers the employee’s requests during the

construction of the schedule. From the airline’s perspective, this approach considers

the predefined employee activities: vacations, training, and unfinished pairings from

the previous month. This reduces the number of schedule adjustments and increases

productivity.

3.2 Airline recovery procedure

In real life, there are many unpredicted disruptions that arise because of weather

conditions, aircraft maintenance issues, crew problems, and other unplanned events.

These can lead to delayed or canceled flights, and they perturb the crew schedules.

When such disruptions occur, the airline recovery procedure updates the

scheduled flights, aircraft routes, crew schedules, and passenger itineraries. The

time horizon is short (usually 1–4 days). The recovery procedure is not the focus of

this paper, and we do not discuss it further.
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4 Review of crew scheduling

We now provide a comprehensive review of models and algorithms for airline crew

scheduling. We discuss the different objectives such as cost-minimization and

employee satisfaction. As mentioned in Sect. 3.1, the crew scheduling problem is

usually separated into two steps: crew pairing and crew assignment. The steps are

usually solved sequentially. However, recently several researchers have explored

joint optimization approaches. We do not discuss the heuristic acceleration

techniques that are used in industry to solve large problems because there are

many parameters that must be carefully adjusted, and this topic is beyond the scope

of our paper.

Mathematically, crew pairing and assignment problems are usually modeled via

the set partitioning problem (SPP) or the set covering problem (SCP) with additional

constraints. The problems are difficult because of the number of constraints and

variables; they are large-scale mixed integer problems. The three most common

solution methodologies are Lagrangian relaxation (Geoffrion 1974; Fisher 1981,

1988; Martin 1999), Benders decomposition (Benders 1962; Minoux and Vajda

1986) and branch-and-price (Desaulniers et al. 1998; Desrosiers et al. 1995;

Barnhart et al. 1996). Since the 1990s, the most popular approach has been the SCP

with CG embedded in branch-and-bound (see Desrosiers and Lübbecke 2005;

Desrosiers et al. 1995; Barnhart et al. 1996). This method will be discussed in

Sect. 7.

Barnhart et al. (2003) provide an excellent literature review and a detailed survey

of crew pairing problems. Gopalakrishnan and Johnson (2005) give a survey of

different approaches and solution methodologies for airline crew scheduling

problems. Klabjan (2005) surveys the models and algorithms for large-scale airline

planning and operational problems, giving extensive references. More recently,

researchers have explored the monthly pairing problem, the personalized assign-

ment problem, and integrated crew scheduling. In this paper, we survey the state of

the art of studied approaches and solution methodologies for the airline crew

scheduling problem.

In Sect. 4.1, we provide a comprehensive review of the sequential crew planning

problem, and in Sect. 4.2 we describe the models and algorithms for the integrated

crew planning problem.

4.1 Sequential crew planning

Section 4.1.1 discusses the crew pairing problem and Sect. 4.1.2 discusses the crew

assignment problem.

4.1.1 Crew pairing

For a given crew category and fleet type, the crew pairing problem finds a set of

minimum-cost pairings such that each scheduled flight over the time horizon is

included in exactly one pairing. The solution approach depends on the airline’s size,

network structure (e.g., hub-and-spoke), rules and regulations, and cost structure.
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There are three traditional approaches. The daily problem assumes that the air legs

are identical for all the days of the planning horizon, and the minimum-cost pairings

are generated based on the scheduled legs for a single day. The weekly problem

assumes that the air legs are repeated every week, and the pairing problem is solved

based on the scheduled air legs for 1 week. The monthly problem has a time horizon

of a full month. Recent research has focused on the weekly and monthly problems.

Because of vacation periods and variations in the flight schedules, the monthly time

horizon is the most realistic.

The crew pairing problem is typically formulated as an SPP or SCP in which

each task (air leg) is a constraint and each feasible pairing is a variable. There are

usually additional constraints that enforce the various restrictions, safety rules, and

regulations such as the maximum flying time for each base. The number of feasible

pairings is extremely large, so it is often impossible to consider all of them. The

problem has therefore traditionally been treated in two steps: the first step generates

a subset of good pairings by enumeration, and the second uses the SPP to select the

best pairings of this subset. Initially, heuristic local-search algorithms were often

used; a typical example is presented by Marsten and Shepardson (1981). They

present an SPP model and a solution technique based on Lagrangian relaxation and

subgradient optimization. They report tests on data sets from the Flying Tiger Line,

Pacific Southwest Airways, Continental Airlines, and Helsinki City Transport.

Gershkoff (1989) presents an SPP that minimizes the cost for the daily pairing

problem. Gershkoff introduces a heuristic algorithm in which possible pairings are

constructed at each iteration for a subset of the scheduled air legs. The heuristic

continues until no further improvement is possible or a stopping criterion such as a

time restriction is satisfied. Results are presented for American Airlines. Anbil et al.

(1991) use this approach in software for American Airlines called the Trip

Reevaluation and Improvement Program (TRIP). They explain the advances that

allow the software to solve large problems more quickly. This software was sold to

ten other airlines.

Anbil et al. (1992) introduce a global approach with a cost-minimization

objective. In this joint study by IBM and American Airlines Decision Technologies,

millions of feasible pairings (columns) are enumerated a priori and several

thousands are provided to the LP solver. At each iteration, most of the nonbasic

columns are discarded and new columns are added. The process continues until all

the columns have been taken into account. Bixby et al. (1992) combine the interior

point and simplex methods to find the solution of the LP relaxation for very large

problems. The experiments show that the hybrid approach is more efficient than

applying either method separately. Hoffman and Padberg (1993) propose a branch-

and-cut approach for an SPP in which pairings are generated heuristically a priori,

and cuts are used to find an integer solution. They present results for 68 data sets

from four major airlines. The integrality gaps are large (up to 5 %) and much effort

is necessary to obtain a good integer solution. Klabjan et al. (2001) improve on the

approach of Hoffman and Padberg (1993). They enumerate millions of random

pairings. The relaxation is first solved and millions of columns are selected based on

their reduced costs. The number is then reduced by a heuristic based on LP, and

integer solutions are obtained using a commercial IP solver. The branching rule is
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enhanced by combining strong branching with a specialized branching rule.

