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Abstract In this paper, we introduce and study the capacitated vehicle routing

problem with sequence-based pallet loading and axle weight constraints. To the best

of our knowledge, it is the first time that axle weight restrictions are incorporated in

a vehicle routing model. The aim of this paper is to demonstrate that incorporating

axle weight restrictions in a vehicle routing model is possible and necessary for a

feasible route planning. Axle weight limits impose a great challenge for transpor-

tation companies. Trucks with overloaded axles represent a significant threat for

traffic safety and may cause serious damage to the road surface. Transporters face

high fines when violating these limits. A mixed integer linear programming for-

mulation for the capacitated vehicle routing problem with sequence-based pallet

loading and axle weight constraints is provided. Results of the model are compared

to the results of the model without axle weight restrictions. Computational exper-

iments demonstrate that the model performs adequately and that the integration of

axle weight constraints in vehicle routing models is required for a feasible route

planning.
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1 Introduction

One of the most studied combinatorial optimization problems in transport and

logistics is the vehicle routing problem (VRP). The VRP concerns the distribution of

goods between depots and customers (Toth and Vigo 2002). Its goal is to find a set

of routes for a fleet of vehicles to satisfy customer demands. The objective function

typically aims to minimize routing costs. The basic version of the vehicle routing

problem is the capacitated vehicle routing problem (CVRP). The CVRP considers a

homogeneous vehicle fleet with a fixed capacity (in terms of weight or number of

items) which delivers goods from a depot to customer locations. Split deliveries are

not allowed.

This paper focuses on the integration of loading constraints in VRPs. A survey

conducted by the authors among several Belgian logistics service providers pointed

out that they are faced with loading problems in their route planning. Current

commercial route planning programs do not take into account most of these loading

constraints, which makes the planning often not feasible in practice. This gives rise

to last-minute changes in planning which may result in additional costs. The

development of vehicle routing models that incorporate loading constraints is,

therefore, vital for a more efficient planning of routes. The combination of VRP and

loading problems is a fairly recent domain of research. For a detailed overview of

literature on this topic up to 2010 the reader is referred to Iori and Martello (2010).

The focus of this paper is on the combination of a VRP with the loading of

homogeneous pallets inside a vehicle, since this is a problem setting often

encountered by distributors. Pallets may be placed in two rows inside the vehicle but

cannot be stacked on top of each other because of their weight, fragility or customer

preferences. Sequence-based loading is assumed which ensures that when arriving

at a customer, no items belonging to customers served later on the route block the

removal of the items of the current customer. The problem has similarities with the

multi-pile VRP (MP-VRP), the double traveling salesman problem with multiple

stacks (DTSPMS) and the traveling salesman pickup and delivery problem (TSPPD)

with multiple stacks. Doerner et al (2007) develop a tabu search (TS) method and

ant colony optimization (ACO) method to solve the MP-VRP, based on a real-world

transportation problem regarding the transport of wooden chipboards. For every

order, chipboards of the same type (small or large) are grouped into a unique item,

which is placed onto a single pallet. The vehicle is divided into three piles on which

pallets can be stacked. Pallets containing large chipboards can extend over multiple

piles. The other pallets can be placed into a single pile. Because of this specific

configuration of pallets placed into multiple piles, the original three-dimensional

problem can be reduced to a one-dimensional one. Tricoire et al (2011) develop a

combination of VNS and branch-and-cut to solve the MP-VRP exactly for small-

size instances and heuristically for large-size instances. In both papers concerning

the MP-VRP, sequence-based loading is taken into account. The DTSPMS,

proposed by Petersen and Madsen (2009), considers pickup and delivery of goods

performed in two separate networks in vehicles with multiple stacks. All pickups

must be made before any delivery can take place. The goods cannot be repacked,

nor vertically stacked. The goods can be placed in several rows (horizontal stacks).
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In each row, sequence-based loading (which equals last-in-first-out since only a

single dimension is considered) is assumed. It is assumed that each order consists of

a single item. The problem is based on a real-world application in which in a first

phase, a container is loaded onto a truck to perform pickup operations and returned

by that truck to a depot or terminal. In a second phase, the container is loaded onto a

train, ship, plane or another truck and transported to another depot or terminal. In

the depots or terminals, there are no facilities to repack the items inside the

container. In the final phase, the container is again transferred to a truck which

performs the delivery operations (Petersen and Madsen 2009). Petersen and Madsen

(2009), Felipe et al (2009) and Felipe et al (2011) develop heuristic methods to

solve the DTSPMS, while Lusby et al (2010), Petersen et al (2010), Lusby and

Larsen (2011), Alba et al (2013) and Carrabs et al (2013) propose an exact

algorithm. Côté et al (2012a) and Côté et al (2012b) consider the TSPPD with

multiple stacks with LIFO loading with respectively a heuristic method and a

branch-and-cut algorithm. Øvstebø et al (2011) examine a similar problem on roll-

on/roll-off (RoRo) ships that transport cargo on wheels. The decks on the ship may

be divided into lanes in which the cargo may be placed. The lanes may be compared

to stacks in a truck. Sequence-based loading is considered as a soft constraint. A

penalty cost is incurred if the constraint is violated.

To our knowledge, axle weight constraints have never been incorporated in a

routing model. However, our survey pointed out that axle weight limits impose a

great challenge for transportation companies. Trucks with overloaded axles

represent a significant threat for traffic safety and may cause serious damage to

the road surface. Transporters face high fines when violating these limits. Weigh-in-

motion (WIM) systems on highways increase the chances that axle weight

violations are detected. A WIM system monitors axle weight violations of trucks

while driving. The authorities can thereby focus on trucks with violations according

to the WIM system, to do a precise measurement. This leads to an enormous

efficiency gain of the controls (Jacob and Feypell-de La Beaumelle 2010).