Experiments are reported for a large US airline.

Heuristic approaches have three major problems. First, they do not consider all

the scheduled flights at once, and they usually perform several iterations before

finding a reasonable solution. Second, they do not consider all the possible pairings.

Third, they provide no information on how far the solution is from the optimal

solution. Therefore, more sophisticated approaches for pairing generation have been

proposed. Lavoie et al. (1988) present an SCP and propose an algorithm for the

continuous relaxation of the problem based on generalized LP, generating columns

via shortest-path subproblems. Experiments for instances with up to 329 air legs

give good results. Desrosiers et al. (1991), Barnhart et al. (1994), and Desaulniers

et al. (1997, 1998) use CG to consider all the pairings instead of a subset of a priori-

generated pairings. They propose a dynamic CG approach (and a branch-and-price

algorithm) that implicitly considers all possible pairings when solving the LP

relaxation; we explain this approach in more detail later. The integrality gaps

become smaller (less than 1 %) when all the feasible pairings are considered.

Wedelin (1995) introduces a dual coordinate search together with an approxima-

tion algorithm for large-scale 0–1 integer problems. The approximation scheme

adjusts the costs as little as possible such that the new problem has an integer

solution. The degree of approximation is determined by a parameter, and for

different values of this parameter the algorithm can be interpreted in terms of LP,

dynamic programming, or a greedy approach. It is applied to large-scale data sets

extracted from the Carmen system (the model is the SCP). The results show that the

algorithm compares well with CPLEX in terms of both computational time and

solution quality. Andersson et al. (1998) give a general overview of the Carmen

pairing-construction system that is used at most major European airlines. This

system has been successful because it integrates manual and automatic approaches

to scheduling, provides high-quality and robust optimization, and is user friendly.

Vance et al. (1997) consider a model for a two-stage decision making process for

the crew scheduling problem. In the first stage, they select a set of duty periods that

cover the scheduled flights. They then construct the pairings based on these duty

periods. They use a decomposition approach based on dynamic CG. Experiments

are presented for a major US domestic airline: the new approach provides tighter LP

bounds, but the solution process is more difficult. Barnhart and Shenoi (1998) solve

an approximate model of the crew pairing problem and use the solution as the initial

solution for conventional approaches. Promising results are presented for a long-

haul airline. Hu and Johnson (1999) propose a primal-dual subproblem simplex

algorithm to speed up the solution of the LP relaxation. Experiments are reported for

instances with up to 930 air legs.

Hjorring and Hansen (1999) propose a black-box rule system to simplify the

implementation of the various rules and regulations. They integrate CG with a

pricing subproblem, based on a duty network and a kth shortest path algorithm.

Results are provided for some realistic data sets. Subramanian and Sherali (2008)

propose an effective deflected subgradient optimization scheme for generating good

dual solutions for the LP problems. This approach, used together with CG, is

embedded in the crew pairing solver at United Airlines. Tests using historical data
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sets show that significant benefits can be obtained using this approach instead of a

standard solver for the intermediate LPs. AhmadBeygi et al. (2009) consider a new

IP approach that is easy to implement, facilitating prototyping and the testing of new

ideas. Their proposed model uses connection variables and market variables to

capture the nonlinear cost function and constraints. Results for data sets from a

major US hub-and-spoke carrier demonstrate the performance of the approach.

Dück et al. (2011) present a column- and cut-generation algorithm. The objective is

to minimize the number of pairings to cover a set of scheduled flights with respect to

the regulations, ignoring the duty duration. The problem is formulated as an SPP

with shortest-path resource-constrained subproblems. This algorithm has been

applied to some small and medium instances from a European airline. Saddoune

et al. (2013) introduce a rolling-horizon approach to find the minimal-cost pairings

for the SPP formulation of the monthly pairing problem. They discuss the

weaknesses of the traditional approach in which daily, weekly, and monthly

problems are solved sequentially. Experiments for a major short- and medium-haul

US airline give good results.

4.1.2 Crew assignment

There are several possible objectives for the problem of constructing monthly

schedules (the crew assignment problem). Compared to crew pairing, crew

assignment has received less attention.

In the context of the bidline assignment problem, Beasley and Cao (1996) present

an IP formulation; they use Lagrangian relaxation and subgradient optimization.

This approach is embedded into a tree search to find the optimal solution. Results

are provided for randomly generated test instances with up to 204 crew members

and 500 tasks. Campbell et al. (1997) describe a bidline generator system for a US

express transportation company (FedEx). The goal is to minimize the number of

bidlines and the amount of flying time not assigned to bidlines. They use a

metaheuristic algorithm based on simulated annealing. Jarrah and Diamond (1997)

propose a heuristic SPP-based approach for the bidline assignment problem using a

priori CG. The objective is to maximize the covered credit time while minimizing

the number of bidlines. The system is semi-automatic: the user influences the subset

of columns generated. This system is implemented in a major US airline, and good

solutions are reported. Christou et al. (1999) introduce a two-phase approach based

on genetic algorithms for bidline generation at Delta Air Lines. The objective is to

maximize the average total value and the quality of the bidlines. The first phase of

the algorithm aims to construct good bidlines, while the second phase completes the

assignment by constructing valid bidlines, taking into account the pairings not

covered at the first phase. The results, for up to 320 crew members, show that the

algorithm provides significant savings compared to the semi-automated approach to

bidline generation used at Delta Air Lines.

Weir and Johnson (2004) propose a three-phase approach for bidline generation.

In the first phase, a mixed integer problem is solved to provide tentative bidlines

(patterns). The second phase, based on an SPP, uses these bidlines to find final

schedules that cover all the pairings. If phase two is not successful, phase three
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integrates the uncovered pairings into the schedules. Good results for up to 150 crew

members are presented. Boubaker et al. (2010) describe two heuristic algorithms for

solving the SPP-based bidline scheduling problem where, as far as possible, each

bidline should have the same number of days off and paid hours (bidline with

equity). The first heuristic is a standard branch-and-price algorithm that relies on a

rounding procedure to obtain integer solutions. The second algorithm combines

dynamic constraint aggregation (Elhallaoui et al. 2005) with the first heuristic. The

results show that for the largest instances (up to 564 pilots and 2924 pairings), the

dynamic constraint aggregation heuristic gives solutions better than those of the

standard branch-and-price heuristic.

For the rostering problem, Day and Ryan (1997) consider Air New Zealand’s

short-haul operations. In their approach, using integer programming, the days off are

first allocated and then the pairings and other activities are assigned. The method

leads to the efficient construction of good-quality schedules since most of the

pairings are 1-day assignments, and it has been used since 1993 for all short-haul

flight attendant rosters at Air New Zealand. Gamache et al. (1999) describe a

generalized SPP and a heuristic approach based on CG to find good integer solutions

for the problem of constructing personalized schedules while maximizing satisfac-

tion and considering pre-assigned activities. They use control strategies in the CG to

reduce the computational time for large problems. Results for medium instances

from Air France demonstrate the quality of the solutions, in terms of both cost and

computational time. The acceleration strategies reduce the computational times by a

factor of more than 1000. The resulting schedules are compared with schedules

constructed by the CADET program (then in use at Air France), and the new

schedules had fewer uncovered duties. El Moudani et al. (2001) propose a heuristic

bi-criterion approach that takes into account the satisfaction of the crew members.

This approach is combined with a genetic algorithm to produce minimum-cost

schedules that achieve a specific level of crew satisfaction. Results for data from a

medium-haul airline are given. König and Strauss (2000a, b) introduce a heuristic

that implicitly enumerates schedules using propagation techniques. This approach is

implemented in the SWIFTROSTER algorithm, and good results are achieved for

medium and large European airlines. Fahle et al. (2002), Kohl and Karisch (2000),

and Sellmann et al. (2002) describe the Parrot project (1997), which is based on CG

and constraint programming. The master problem (the selection of schedules) is

solved as an LP, and constraint programming is used to prune the search. Kohl and

Karisch (2004) provide a comprehensive study of the Carmen crew rostering system

that has been used at KLM since 1995. They highlight practical considerations

relating to the production settings of crew scheduling systems. Maenhout and

Vanhoucke (2010) use Dantzig–Wolfe decomposition and propose a metaheuristic

scatter search algorithm to assign personalized rosters to each crew member while

minimizing the total operational cost and achieving a required schedule quality.

They compare their method with an exact solution approach based on branch-and-

price and steepest-descent variable neighborhood search. Results are given for

instances with up to 150 pilots and 800 pairings.

For the seniority-based personalized assignment problem, Gamache et al. (1998)

study the preferential bidding problem, considering seniority for the assignment of
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personalized schedules to pilots and officers. At Air Canada about 75 different bids,

e.g., for a weekend off, are available. Each employee associates a weight with each

bid and these weights are used to calculate a score for the potential schedules. A

residual problem is then solved for each employee, from the most senior to the most

junior. This determines the maximum-score schedule for the current employee,

taking into account the other employees and the set of unassigned pairings. The

problem is modeled as an IP and is solved by CG embedded in a branch-and-bound

tree. Results are presented for twenty-four data sets from Air Canada. This research

resulted in a preferential bidding system (PBS) that has been used at Air Canada

since 1995. Achour et al. (2007) introduce the first exact solution approach based on

CG for the PBS. They solve a sequence of LPs in seniority order, and the schedules

of the employees are fixed as the algorithm progresses. When a tentative maximum

score for a crew has been established, they explicitly enumerate all the feasible

schedules with that score for that crew member. Results for real data sets with up to

91 pilots indicate a substantial improvement in the solution quality.

4.2 Integrated crew planning

As explained in Sect. 3.1, solving the airline planning problem sequentially does not

guarantee an optimal result for the overall planning problem. Recently, researchers

have investigated integrating some of the steps. A summary of research on the

integration of crew pairing with aircraft routing and/or fleet assignment is provided

in Sect. 4.2.1. Section 4.2.2 discusses the integration of crew pairing and

assignment.

4.2.1 Integrated crew pairing, aircraft routing, and fleet assignment

Cordeau et al. (2001), Cohn and Barnhart (2003), Mercier et al. (2005), and Chen

et al. (2012) address the integration of aircraft routing and crew pairing. Sandhu and

Klabjan (2007) and Gao et al. (2009) consider the integration of fleet assignment

and crew pairing. Klabjan et al. (2002) consider the integration of flight scheduling,

aircraft routing, and crew pairing. Mercier and Soumis (2007) integrate the aircraft

routing, crew scheduling, and flight retiming problems. Papadakos (2009) proposes

various integration models for the fleet assignment, maintenance routing, and crew

pairing problems. Ruther (2010) studies the integration of aircraft routing, crew

pairing, and tail assignment.