Legislation about axle weight limits varies by country (for an overview of the

axle weight limits in Europe, the reader is referred to the International Transport

Forum). The axle weight is the weight that is placed on the axles of the truck. A

truck with five axles is illustrated in Fig. 1. The first axle, also called the steering

axle, and the second axle, called the driving axle, both belong to the tractor. The

axles of the trailer are tridem axles. Tridem axles are three successive axles with a

distance between the middle of the first axle and the middle of the second axle and

between the middle of the second axle and the middle of the third axle of less than

1.8 and more than 1 m. When item j is placed onto a vehicle, the weight of the item

is divided over the axles of the tractor and the axles of the trailer. aFij represents the

weight of the items of customer j placed on the coupling of the truck (which is the

link between the tractor and the trailer). The weight on the coupling is carried by the

axles of the tractor. aRij represents the weight of the items of customer j on the axles

of the trailer. As a truck delivers items to several customers on a single route, the

weight on the axles of the truck changes. A load that is placed at the rear of the

vehicle (behind the axles of the trailer) has a negative weight on the axles of the
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tractor. For this reason, it is possible that by unloading this item a violation of the

weight limits of the axles of the tractor is induced. It is, therefore, important that

axle weights are considered also during the whole trip of the vehicle and not only

when the vehicle departs from the depot. To our knowledge, Lim et al (2013) are the

only authors who address axle weight constraints in a container loading problem.

They develop a heuristic method to tackle the single container loading problem with

axle weight constraints. Axle weight limits have not yet been investigated in a VRP.

In this paper, to the authors’ knowledge, for the first time axle weight restrictions

are included in a VRP model. To ensure the relevance of the model, it is based on a

survey conducted among Belgian logistics service providers. A problem formulation

of a CVRP with sequence-based pallet loading and axle weight constraints is

provided. The model is tested on networks of 10–25 customers and compared to a

model without axle weight restrictions. In Sect. 2, the problem is described and

illustrated with an example. The calculation of the axle weight is described in Sect.

3. A mixed integer linear programming formulation for the CVRP with sequence-

based pallet loading and axle weight constraints is presented in Sect. 4. In Sect. 5,

computational results are provided to illustrate the functioning of the model. In the

final section, conclusions and future research opportunities are discussed (Sect. 6).

2 Problem description

The problem of interest in this paper is a CVRP with sequence-based pallet loading

and axle weight constraints. To the best of our knowledge, it is the first time that

axle weight restrictions are incorporated into a VRP model. The problem is based on

a real-world problem. Information on the vehicle fleet (measurements, capacity,

mass, axle weight limits) is derived from the information from a Belgian logistics

service provider. The vehicle type that is considered in this article is a 30-foot truck

that consists of a two-axle tractor (steering axle and driving axle) and a trailer with

tridem axles. All vehicle types with the same axle configuration but different

dimensions (for example, 40-foot trucks) may be handled by the model by

modifying vehicle-specific parameters such as distance between the beginning of

the truck and the middle of the rear axles. The idea behind the calculation of the

center of gravity and the axle weights is also applicable on vehicles with a different

Fig. 1 Axle weight tractor (steering axle, driving axle) and trailer (tridem axles) (figure adapted from
TruckScience)
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axle configuration, but depending on the type of change in axle configuration it may

be necessary to modify or add some equations and constraints to the model.

The VRP consists of a set of customers and a central depot. Customer demands

need to be fulfilled and vehicle capacities need to be respected. Each customer has

to be visited exactly once. Multiple homogenous 30-foot trucks are considered

which consist of a tractor, a trailer and a container. The length, width and height of

the inside dimensions of the container are, respectively, 9.12, 2.44 and 2.44 m. The

mass of the empty tractor is 6.82 t of which 4.88 t is carried by the steering axle and

1.97 t is supported by the driving axle. The tare weight of the container is 3 t of

which 2 t is supported by the coupling and 1 t is supported by the axles of the

trailer. The mass of the empty trailer is 2 t. The maximum weight on the coupling of

the tractor is 13.6 t. This is subtracted by the weight of the container carried by the

coupling (2 t), which leads to a maximum weight of the load that may be placed on

the coupling of 11.6 t. 80 % of the weight on the coupling is supported by the

driving axles of the tractor, while the remaining 20 % is carried by the steering axle.

The maximum weight capacity of the tridem axles of the trailer is 24 t. This is

subtracted by the weight of the trailer (2 t) and the weight of the empty container

carried by the axles of the trailer (1 t) which gives a total of 21 t. This is the

maximum weight of the load that may be carried by the axles of the trailer. The

maximum weight of the vehicle is 44 t. This is subtracted by the empty weight of

the tractor (6.82 t), the tare weight of the container (3 t) and the weight of the trailer

(2 t), which results in a maximum weight of the load of 32.2 t.

The demand of the customers is heterogeneous and consists of europallets

(80� 120 cm). In total, 22 pallets may be placed inside a truck in two horizontal

rows. Pallets are packed dense in the truck. This means there cannot be a gap

between two consecutive pallets inside the truck. Pallets are alternately packed in

the left and right row. This implies that the pallets of a single customer cannot be

aligned in a single row. Moreover, the pallets of the last customer are placed at the

deepest portion of the loading area. This pallet configuration is often used in

practice since the stability of the load is much higher when the pallets are packed

dense than when gaps are allowed between the pallets. It is assumed that all pallets

of a single customer have the same weight and that the weight is uniformly

distributed inside each pallet, i.e., the center of gravity of a pallet lies in its

geometric midpoint. The container can only be unloaded at the rear side. To avoid

moving pallets of other customers when arriving at a customer, sequence-based

loading is imposed. Vertical stacking is not allowed, due to fragility of goods and

customer preferences. Customers usually do not want goods of other customers to

be packed on top of their goods.

In the remaining of this section, the impact of incorporating axle weight

restrictions in a routing model with sequence-based loading is illustrated with an

example. In Fig. 2, a depot with four customers is presented. Each customer has a

demand of five europallets. The total mass of the pallets of customer 1, 2, 3 and 4 is,

respectively, 12, 2, 2 and 12 t. The distance matrix of the customer nodes and the

depot may be found in Table 1. The shortest route between the depot and customer

locations is computed with and without taking axle weight restrictions into account.

For the computation of the weight on the axles, the reader is referred to Sect. 3.
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An optimal vehicle route when axle weight restrictions are not considered is

graphically represented in Fig. 3a. The vehicle starts in the depot, visits customer

nodes 1, 2, 3, 4 and returns to the depot. The loading scheme of the container may

be found in Fig. 4a. Total distance traveled is 12.8. In Table 2, the total mass of

the load as well as the weight of the load on the coupling and on the axles of the

trailer when the truck arrives at each customer node is given. The total mass of the

load is well below the maximum weight capacity (32.2 t) of the vehicle. Weight

on the coupling is greater than the weight limit (11.6 t) when the vehicle departs

from the depot until it arrives at the last customer. This means that the axle weight

limits on the axles of the tractor are surpassed on the vehicle route. The highest

axle weight violation takes place between between customer 1 and customer 2.

When the vehicle departs from customer 1, the weight on the coupling is 18 %

higher than the limit, which is substantial and could lead to a significant fine. It is,

therefore, not a feasible solution for the distribution company. In this symmetric

VRP without axle weight restrictions, visiting sequence 4-3-2-1 (the reverse order

of customers from the first solution) is also an optimal route with the same total

distance traveled as visiting sequence 1-2-3-4. This solution generates the same

axle weight violations.

In Fig. 3b, the optimal vehicle route when axle weight restrictions are considered

is graphically represented. The vehicle starts in the depot, visits customer nodes 1, 2,

4, 3 and returns to the depot. In Table 3, the total mass of the load and the weight of

the load on the coupling and on the axles of the trailer when the truck arrives at each

customer node are given. Total distance traveled is 14, which is an increase of 9 %

compared to the optimal solution in the model without axle weight restrictions. The

maximum weight on the coupling is 10.2 t which does not exceed the weight limit

on the coupling (11.6 t). The maximum load on the axles of the trailer is 18.8 t

Fig. 2 Graphical representation of a depot with four customers

Table 1 Distance matrix illustrative example

Depot Customer 1 Customer 2 Customer 3 Customer 4

Depot 0.00 3.16 2.24 2.24 3.16

Customer 1 3.16 0.00 2.24 4.12 6.00

Customer 2 2.24 2.24 0.00 2.00 4.12

Customer 3 2.24 4.12 2.00 0.00 2.24

Customer 4 3.16 6.00 4.12 2.24 0.00
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which is still below the weight limit on the axles of the trailer (21 t). In Fig. 4b, the

loading scheme of the container is presented. Note that although the change only

exists in swapping two customers (customer 3 and 4) on the route, all axle weight

violations have disappeared. This is because the heavy pallets of customer 4 are not

anymore at the beginning of the vehicle and are therefore not only carried by the

coupling, but also partially by the trailer. To conclude, integrating axle weight

restrictions in the model may lead to a higher distance traveled, but ensures a

feasible weight distribution of the load inside the vehicle.

3 Axle weight calculation

The calculation of the weight of the pallets of customer j when traveling from

customer i to customer j on the coupling point or the axles of the tractor (aFij ) and on

the axles of the trailer (aRij) is presented in Eqs. (1) and (2). Figure 5 graphically

(a) (b)

Fig. 3 Graphical representation of an optimal vehicle route a without axle weight restrictions, b with
axle weight restrictions

Fig. 4 Loading scheme of a container (in top view) of the optimal route a without axle weight
restrictions, b with axle weight restrictions. The load of, respectively, customer 1, 2 , 3 and 4 is indicated
by C1, C2, C3 and C4

Table 2 Results of illustrative example without axle weight restrictions

Customer Total mass (kg) Weight coupling (kg) Weight axles trailer (kg)

1 28,000 12,727a 15,273

2 16,000 13,731a 2,269

3 14,000 13,200a 800

4 12,000 11,913a 87

a C11.6 t
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presents the parameters in Eqs. (1) and (2). The weight of the pallets of customer j is

denoted by wj. Parameter CGj represents the distance from the beginning of the

container to the center of gravity of the pallet of customer j. Parameter c denotes the

distance from the beginning of the container to the coupling. The final parameter d

represents the distance between the coupling and the central axle of the trailer.

aRij ¼
ðCGj � cÞ

d
wj ð1Þ

aFij ¼ wj � aRij ð2Þ

The weight of the pallets is divided over the axles of the trailer and the axles of the

tractor. The distribution of the weight over the axles depends on the distance

between the pallet and the axles. In the first part of Eq. (1), the percentage of the

weight that is assigned to the axles of the trailer is computed by dividing the

distance between the coupling and the center of gravity of the item by the distance

between the coupling and the central axle of the trailer. In the second part of Eq. (1),

this percentage is multiplied by the weight of the item to compute the weight that is

carried by the axles of the trailer. The larger the distance between the item and the

coupling, the higher the percentage of weight that is distributed to the axles of the

trailer will be. The weight on the coupling is computed in Eq. (2) by subtracting the

weight on the axles of the trailer from the weight of the item.

Based on real-world information, parameters c and d, respectively, have a value

of 1 and 5.5 m. In the next paragraphs, calculations are expressed in pallet places

instead of meters. The europallets (1:20� 0:8 m) are placed in two rows with a

width of 1.20 m, which makes the length of each pallet inside the container (= a

Table 3 Results of illustrative example with axle weight restrictions

Customer Total mass (kg) Weight coupling (kg) Weight axles trailer (kg)

1 28,000 9,236 18,764

2 16,000 10,240 5,760

4 14,000 9,709 4,291

3 2,000 1,985 15

Fig. 5 Tractor (with two axles) and trailer (with tridem axles)
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single pallet place) equal to 0.8 m. The value of c becomes 1.25 (= 1m
0:8m=palletplace)

pallet places and d has a value of 6.875 (= 5:5m
0:8m=palletplace) pallet places.

While c, d and wj are parameters which are known beforehand, determining the

value of CGj is less straightforward since the center of gravity depends on where the

item is placed in the truck. The calculation of the center of gravity is illustrated in

Fig. 6 in which the gray pallets represent pallets that are already in the truck when

arriving at customer j and the black shaded pallets represent the pallets of customer

j. Since it is assumed that the center of gravity lies in the geometric midpoint of the

pallets of customer j, the center of gravity of the eight pallets of customer j in Fig. 6

equals 3. The starting point (Sj) is the point at which the first pallet of customer j

(when coming from customer i) is placed inside the vehicle, which is at point 1 in

Fig. 6. The number of pallets that are already in the truck when arriving at customer

j is denoted by lij and Lj represents the number of pallets of customer j.