4.2.2 Integrated crew scheduling

Guo et al. (2006) introduce a heuristic algorithm for partially integrating crew

pairing and crew assignment. It is based on aggregated time-space networks where

the crew members are unevenly stationed among bases, and their availability

changes dynamically during the planning period. The algorithm first generates a

group of pairings that are separated by weekly rests. Some parts of these pairings are

then rearranged into individual crew schedules. Results for a European airline

indicate a significant reduction in the cost of the schedules. Zeghal and Minoux
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(2006) integrate crew pairing and crew scheduling for technical crew members and

for airlines with short- and medium-haul air legs. They replace a large number of

binary constraints with a smaller number of stronger constraints (clique constraints),

which improves the computational time and solution quality. To improve the

efficiency of the exact methods, a heuristic method based on a rounding strategy is

embedded in a partial tree-search procedure. Results for TunisAir, where it is

possible to enumerate all the feasible duties, indicate that good solutions can be

obtained in a reasonable computational time. Souai and Teghem (2009) propose a

hybrid genetic algorithm to integrate crew pairing and crew assignment. They use

three heuristics to deal with the regulations. Results for three data sets demonstrate

the success of the approach.

Deng and Lin (2011) use the ant colony optimization algorithm to solve the crew

scheduling problem. They formulate the problem as a traveling salesman problem

on a weighted and constrained graph. Results for small real instances indicate that

good solutions can be found. Saddoune et al. (2012) integrate the crew pairing and

bidline crew assignment problems for pilots; the objective is to minimize the total

cost and the number of pilots. They combine the dynamic constraint aggregation of

Elhallaoui et al. (2005) with CG. Results for a major short- and medium-haul US

airline show that the approach gives significant savings, but the computational times

are higher than in the sequential approach. Saddoune et al. (2011) reduce the

computational time of the algorithm of Saddoune et al. (2012). They introduce a bi-

dynamic constraint aggregation method that uses the neighborhood structure when

generating columns for the CG. The results confirm the reduction in the

computational time. Azadeh et al. (2013) introduce a hybrid metaheuristic for the

nonlinear optimization of a crew scheduling problem in which the objective is to

minimize the total crew cost while respecting the regulations. They also propose

two hybrid algorithms based on the genetic algorithm and ant colony optimization.

They perform experiments on twenty randomly generated data sets of various sizes.

5 Regulations for airline crew scheduling

Airlines must respect many regulations during the crew scheduling process. These

regulations have three main sources (Barnhart et al. 2003). Many are imposed by

governing agencies (e.g., FAA in the US) to ensure safety. Labor unions often

influence the working conditions of the crew members. Finally, airlines impose

some conditions; for example, they may restrict the set of feasible solutions to

obtain more robust schedules. We now discuss typical regulations on the duties,

pairings, and schedules. In Sect. 7, we discuss the regulations imposed in our crew

scheduling model.

5.1 Duties

There must be idle time between any two sequential air legs to allow for

connections. There are lower and upper bounds on this interval. Briefing and

debriefing times are often required at the beginning and end of each duty. There are
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also strict constraints on the total number of flying hours in a duty, and there is

usually a maximum number of landings per duty.

5.2 Pairings

There is typically a maximum number of duties in a pairing, a minimum and

maximum duration of the layovers between duties, a maximum TAFB, and a

maximum pairing duration. In addition, all pairings should begin and end at a base.

FAA imposes an 8-in-24 rule, which means that extra rest is required if a pairing

contains more than eight flying hours in any 24-h period.

5.3 Monthly schedules

There are typically restrictions on the maximum number of flying hours per month,

the minimum and maximum number of working days, the minimum number of days

off, etc. There may be additional constraints relating to the needs and preferences of

the crew members.

6 Description of personalized pilot assignment problem

The problem of constructing pairings and assigning personalized schedules to the

crew members varies from one airline to another, depending on the regulations, the

pre-assigned activities, and the extent to which the preferences of the crew members

are taken into account. The pre-assigned activities are training periods, annual leave,

medical appointments, and pre-assigned vacations. An example of an assignment

problem for which the pre-assigned activities are taken into account is given by

Gamache et al. (1999) for cabin crew members. The crew preferences may contain a

large number of factors. The factors considered may vary from one company to

another, and the objectives may also vary. The objective can be a weighted sum of

factors or may be based on equity between crew members with priority given to the

most senior employees (Gamache et al. 1998). We will present a simple case and a

basic algorithm to solve large-scale problems with heuristics to speed up the

solution process.

We solve the personalized monthly assignment problem for a fixed number of

pilots based on a set of anonymous pairings. These pairings are the results of the

experiments of Saddoune et al. (2013). The number of pilots comes from the

solution of the bidline assignment problem in the sequential context by Saddoune

et al. (2012). We assume that the airline allows two types of preferences: vacations

and preferred flights. Each month, some of the pilots are asked to specify their

preferred vacation period (if they wish to take a vacation in that month). The other

pilots will be invited to enter vacation requests in other months. Each pilot also has

the option of choosing a set of preferred air legs from the scheduled flights

corresponding to the pairings associated with his/her base. The details of these two

categories of preferences are given in Sect. 8.2.
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We use the sequential approach that is common in the airline industry. Our

approach differs from that of Saddoune et al. (2012) because we consider crew

preferences. The problem of constructing anonymous pairings using a rolling-

horizon approach has been solved by Saddoune et al. (2013). They also consider the

problem of sequential bidline scheduling (Saddoune et al. 2012) in which they

construct anonymous schedules for pilots that minimize the total cost and the

number of pilots per base. They provide their results for the set of instances that we

consider, and we use their results for the anonymous set of pairings (Saddoune et al.

2013) and the number of pilots per base obtained from solving the bidline

assignment problem (Saddoune et al. 2012) for our personalized assignment

problem. Furthermore, we use the same solution methodology based on CG, but we

solve an enhanced mathematical model for the personalized monthly assignment

problem. We assume a fixed number of pilots per base. Given the pilot preferences

and the anonymous pairings, we construct personalized schedules that cover the

pairings, minimize the total crew cost, and satisfy a minimum number of the

preferences (preferred air legs and vacations).