In the following paragraphs, a formula is presented to calculate the center of

gravity of the pallets of a customer. The authors are not aware of other sources that

use a similar approach.The calculation of the center of gravity is composed of two

parts. The first part determines the starting point (Sj) at which the first pallet of

customer j will be placed. This depends on lij. If the number of pallets in the truck is

even, Sj equals
lij
2
. When the number of pallets already in the truck is odd, Sj equals

lij
2
� 0:5. In Fig. 6, lij equals 2 which results in a Sj of 1 ð¼ 2=2Þ. The second part of

the calculation of the center of gravity determines the distance between the center of

gravity of the pallets of customer j and Sj. This depends on the value of lij and Lj.

When lij is even, the second part of the equation for the center of gravity equals Ej.

Ej is the center of gravity of the pallets of customer j when the truck is empty upon

arrival (lij = 0). Ej corresponds to Eq. (3) or (4) depending on whether Lj is,

respectively, even or odd. The center of gravity of every pallet separately is added

up and divided by the number of pallets of customer j (Lj). The last term in the

numerator in the formulas is Max½0; ðLj � 21Þ� or Max½0; ðLj � 20Þ� because vehicle
capacity is 22 pallets. The value of Lj, therefore, has to be equal or lower than 22.

Fig. 6 Top view of a container with indication of starting point (Sj) and center of gravity (CGj)
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The following terms (Max½0; ðLj � 22Þ�;Max½0; ðLj � 23Þ�;Max½0; ðLj � 24Þ�. . .)
will always yield zero and are thereby not added to the numerator.

If Lj even:

Ej ¼
ðMax½0; ðLj � 1Þ� þMax½0; ðLj � 3Þ� þ � � � þMax½0; ðLj � 21Þ�Þ

Lj
ð3Þ

If Lj odd:

Ej ¼
Lj
2
þMax½0; ðLj � 2Þ� þMax½0; ðLj � 4Þ� þ � � � þMax½0; ðLj � 20Þ�

� �

Lj

ð4Þ

When lij is odd, the second part of the equation for the center of gravity equals Oj.

Oj is the center of gravity of the pallets of customer j when a single pallet is placed

in the truck upon arrival (lij ¼ 1). Oj equals Eqs. (5) or (6) depending on whether Lj
is respectively even or odd. The calculation of Oj is analogous to the calculation of

Ej. The last term in Eq. (5) ?0.5 equals the center of gravity of the first pallet of

customer j that is placed inside the truck. The last term in Eq. (6) �0:5 added up

with the term right before it also equals the center of gravity of the first pallet of

customer j that is placed inside the truck.

If Lj even:

Oj ¼
Lj�1

2
þMax½0; ðLj � 1Þ� þMax½0; ðLj � 3Þ� þ � � � þMax½0; ðLj � 21Þ� þ 0:5

� �

Lj

ð5Þ

If Lj odd:

Oj ¼
ðLj þMax½0; ðLj � 2Þ� þMax½0; ðLj � 4Þ� þ � � � þMax½0; ðLj � 20Þ� � 0; 5Þ

Lj

ð6Þ

Since the number of pallets of customer j is known in advance, Oj and Ej can be

treated as parameters or constants in the model. To integrate Eqs. (3)–(6) and the

calculation of Sj into a single formula to define the center of gravity, parameter Pj

and variable Cij are created. Pj equals 1 if Lj is even and equals �1 when Lj is odd.

Variable Cij is defined to keep track of the variable lij. When a vehicle travels from i

to j, Cij has a value of 1 when lij is even and a value of �1 when lij is odd. When a

vehicle does not travel from i to j, Cij is 0. For the formulation of Cij the reader is

referred to Sect. 4.

The integrated formula of CGj is displayed in Eq. (7). Note that this is a linear

formula.
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CGj ¼
P

i2V lij
2

� 1

4
� 1�

X
i2V

Cij

 !
þ Oj �

1

2
� 1�

X
i2V

Cij

 !

þ Ej �
1

2
� 1þ

X
i2V

Cij

 !
8i 2 V

ð7Þ

The formula is composed of two parts.

P
i2V lij
2

� 1

4
� 1�

X
i2V

Cij

 !
ð7:1Þ

Oj �
1

2
� 1�

X
i2V

Cij

 !
þ Ej �

1

2
� 1þ

X
i2V

Cij

 !
ð7:2Þ

In Eq. (7.1), the starting point Sj at which the first pallet of customer j will be placed

is determined. When lij is even, Cij equals 1 and the second term will become 0.

Only the first term will remain. When lij is odd, Cij equals �1 and the second term

will become �0:5. Equation (7.2) calculates the distance between the center of

gravity of the pallets of customer j and the beginning of the truck, when no or a

single pallet is inside the truck. This equals the distance between the center of

gravity of the pallets and the beginpoint Sj. When lij is even, Cij equals 1 and the first

term will become zero while the second term will become Ej. When lij is odd, Cij

equals �1 and the first term will become Oj while the second term will turn to zero.

4 Problem formulation

In this section, a mixed integer linear programming formulation of a CVRP with

sequence-based pallet loading and axle weight constraints is given. Note that the

considered problem is a delivery problem, as illustrated in Sect. 2. The calculation

for the center of gravity is, however, less complex when formulated as a pickup

problem. Therefore, the problem formulation given in this section is for a pickup

problem. Since we consider a symmetrical problem (symmetrical distance matrix)

and do not assume time windows, the optimal visiting sequences of the pickup

problem can be reversed to determine the optimal visiting sequences of the delivery

problem.

To formulate the problem the following notation is used:
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V ¼ f0; 1; . . .; nþ 1gset of vertices with customers (node 1, . . .; nÞ and
depot ðnode 0; nþ 1Þ ðindices i; j; kÞ

E ¼ set of edges

cij ¼ traveling cost on link ði; jÞ
Lj ¼ number of pallets demanded by customer j

L ¼ maximum amount of pallets per vehicle

Qj ¼ total mass of the pallets of customer j

Q ¼ maximummass capacity of each vehicle

Ej ¼ center of gravity of the pallets of customerjwhen the truck is empty

Oj ¼ center of gravity of the pallets of customerjwhen 1 pallet is in the truck

AF ¼ maximumweight on the coupling

AR ¼ maximumweight on the axles of the trailer

WT ¼ mass of the empty truck

WTD ¼ weight of the empty truck on the driving axle

WTR ¼ weight of the empty truck on the axles of the trailer

h ¼ percentage of weight on the coupling that is carried by the driving axle

c ¼ distance between the beginning of the truck and the coupling

d ¼ distance between the coupling and the center of the axles of the trailer

Pj ¼
1 if Lj even

�1 if Lj odd

�

The decision variables are defined as:

Xij ¼
1 if a vehicle travels from i to j

0 otherwise

�

CGj ¼ center of gravity of the pallets of customerj

lij ¼
total number of pallets on this link if a vehicle travels from ito j

0 otherwise

�

qij ¼
total cargomass on this link if a vehicle travels from ito j

0 otherwise

�

aFij ¼
total cargoweight on the coupling on this link if a vehicle travels from i to j

0 otherwise

�

aRij ¼
total cargoweight on the axles of the trailer on this link if a vehicle travels from i to j

0 otherwise

�

Cij ¼
1 if lij even and a vehicle travels from i to j

�1 if lij odd and a vehicle travels from i to j

0 otherwise

8><
>:
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min
X
ði;jÞ2E

cijxij ð8Þ

Subject toX
i2V

xij ¼ 1 8j 2 Vnf0; nþ 1g ð9Þ

X
j2V

xij ¼ 1 8i 2 Vnf0; nþ 1g ð10Þ

xnþ1;j ¼ 0 8j 2 V ð11Þ

xj;0 ¼ 0 8j 2 V ð12Þ

l0j ¼ 0 8j 2 V ð13Þ

lij � Lxij 8ði; jÞ 2 E ð14Þ
X
i2V

lij þ Lj ¼
X
k2V

ljk 8j 2 Vnf0; nþ 1g ð15Þ

q0j ¼ 0 8j 2 V ð16Þ

qij �Qxij 8ði; jÞ 2 E ð17Þ
X
i2V

qij þ Qj ¼
X
k2V

qjk 8j 2 Vnf0; nþ 1g ð18Þ

C0j ¼ xoj 8j 2 V ð19Þ

Cij � xij 8ði; jÞ 2 E ð20Þ

Cij � � xij 8ði; jÞ 2 E ð21Þ
X
i2V

CijPj ¼
X
k2V

Cjk 8j 2 Vnf0; nþ 1g ð22Þ

aF0j ¼ 0 8j 2 V ð23Þ

aR0j ¼ 0 8j 2 V ð24Þ

aFij �AFxij 8ði; jÞ 2 E ð25Þ

aRij �ARxij 8ði; jÞ 2 E ð26Þ
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aFij � �WTDxij 8ði; jÞ 2 E ð27Þ

aRij � �WTRxij 8ði; jÞ 2 E ð28Þ

aFijhþWTD � 0:25ðWT þ qijÞ 8ði; jÞ 2 E ð29Þ

X
i2V

aFij þ Qj �
ðCGj � cÞQj

d
¼
X
k2V

aFjk 8j 2 Vnf0; nþ 1g ð30Þ

X
i2V

aRij þ
ðCGj � cÞQj

d
¼
X
k2V

aRjk 8j 2 Vnf0; nþ 1g ð31Þ

CGj ¼
P

i2V lij
2

� 1

4
� 1�

X
i2V

Cij

 !
þ Oj �

1

2
� 1�

X
i2V

Cij

 !

þ Ej �
1

2
� 1þ

X
i2V

Cij

 !
8j 2 V

ð32Þ

xij 2 f0; 1g ð33Þ

lij � 0 8ði; jÞ 2 E ð34Þ

qij � 0 8ði; jÞ 2 E ð35Þ

The objective function (8) aims to minimize transport costs. Constraints (9) and (10)

ensure that each customer is visited exactly once. Constraint (11) makes sure that no

route begins in the end depot (node nþ 1), while constraint (12) ensures that no route

arrives in the start depot (node 0). Constraints (13) and (16) initialize the values of l0j
and q0j to 0, since a container is empty when it departs from the start depot. Con-

straint (14) limits lij to the maximum number of pallets that may be placed in each

vehicle. Constraint (15) keeps track of lij by adding up the number of pallets when

arriving at customer j (lij) with the number of pallets of customer j (Lj). Constraint

(18) keeps track of qij in a similar way. Note that dense packing of the pallets into the

vehicle is imposed. This means that there may not be a gap between two consecutive

pallets in the truck. To relax the dense packing constraint, the equality sign in

constraint (15) should be changed in a less-than-or-equal-to sign. Constraint (17)

limits qij to the maximum mass capacity (Q) of the vehicle. In constraint (19), the

value of the variable C0j is set to 0 if x0j ¼ 0 and set to 1 if x0j ¼ 1. Since a container

is empty when it departs from the start depot, it has an even number of pallets (0

pallets). Constraints (20) and (21) guarantee that Cij can only have a non-zero value

when a vehicle travels from i to j. Constraint (22) keeps track of Cij by multiplying

the value of Cij when arriving at customer j with parameter Pj which equals 1 if the

number of pallets of customer j is even, and �1 when the number of pallets of

customer j is odd. Constraints (23) and (24) initialize the values of the weight on the
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coupling (aFij ) and the weight on the rear axles (aRij) to zero. Constraints (25), (26),

(27) and (28) ensure that aFij and a
R
ij only have a non-zero value when a vehicle travels

from i to j. Constraints (25) and (26) also specify the upper bounds of, respectively,

aFij and aRij . The values of the upper bounds AF and AR depend on the vehicle char-

acteristics and are specified in legislation. The lower bound of aFij may also be fixed in

legislation. Belgian legislation (KB 15.03.1968 art 32 bis) specifies that the mass

corresponding to the load on the driving axle must be at least 25 % of the total mass

of the loaded truck which is captured in constraint (29). On the left-hand side of

constraint (29), the weight of the empty truck on the driving axle (WTD) is added up

with parameter h (percentage of the weight on the coupling that is carried by the

driving axle of the tractor) multiplied by the weight of the load that is placed on the

coupling (aFij ). On the right-hand side, 25 % of the total mass of the empty truck and

the total weight of the load is computed. Since there are no guidelines concerning the

lower bound of the weight on the axles of the trailer, constraint (28) ensures that this

should be at least equal to �WTR to avoid a negative axle weight on the rear axles.