Instead of considering the preferences and minimizing the cost in two separate

steps, we combine the two factors into a single objective function to provide a

unique SCP formulation for our problem. Section 6.1 introduces the notation that

we use and Sect. 6.2 discusses the personalized assignment problem.

6.1 Notation

The notation is as follows:

Sets

F set of all scheduled flights to be covered;

L set of all pilots;

Vl set of preferred vacations for pilot l 2 L;

P set of pairings;

Sl set of all feasible personalized schedules for pilot l 2 L;

Bl set of preferred flights for pilot l 2 L;

Parameters

Cp cost of pairing p 2 P;
�Cf penalty cost for not covering flight f 2 F;

Cl
s

cost of schedule s 2 Sl for pilot l 2 L;

nls number of preferred flights in schedule s 2 Sl for pilot l 2 L;

clf bonus cost for covering preferred flight f 2 Bl;

clv penalty cost for not covering preferred vacation v 2 Vl;

u minimum number of preferred flights in schedules;

w minimum number of preferred vacations to be covered;
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es;lp ¼
1 if pairing p 2 P is coveredbypilot l 2 L in personalized schedule s 2 Sl

0 otherwise;

�

�ep ¼
1 if flight f 2 P is not covered

0 otherwise;

�

e
p
f ¼

1 if flight f 2 F is covered by pairing p 2 P

0 otherwise;

�

vs;lv ¼
1 if vacation v 2 Vl for pilot l 2 L is covered by schedule s 2 Sl

0 otherwise;

�

Variables

xsl ¼
1 if schedule s 2 Sl is chosen for pilot l 2 L

0 otherwise;

�

6.2 Personalized assignment problem

Given a minimum-cost set of pairings that covers all the scheduled flights in the

planning horizon, the personalized pilot assignment problem finds minimum-cost

schedules such that the pairings are covered exactly once and at least given numbers

of the flight and vacation preferences are satisfied.

The cost of each schedule has fixed and variable components. The variable costs

are the costs of covering the pairings, bonuses for satisfying the preferred flights,

and penalties for not covering the preferred vacations; the fixed costs are the fees

paid to the pilots. The costs of the pairings are given by Saddoune et al. (2012).

A global constraint is defined to ensure that a minimum number of the vacation

preferences are satisfied. We add a bonus factor (a negative cost) for each flight

preference that a schedule includes. The cost of covering the air legs is set to 0. The

cost of personalized schedule s for pilot l is

Cl
s ¼

X
p2P

es;lp Cp þ nls:c
l
f þ

X
v2Vl

ð1� vv
s;lÞ:clv:

The SCP formulation is

Minimize
X
l2L

X
s2Sl

Cl
sx

s
l þ

X
f2P

�ep �Cf ð1Þ

Subject to:
X
l2L

X
s2Sl

es;lp x
s
l þ �ep ¼ 1; 8p 2 P ð2Þ

X
l2L

X
f2Bl

X
s2Sl

X
p2P

e
p
f e

s;l
p x

s
l � u ð3Þ
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X
l2L

X
s2Sl

X
v2Vl

vs;lv x
s
l �w ð4Þ

X
s2Sl

xsl � 1; 8l 2 L ð5Þ

xsl 2 f0; 1g; 8l 2 L; 8s 2 Sl ð6Þ

The objective function (1) minimizes the total cost of the schedules and penalty

costs for uncovered flights. Constraint (2) ensures that each pairing is covered

exactly once. Constraint (3) is a global constraint on the minimum number of

preferred flights. Constraint (4) is a global constraint on the minimum number of

satisfied vacation preferences. Constraint (5) ensures that at most one schedule is

chosen for each pilot, and constraint (6) is the integrality condition.

7 Algorithm

Because of the large number of variables, we apply CG, which is embedded in a

branch-and-bound scheme (branch-and-price) to obtain integer solutions. This

method was pioneered by Desrosiers et al. (1995), Barnhart et al. (1996), and

Desrosiers and Lübbecke (2005). Optimality can be achieved for small problems,

and a near-optimal solution (usually within 1 % of optimality) can be found for

large problems. The rules and regulations for constructing monthly crew schedules

(as explained in detail in Sect. 5) are simplified to make it possible to obtain optimal

solutions for the LP relaxations (for instance the 8-in-24 rule is not implemented).

The computational time to optimally solve the LP relaxation of the simplified

problem is similar to the time used in industry to approximately solve the complete

problem. This is a good choice for benchmark because it removes the violations on

results due to approximate solutions and permits to have clear view of the affects of

algorithms and their parameters.

In Sect. 7.1, we describe the CG, and in Sect. 7.3 we discuss the approach used to

find integer solutions.

7.1 Column generation

CG is considered one of the most significant advances in the solution of large-scale

linear mixed integer models (Klabjan 2005). It is an optimal iterative method for

LPs with a large number of variables.

The linear relaxation of the personalized assignment problem (1)–(6) is called

master problem (MP). At each iteration, we consider a restricted master problem

(RMP) that contains a subset of the variables (columns). The RMP is solved by a

standard LP algorithm such as the simplex method and finds an optimal objective-

function value and a pair of primal and dual solutions. Given the optimal dual

solution from the RMP, the current subproblem tries to find columns with negative

reduced costs. If such columns are found, they are added to the RMP for the next
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iteration. Each subproblem corresponds to a resource-constrained shortest path

problem and is usually solved by dynamic programming. When no variable with a

negative reduced cost can be found, the optimal solution for the RMP is optimal for

the MP. In practice, the CG is often stopped before optimality is attained because of

slow convergence (the tailing-off effect).

In Sect. 7.2, we describe the subproblems for the personalized assignment

problem. Section 7.3 discusses our method for finding integer solutions.

7.2 Personalized assignment subproblem

There is one CG subproblem for each pilot in the personalized assignment problem.

The subproblem is defined on a directed acyclic time-space network Gl ¼ ðNl;AlÞ,
where Nl and Al represent the node and arc sets for pilot l, respectively. Each

network corresponds to a shortest path problem with resource constraints, and the

goal is to find schedules with negative reduced costs. These subproblems are solved

using a label-setting algorithm (Irnich and Desaulniers 2005). The network Gl is an

enhancement of the bidline assignment network proposed by Saddoune et al. (2012)

in the sequential context. It contains the arcs for preferences. Figure 2 gives a partial

illustration of the network (some of the nodes and arcs have been omitted).

The network has five node types. The unique source node and sink node represent

the start and end of the schedules, respectively. Each pairing is specified by a

pairing start node and a pairing end node. Midnight nodes specify the midnights of

the planning horizon. The horizon starts and ends at midnight.

There are eight arc types. A single schedule start arc connects the source node to

the first midnight node of the horizon and represents the start of the schedule; its

cost is 0. Pairing start arcs link each potential midnight node to the pairing start

node at the base station; their cost is 0. For each pairing, a pairing arc links the node

at the beginning of the pairing to the node at the end of the pairing. Its cost is

calculated based on the pairing cost function of Saddoune et al. (2012). A preferred

vacation arc links two midnight nodes in the pilot’s network if he/she has a vacation

preference; its cost is 0. We assume that the vacations start and end at the pilot’s

base station and that vacations occur between two midnights (e.g., a vacation may

start at 00:00 on the second day of the month and finish at 00:00 on the tenth day). A

post-pairing rest arc links the end pairing node at the base station to the start node

of a subsequent pairing provided the intervening time is greater than the post-pairing

rest. A post-pairing arc links the end node of the pairing to the first midnight node at

the base station that permits a complete day off. A day-off arc links a pair of

consecutive midnight nodes at the base station. The cost of these three arcs is 0.

Finally, a schedule end arc connects the last midnight node in the horizon to the sink

node and represents the end of the schedule.

In addition to constraints (2)–(6), the local restrictions are enforced via the

resource constraints. There is a lower bound on the minimum number of days off in

a schedule and a maximum number of consecutive working days. There is also a

maximum credited flying time per schedule (85 h for our tests).
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The cost of a feasible path starting from the source node and ending at the sink

node corresponds to the cost of a schedule and is equal to the sum of the arc costs on

the path. However, the subproblem tries to find paths with a negative reduced cost

so the arc costs should sum to the reduced cost of the associated pairing. Therefore,

the arc costs are updated based on the dual variables and the coefficients of the

variables in the MP constraints. The pricing in the personalized assignment

subproblems is carried out via a multi-label shortest path algorithm (Desrosiers

et al. 1995; Irnich and Desaulniers 2005). A label is associated with each partial

            Base Pairings                   Base Midnight Nodes 

Node legends:                     Arc legends: 

Source                                                           

kniS

Midnight 

Pairing Start 

Pairing 

Pairing End Preferred 
Vaca�on 

Post-pairing rest

Post-pairing 

Day-off Schedule start 

Schedule End 

Pairing Start 

Fig. 2 Directed acyclic time-space network for personalized assignment subproblem
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path originating from the source node. This label has a component for each resource

and one for the reduced cost. The resource components give the value of the

resource at the last node of the partial path, and the reduced-cost component

indicates the reduced cost of this path. The initial labels are set to 0 at the source

node. Before adding a new arc m to a partial path, we check that the resource labels

are within the upper and lower bounds of the resource windows at the start node of

arc m. When adding an arc to an existing partial path, we recalculate the labels via

extension functions, and the arcs with infeasible resource values are discarded. For

large networks, the number of labels can be extremely large, and this can lead to

long computational times at each CG iteration. To avoid this, we use a label

dominance rule to discard suboptimal paths: label L1 is dominated by label L2 if

both the resource and reduced-cost components of L1 are less than or equal to those

of L2 (at least one inequality should be strict).

7.3 Integer solution

After solving the linear relaxation of (1)–(6), we must find an integer solution. We

embed the CG in a heuristic branch-and-bound scheme: at each branch-and-bound

node, the lower bounds are calculated by CG. A fixing procedure is used to impose

permanent decisions. Of the five branching strategies implemented in the GENCOL

software that we use (two optimal strategies and three heuristics), we apply the two

heuristic strategies: column fixing and heuristic inter-task fixing. Column fixing

simply fixes a subset of the variables (columns) of the MP to 1 when their score is

greater than or equal to a predetermined threshold. At each branching node, a score

is calculated for each potential branching strategy. Through two parameters, the

maximum and minimum scores, we map these scores to a scaled score. We compare

the scaled scores and select the branching strategy with the better score. We use

0.85 as the threshold. If no suitable variable exists, two tasks (air legs for the pairing

problem or pairings for the assignment problem) are assigned to the same pairing/

schedule and are performed consecutively.

8 Computational results

In this section, we present results for the personalized pilot scheduling problem

based on monthly flight schedules operated by short- or medium-haul aircraft. Seven

data sets are provided by a major North American airline. In Sect. 8.1, we describe

the seven instances. Section 8.2 explains how we generate the preferences, and

Sect. 8.3 gives the results for the personalized assignment problem.