Constraint (30) keeps track of aFij by adding up the weight on the coupling when

arriving at customer j (aFij ) with the weight on the coupling of the pallets of customer

j. Constraint (31) keeps track of aRij in a similar way. Constraint (32) determines the

center of gravity of the pallets of customer j (CGj) as a function of Cij and lij. This

constraint is the same as Eq. (7) and is explained in Sect. 3.

5 Computational experiments

In this section, computational tests are described as an illustration of the functioning

of the CVRP with sequence-based pallet loading and axle weight constraints. The

model is compared to a CVRP with sequence-based pallet loading without axle

weight restrictions. This is the model described in Sect. 4 without Eqs. (19)–(32).

Different problem classes are constructed to demonstrate the performance of the

model under various problem characteristics. In the model with axle weight

restrictions, the constraints concerning the axle weight limits [Eqs. (25)–(29)] are

defined as lazy constraints in Cplex to decrease the computation time. Lazy

constraints are initially not part of the active model. The model is solved without the

lazy constraints and each solution is checked to see if any of the constraints in the

lazy pool is violated. If a lazy constraint is violated, this constraint is added to the

active model. The instances with ten customers are tested both with and without the

use of lazy constraints. The test shows that using lazy constraints considerably

reduces computation time (by up to 50%). All problems are solved with Cplex 12.5

on a 2.5 GHz Intel Core i5 laptop with 4 GB RAM.

5.1 Test setting

The model formulated in the previous section is used to perform computational

experiments on networks of 10, 15, 20 and 25 customers. Each network consists of a
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start depot (node 0), 10 to 25 customers and an end depot (the last node). It is

assumed that the start depot and the end depot are located at the same location. To

test differences in output between the two models (CVRP with sequence-based

pallet loading with and without axle weight restrictions), four different problem

classes are created by varying the values for the number of pallets of each customer

(Li) and the total mass of the pallets of each customer (Qi). The number of pallets

may have a low variation (between 4 and 7 pallets per customer) or a high variation

(between 1 and 15 pallets per customer). With regards to the weight of the pallets,

axle weight restrictions do not play a role when only light pallets (under 500 kg) are

considered. Therefore, a distinction is made between customer demands of only

heavy pallets (between 1,000 and 1,500 kg) and a fifty–fifty percent mix between

customer demands with light pallets (between 100 and 500 kg) and customer

demands with heavy pallets. In Table 4, four problem classes are presented. For

each number of customers in the network (10, 15, 20 and 25) 32 instances are

created (8 in each problem class). This means in total 128 instances are tested with

both models.

Instances are created in the following way. First, the x and y coordinates of the

customers are randomly generated between 0 and 10. The position of the depot is

fixed to ð5; 5Þ. Routing costs cij are computed by taking the Euclidean distance

between the coordinates of each ði; jÞ pair. Values for parameters Li and Qi are

generated randomly in the intervals specified in Table 4, depending on the problem

class. All the instances can be found on the following website http://alpha.uhasselt.

be/kris.braekers/. Vehicle characteristics are defined in Sect. 2.

5.2 Results

Results of the two models (with and without axle weight restrictions) for each

problem class on networks of 10, 15 and 20 customers are presented in Tables 5, 6

and 7. Total cost and computation time are given for both models. For the networks

of ten customers, the computation times of the model with axle weight restrictions

are presented for the regular model and for the model in which constraints (25)–(29)

are defined as lazy constraints. The cost increase from the model with axle weight

restrictions compared to the model without axle weight restrictions is presented in

the last column. With regards to the model without axle weight restrictions, the

number of axle weight violations (# V) and maximum violation (Max V) (in

percentage) are also provided. All violations that are reported are violations of the

weight limit on the coupling (and thus on the axles of the tractor). There are no

violations of the weight limit on the axles of the trailer. This may be explained by

Table 4 Problem classes based on parameters Qi and Li

Heavy pallets

(1;000� Qi

Li
� 1;500)

Mix between light (100� Qi

Li
� 500)

and heavy (1;000� Qi

Li
� 1;500) pallets

Low variation Li ð4�Li � 7) Problem class 1 Problem class 3

High variation Li ð1� Li � 15) Problem class 2 Problem class 4
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the higher weight capacity of the axles of the trailer (21 t) in comparison to the

weight capacity of the coupling (11.6 t). The number of violations represents the

number of arcs traveled by a vehicle in which the coupling is overloaded. The total

number of arcs traveled in which the vehicle is loaded equals the number of

customers in the network.

Table 5 shows that for the instances with 10 customers, the computation time is

higher in the model with axle weight restrictions, but still acceptable with a

maximum computation time of 250 s in the regular model and 142 s in the model

with lazy constraints. On average, the computation time reduces with 45 % when

axle weight restrictions are defined as lazy constraints. The instances with 15, 20

and 25 customers are, therefore, all solved with lazy constraints. Tables 6 and 7

show that the computation times increase considerably when the number of

customers increases. The models with axle weight restrictions (with lazy pool

constraints) find a solution within 2 h for 29 out of 32 instances with 15 customers,

and for 22 out of 32 instances with 20 customers. The average computation time for

the instances in which a solution is found within 2 h is 502 s in the instances with 15

customers and 1,940 s for the instances with 20 customers. Besides the increase in

computation time, there is also a decrease of average cost increment when the

number of customers increases. In Table 8 the average cost increase and maximum

cost increase for the networks of 10, 15 and 20 customers are presented. While the

average cost increase in the instances with 10 and 15 customers is, respectively,

2.98 and 2.77 %; it decreases with more than 60 to 1.10 % in the instances with 20

customers. Also the maximum cost increase is considerably higher in the instances

with 10 and 15 customers (17.77 and 21.63 % respectively) than in the instances

with 20 customers (6.41 %). This may indicate that with a larger number of

customers in the network, the effect of incorporating axle weight restrictions on the

routing costs is less prominent since there are generally more alternatives for

feasible routes and packing schemes.