The anonymous pairings are extracted from the results of the rolling-horizon/CG

approach of Saddoune et al. (2013). They consider a 3-day time slice and a 1.5-day

overlap between two consecutive slices. We determine the number of pilots for each

instance from the results of Saddoune et al. (2012) for the sequential bidline

scheduling problem.
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8.1 Description of data sets

All 7 instances have 3 crew bases, and the number of flights ranges from 1013 to

7765. The number of stations varies between 26 and 54. Table 1 shows the

characteristics of these instances. For the feasibility of the pairings, Saddoune et al.

(2012) use the parameter values of Mercier et al. (2005), and for the feasibility of

the schedules, they use the parameter values of Boubaker et al. (2010). We use the

same values for our tests. In addition, for the personalized assignment problem, we

define some new parameters including a bonus for covering preferred flights and a

penalty for failing to cover the preferred vacations. The costs of failing to cover

flights, the preferred vacations, the preferred flights, and the cost of covering flights

are all related. To show the relationship between covering flights and the

preferences, we use the following example. We assume that it is more important

to cover the scheduled flights than to satisfy the vacation and flight preferences. We

assume that the cost of covering a scheduled flight is 0, and we set the cost of failing

to cover a scheduled flight to 10,000. The results show that this cost is large enough

to ensure that the percentage of uncovered flights is very small. The cost of failing to

satisfy a vacation preference is set to 1000. This cost is large enough to ensure

appropriate satisfaction of the requested vacations and to avoid a large number of

uncovered flights. We apply a negative cost (a bonus) of -100 for covering a flight

preference to help satisfy the global constraint on the minimum number of preferred

flights. It is important to mention that the costs of preferences are not very sensitive

parameters; constraints (3) and (4) ensure a minimum number of preferred vacations

and preferred flights.

We did not have access to real preference data for these data sets, so we

randomly generated simple pilot preferences with parameters based on the expertise

of analysts who have worked on data from more than 20 airlines. We now discuss

the random generators.

8.2 Random generators

We developed a random generator for the vacation preferences and another for the

flight preferences, assuming that the scheduling month is a typical month outside of

the high season.

Table 1 Characteristics of

instances
No. of scheduled flights No. of stations

I1� 727 1013 26

I2� DC9 1500 35

I3� D94 1854 41

I4� D95 5613 49

I5� 757 5743 34

I6� 319 5886 52

I7� 320 7765 54
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8.2.1 Vacation generator

In this random generator, the vacations are uniformly distributed during the month.

Since the scheduling month is not a month with special events (e.g., Thanksgiving,

Christmas), this assumption is reasonable. Each month, about 30 % of the pilots,

with variations due to integer rounding, request a vacation, and the duration ranges

from 2 to 15 days. These numbers correspond to values observed in the industry.

Our experiments show that we can satisfy at least 38 % of these requests; a

penalty is associated with each unsatisfied request. The vacation days are

consecutive, and the vacations start and end at the pilot’s base.

8.2.2 Flight preference generator

In this random generator, each pilot selects a specific percentage of preferred flights

from the set of scheduled flights included in the pairings corresponding to his/her

base. The selection follows a uniform distribution. For our experiments, we assume

that each pilot prefers 10 % of the scheduled flights.

We ensure that at least 20 % of the flights contained in the pilots’ schedules are

preferred flights. We do not specify a minimum acceptable percentage of preferred

flights for each pilot, because the pairings are constructed anonymously and the

personalized schedules are constructed based on these pairings.

8.3 Summary of results

Section 8.3.1 presents a summary of the results of Saddoune et al. (2012) for the

pairing and bidline assignment problems. Section 8.3.2 discusses the results of

solving the personalized assignment problem.

8.3.1 Pairing and bidline assignment problem

Table 2 presents the results of Saddoune et al. (2012) for the pairing and bidline

problems. They conducted their experiments on a Linux PC equipped with an Intel

Xeon processor clocked at 2.8 GHz, using version 4.5 of GENCOL and version 10.1

of CPLEX. We use the pairing results to clarify the set of pairings for each instance

Table 2 Results for pairing and bidline assignment problems

No. of pairings No. of pilots CPU time (pairing) CPU time (bidline)

I1� 727 172 33 2.50 1.50

I2� DC9 303 34 4.34 1.46

I3� D94 274 47 9.14 2.26

I4� D95 1079 145 393.58 129.02

I5� 757 1497 247 67.80 164.10

I6� 319 1187 223 154.75 105.25

I7� 320 1648 305 289.22 218.38
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when constructing monthly personalized schedules. We also use the bidline results

on the total number of pilots for each instance to approximate the number of pilots

per base. In contrast to the model of Saddoune et al. (2012), our model does not

minimize the number of pilots. Instead, we assume a fixed number of pilots per

base. Given a list of preferences for each pilot, we want to satisfy their preferences

while covering the pairings. The CPU times are given in minutes.

8.3.2 Personalized assignment problem

We conducted our tests on a Linux PC with an Intel(R) Core(TM) processor clocked

at 3.40 GHz. All of our implementations are coded in C??, and version 4.5 of

GENCOL is used. The RMPs are solved using CPLEX 12.4. Table 3 gives the

number of pilots per base. As mentioned, we did not minimize the number of pilots

and sometimes the total number of pilot schedules is slightly lower than the number

of pilots assigned to a base; the pilots without schedules become reserve crew

members. Table 4 summarizes the solution process. Number of pilots indicates the

number of subproblems for each instance. We have many more subproblems (one

for each pilot) than Saddoune et al. (2012) deal with in the context of sequential

bidline scheduling (three subproblems, one for each base). Number of CG iterations

indicates the total number of CG iterations. Number of branching nodes indicates

the total number of branching nodes in the branch-and-price scheme. Gap gives the

percentage difference between the lower bounds (LP solutions) and upper bounds

(integer solutions). CPU time (in minutes) indicates the total CPU time.