A comparison of the cost increase per problem class and number of customers in

the network is graphically presented in Fig. 7. It is clear that the cost increase is the

highest in problem class 2 where only heavy pallets are considered and the number

of pallets per customer lies between 1 and 15. The cost increase is the lowest (nearly

zero for the networks with 20 customers) in problem class 3 where a mix between

heavy and light pallets is considered and the number of pallets per customer lies

between 4 and 7. The positive effect of mixing light pallets with heavy pallets on the

costs can be explained by the fact that this allows for more flexibility in the packing

process. If lighter pallets are packed first in the truck, the weight of the heavy pallets

will mostly be carried by the axles of the trailer, which have a higher weight

capacity. Heavy pallets are, therefore, better transported together with light pallets

even though the total weight capacity of the vehicle is sufficient to transport solely

heavy pallets. A possible explanation for the negative effect on the cost of a higher

variation in number of pallets per customer may be that a variation between 1 and

15 pallets per order leads to on average half of the orders which have more than 8

pallets which is much less flexible than orders between 4 and 7 pallets per customer.

An order of 15 pallets with a pallet weight of 1.4 t, leads to a total weight of the

order of 21 t, which is less flexible to position on a truck than several smaller orders
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Table 5 Results of the CVRP with sequence-based pallet loading with and without axle weight con-

straints on network of ten customers

Instance Model without axle weight Model with axle weight Cost

increase (%)
Cost Time (s) # V Max V (%) Cost Time (s) Time (s) lazy

Problem class 1

1 38.4 1 5 13.39 45.2 250 142 17.71

2 38.5 1 2 6.47 38.5 3 2 0.00

3 39.3 6 4 5.80 39.5 8 12 0.51

4 41.9 2 5 15.34 45.7 97 71 9.07

5 51.7 4 2 14.73 51.7 6 2 0.00

6 43.4 4 1 1.41 44.2 36 9 1.84

7 45.2 3 1 3.41 45.2 8 5 0.00

8 44 1 1 10.50 44.3 9 3 0.68

Problem class 2

1 41.2 7 4 15.81 44.3 77 31 7.52

2 44.7 1 5 13.34 51.3 30 12 14.77

3 56.3 5 1 4.28 56.8 18 11 0.89

4 50.3 2 2 7.86 50.7 6 5 0.80

5 49.9 43 4 16.04 53.8 38 23 7.82

6 49.5 1 1 9.09 53.3 11 6 7.68

7 64.6 1 1 6.93 68.2 26 2 5.57

8 40.5 0.5 2 4.47 40.5 3 2 0.00

Problem class 3

1 37.4 1 0 37.4 0.5 0.5 0.00

2 37.4 5 3 11.43 38.3 15 10 2.41

3 41.0 4 0 41.0 5 2 0.00

4 43.4 3 0 43.4 13 5 0.00

5 38.8 0.5 1 10.09 40.8 5 3 5.15

6 41.3 2 0 41.3 5 3 0.00

7 44.4 2 1 4.25 44.4 6 3 0.00

8 46.5 2 0 46.5 7 2 0.00

Problem class 4

1 57.3 2 2 18.17 57.3 2.0 1 0.00

2 47.3 3 3 21.32 49.3 29 8 4.23

3 46.9 0.5 0 46.9 1 0.5 0.00

4 53.3 0.5 0 53.3 1 1 0.00

5 44.7 7 0 44.7 9 7 0.00

6 50.2 3 2 9.72 52.2 30 23 3.98

7 57.2 0.5 1 9.93 59.9 3 1 4.72

8 50.1 1 0 50.1 2 1 0.00

Average 46.14 3.77 1.61 7.31 47.50 24 13 2.98

#V number of violations, Max V maximum violation, Time lazy computation time when axle weight

limits are defined as lazy constraints
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Table 6 Results of the CVRP with sequence-based pallet loading with and without axle weight con-

straints on instances with 15 customers

Instance Model without axle weight Model with axle weight Cost

increase (%)
Cost Time (s) # V Max V (%) Cost Time (s)

Problem class 1

1 59.3 30 3 9.79 No solution after 2 h

2 54.6 5 8 10.31 No solution after 2 h

3 62.1 125 1 1.22 62.1 481 0.00

4 54.1 97 3 4.37 55.1 1252 1.85

5 56.6 19 2 5.03 58.4 96 3.18

6 64.1 56 5 8.78 68.5 4,735 6.86

7 62.5 144 2 9.50 63.6 1,723 1.76

8 56.2 12 6 10.35 58.6 800 4.27

Problem class 2

1 56.6 10 3 16.63 59.7 230 5.48

2 57.5 34 3 12.97 57.5 38 0.00

3 60.3 97 5 10.18 64 664 6.14

4 58.7 16 2 4.16 58.7 28 0.00

5 62 15 5 22.06 75.4 56 21.61

6 59.5 94 4 19.58 No solution after 2 h

7 68.8 1,930 3 3.72 68.8 1,632 0.00

8 65.8 79 5 16.24 68.2 193 3.65

Problem class 3

1 56.2 280 2 5.33 56.2 726 0.00

2 51.5 83 0 51.5 316 0.00

3 53.3 29 3 14.20 54.7 265 2.63

4 57.8 15 0 57.8 23 0.00

5 55.6 20 1 1.39 56.7 52 1.98

6 58 89 0 58 213 0.00

7 59 58 0 59 70 0.00

8 46.4 40 3 12.49 47.1 380 1.51

Problem class 4

1 81.7 6 2 5.75 93.2 62 14.08

2 79.7 66 5 19.16 83.4 125 4.64

3 77.9 56 5 7.93 78.4 84 0.64

4 88 54 0 88 23 0.00

5 65.4 46 0 65.4 55 0.00

6 74.7 32 1 0.50 74.7 23 0.00

7 63.9 206 1 2.19 64 132 0.16

8 63.3 38 1 0.44 63.3 80 0.00

Average 62 121 2.63 7.32 502 2.77

# V number of violations, Max V maximum violation
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Table 7 Results of the CVRP with sequence-based pallet loading with and without axle weight con-

straints on instances with 20 customers

Instance Model without axle weight Model with axle weight Cost

increase (%)
Cost Time (s) # V Max V (%) Cost Time (s)

Problem class 1

1 74 29 3 19.74 74.2 345 0.27

2 73.1 825 0 73.1 805 0.00

3 72.6 731 6 13.14 No solution after 2 h

4 72 311 0 72 1,647 0.00

5 70.8 5,917 6 14.03 No solution after 2 h

6 61.7 21 1 0.94 No solution after 2 h

7 69.8 25 3 9.63 69.8 55 0.00

8 68.5 2,165 7 14.53 No solution after 2 h

Problem class 2

1 91.7 728 5 10.76 No solution after 2 h

2 87.8 749 3 13.34 87.8 1,613 0.00

3 113 92 7 19.84 No solution after 2 h

4 99.5 308 2 12.90 101.4 1,116 1.91

5 94.4 281 6 13.53 No solution after 2 h

6 104.6 1,420 4 14.75 111.3 4,421 6.41

7 90.8 64 4 15.01 93.5 1,305 2.97

8 91.4 624 0 91.4 4,073 0.00

Problem class 3

1 67.3 213 0 0 67.3 898 0.00

2 68.5 668 2 11.70 68.5 1,553 0.00

3 78.7 1,139 1 3.79 78.8 4,353 0.13

4 63.1 5,458 1 1.12 63.1 2,360 0.00

5 68.3 1,000 0 0.00 68.3 6,936 0.00

6 78.4 1,035 0 78.4 1,450 0.00

7 63.6 204 3 17.23 63.6 4,071 0.00

8 67 2,555 0 No solution after 2 h

Problem class 4

1 80.9 3,065 2 5.93 No solution after 2 h

2 59.5 348 3 1.72 No solution after 2 h

3 88.9 987 0 0.00 88.9 1,416 0.00

4 86.6 90 3 16.60 89.3 365 3.12

5 100.3 216 1 0.02 100.3 1,322 0.00

6 122.7 129 2 15.09 127.6 660 3.99

7 92.6 149 1 0.74 97.5 1,838 5.29

8 89.8 37 1 17.41 89.9 83 0.11

Average 81.62 986.97 2.41 8.31 1,940 1.10

# V number of violations, Max V maximum violation
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with a high pallet weight. In Figs. 8 and 9, the cost increase in relation to the

average weight of the demand and to the mass of the largest demand in terms of

weight for the instances with 20 customers is graphically presented. A relationship

between the cost increase and the largest demand can be clearly distinguished in

Fig. 8: the cost increments that are higher than 1 % are all from instances where the

largest demand is higher than 18 t. In Fig. 9, a relationship between cost increase

and average weight of the demand of the customers can not be observed.

In Figs. 10 and 11, the cost increase for the instances with 20 customers is related

to the maximum axle weight violation and the number of axle weight violations.

The graphs indicate that there is no direct relationship between the height of the

maximum violation or the number of violations and cost increase. Instances with a

solution that involves a high axle weight violation in the model without axle weight

restrictions may have a feasible solution in the model with axle weight restrictions

for a similar routing cost, while vice versa, a small maximum axle weight violation

may introduce a high increase in cost. Similarly, instances in which there are many

axle weight violations do not necessarily have a large cost increment when

integrating axle weight restrictions.

Both models (with and without axle weight restrictions) did not find a solution for

the instances with 25 customers within 2 h. The instances are nevertheless available

on website http://alpha.uhasselt.be/kris.braekers/ to be used by future researches.

The CVRP is known to be NP-hard, opening the way to heuristics.

6 Conclusions and future research

Axle weight limits have become an increasingly important issue for transportation

companies. Transporters are faced with high fines when violating these limits, while

commercial planning programs do not incorporate these constraints. Although

research has been done on VRP combined with loading constraints, the literature is

still silent about axle weight limits.

This paper proposes a problem formulation for the CVRP with sequence-based

pallet loading and axle weight constraints. The performance of the model is

illustrated with computational tests on networks of 10, 15, and 20 customers for

different problem instances. Not including axle weight restrictions may induce

major violations of axle weight limits which may lead to considerable fines.

Integrating axle weight restrictions does not necessarily lead to a cost increase.

Computational experiments show that the increase in routing costs decreases

considerably to 1.10 % when the number of customers in the network increases

Table 8 Comparison of cost increase between the networks with 10, 15 and 20 customers

Average cost increase (%) Maximum cost increase (%)

10 customers 2.98 17.77

15 customers 2.77 21.63

20 customers 1.10 6.41
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from 10 to 20 customers. In several instances axle weight violations can even be

avoided without a cost increment. The effect of including axle weight restrictions on

the cost depends on the number of pallets per customer and the weight of the pallets.

When only light pallets are packed, axle weight limits do not play a role in the

packing process. The effect of integrating axle weight limits is higher when only

heavy (1,000–1,500 kg) pallets are considered compared to a fifty–fifty percent mix

of heavy and light pallets. The computational experiments also show a relationship

between cost increment and the weight of the customer with the largest demand in

terms of weight. When the weight of the largest demand is high, chances increase

that the cost increment is higher than 1 %. Finding an exact solution within a

reasonable time limit, for instances with 25 customers has proven to be difficult.

Therefore, we aim to develop a heuristic method to solve larger instances.

Fig. 7 Average cost increase in each problem class in networks with 10, 15 and 20 customers

Fig. 8 Cost increase in networks of 20 customers for each problem class related to the mass of the largest
demand in terms of weight
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Since this is the first paper that incorporates axle weight restrictions in a VRP and

because of the relevance of the issue in practice, there are numerous opportunities

for future research on the topic. Future research could integrate other realistic

features in the current problem such as time windows, time-dependent routing and

legal driving hours. Additionally, other loading constraints may be added to the

current model. Another line of possible future research could be to integrate axle

weight restrictions in other types of VRPs such as three-dimensional loading VRP,

multi-compartment VRP and pickup and delivery problems. A promising research

direction is to develop a branch-and-cut method to improve the efficiency of the

formulation. In the literature concerning VRP with loading constraints, good results

Fig. 9 Cost increase in networks of 20 customers for each problem class related to the average weight of
the demands

Fig. 10 Cost increase in networks of 20 customers for each problem class related to the maximum axle
weight violation
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are attained with branch-and-cut algorithms [e.g., (Iori et al 2007; Tricoire et al

2011; Cordeau et al 2010; Alba et al 2013; Côté et al 2012b)]. Finally, since the

CVRP is NP-hard, heuristics may be developed to be able to solve large instances.
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