Table 3 Number of pilots per

base
B1 B2 B3 Total

I1� 727 7 20 6 33

I2� DC9 10 9 15 34

I3� D94 10 30 7 47

I4� D95 42 78 25 145

I5� 757 141 101 6 247

I6� 319 117 66 40 223

I7� 320 158 96 51 305

Table 4 Summary of solution process for personalized assignment problem

No. of pilots No. of CG iterations No. of branching nodes Gap (%) CPU time (min)

I1� 727 33 239 7 0.00 0.16

I2� DC9 34 1968 30 0.18 0.45

I3� D94 47 466 14 0.02 1.81

I4� D95 145 2417 129 0.38 47.59

I5� 757 247 4531 172 2.91 149.58

I6� 319 223 2975 168 0.49 75.31

I7� 320 305 4011 195 0.37 184.76
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Table 5 reports the quality of the solutions. Percentage of uncovered flights

indicates the percentage of scheduled flights that are not covered despite the large

penalty that we impose. Average Credited Flying Time (ACFT) shows how many

hours each pilot works on average. The credited time consists of the duration of the

air legs, half of the duration of deadheads, a debriefing time for each post pairing,

and a briefing and debriefing time for each post-pairing rest. Preferred vacations

shows the percentages of pilots with satisfied vacation requests. Percentage of

preferred flights shows the percentages of the preferred flights in schedules. This is a

measure of the quality of the personalization.

Although the number of subproblems is high (between 33 and 305) the solutions

are found in a reasonable time (0.16 min for the smallest instance and 184.76 min

for the largest). The CPU times are lower than those for bidline assignment. This

reduction in time is due to the faster CPU and/or the improved version of CPLEX

we use. On average, 29.09 % of the flights are preferred flights, and 13.76 % of the

pilots have preferred vacations in their schedules. On average, 0.41 % of the air legs

are not covered; this is an acceptable figure. Reserve crew members can be assigned

to the uncovered flights. Except for I5� 757, the gap is smaller than 1 %. For

I5� 757, the number of CG iterations and the CPU time indicates that this is a

difficult instance. The gap of 2.91 % confirms that it is difficult to find integer

solutions for this instance; this is because the branching strategies do not fully

explore the branch-and-bound tree. In industry, when users are not satisfied with the

quality of a solution (e.g., large gaps), they modify some of the parameters and

resolve the problem; we did not do this.

9 Future directions for airline crew scheduling

Airline crew scheduling remains an active and interesting area with several

unexplored avenues for research. Pairing construction for a monthly planning

horizon, rather than daily or weekly problems, is still a challenge. In addition, some

difficult constraints are currently treated heuristically, and research could take into

account more sophisticated industrial regulations such as the 8-in-24 rule. It would

also be interesting to introduce more sophisticated types of preferences. Research

Table 5 Quality of Solutions

Uncovered flights (%) ACFT Preferred vacations (%) Preferred flights (%)

I1� 727 0.00 68.75 15.15 25.90

I2� DC9 0.00 75.76 14.71 24.27

I3� D94 0.00 72.70 14.89 26.66

I4� D95 0.04 74.70 14.48 36.37

I5� 757 1.81 81.12 12.55 25.00

I6� 319 0.14 76.75 14.35 39.13

I7� 320 0.86 81.65 10.16 26.32

Average 0.48 75.92 13.76 29.09
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into the integration of the crew pairing and crew assignment problems is ongoing.

Robust scheduling in the presence of uncertainty and possible perturbations is

another challenging problem. The scheduling of cabin crew has received less

attention. Each flight requires many cabin crew members, and some may need

specific qualifications (administrative level, language, safety). As a result, each

cabin crew member must be considered individually. Another potential research

area is the simultaneous construction of schedules for cabin and cockpit crews that

include common duties and pairings for different types of crew members (pilots,

copilots, flight attendants).

We have decided to make available our data sets, preference generators, and the

two types of supplementary constraints. These data sets will permit the research

community to compare different algorithms. Adding supplementary constraints is

one way to improve the link between the crew pairing and the crew assignment

problem. These constraints lead to better pairings and more productive crew

schedules. Our collaborators at AD OPT have suggested two types of supplementary

constraints, and we have developed two generators to produce these constraints. The

first group of constraints restricts the number of credited flying hours per base

during the pairing construction. Using the unconstrained pairings, we compile

statistics on the total credited hours. Two parameters are considered. The first adds

an allowance to the total credited hours; the second controls the percentage of

credited hours per base. We associate a maximum percentage of the total credited

flying hours with the main base and evenly divide the remaining time between the

other bases. The second group of constraints is stronger than the first group and

controls the crew availability per base per day. Given a planning horizon and an

unconstrained solution, we count the number of duties per day. A parameter adds an

allowance to the total number of duties for each day of the horizon. Another

parameter controls the number of crew members per base per day. If these values

are not integer, we round them up while preserving the total number of crew

members. All the data sets and generators are available at www.gerad.ca/en/papers/

G-2014-22.

10 Conclusion

We have provided an extensive review of the airline crew scheduling problem. We

have also proposed a mathematical formulation for the personalized crew

assignment problem in the context of a sequential approach (crew pairing followed

by crew assignment). We constructed personalized schedules by associating a

subproblem with each crew member. In our tests, the number of subproblems varies

between 33 and 305. In the bidline problem for the same set of instances, a

subproblem is associated with each crew base (giving a total of 3 subproblems), so

the personalized assignment problem is more challenging.

Taking the crew preferences into account is common in European airlines and

becoming more frequent in North American airlines. We considered two types of

preferences, for flights and vacations, in the context of short- and medium-haul

flights. The results show that an acceptable level of crew satisfaction can be
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achieved when monthly schedules are constructed for pilots via a sequential

approach based on branch and price.
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