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Abstract In this tutorial, we give an overview of two fundamental problems

arising in the optimization of a railway system: the train timetabling problem (TTP),

in its non-periodic version, and the train platforming problem (TPP). We consider

for both problems the planning stage, i.e. we face them from a tactical point of view.

These problems correspond to two main phases that are usually optimized in close

sequence by the railway infrastructure manager. First, in the TTP phase, a schedule

of the trains in a railway network is determined. A schedule consists of the arrival

and departure times of each train at each (visited) station. Second, in the TPP phase,

one needs to determine a stopping platform and a routing for each train inside each

(visited) station, according to the schedule found in the TTP phase. Due to the

complexity of the two problems, an integrated approach is generally hopeless for

real-world instances. Hence, the two phases are considered separately and optimized

in sequence. Although there exist several versions for both problems, depending on

the infrastructure manager and train operators requirements, we do not aim at

presenting all of them, but rather at introducing the reader to the topic using small

examples. We present models and solution approaches for the two problems in a

didactic way and always refer the reader to the corresponding papers for technical

details.
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1 Introduction

Railway systems are full of challenging combinatorial optimization problems. Yet,

due to their complexity, the optimization process is usually carried out in sequence,

subdividing the full problem into several subproblems, which are solved one after

the other (i.e. the output of a problem becomes the input of the following one).

These subproblems are NP-hard and include (in order): line planning, train

timetabling, train platforming, rolling stock circulation, train unit shunting and crew

planning, see e.g. Caprara et al. (2007) for an overview on passenger railway

optimization problems. In Fig. 1, we show how the subproblems depend on one

another.

In this tutorial, we concentrate on two early phases, namely train timetabling

problem (TTP) and train platforming problem (TPP). We consider for both

problems the planning stage, i.e. we face them from a tactical point of view. In this

case, a solution is generally used for the following 6 months or 1 year. Both

problems are solved by the railway infrastructure manager, who is responsible for

train and infrastructure planning, and real time traffic control. In particular, we

consider the non-periodic version of TTP, because models and solution approaches

for the periodic version are rather different and deserve to be treated separately.

These two phases come right after the line planning problem; hence, they assume

that the routes for the trains as well as the types and frequencies of the trains on each

route have been defined. TTP and TPP are solved in sequence and are strictly

connected, i.e. the two phases are generally iterated until both solutions are accepted

by the infrastructure manager. The TTP is solved for a set of trains on a given

railway network to determine a feasible schedule. Then, the TPP is solved for each

station of the railway network in order to assign each train a stopping platform and

define the corresponding routing inside the station. Note that TTP is solved for the

whole network, while TPP is solved separately for each individual station in the

Fig. 1 Main problems solved in the planning of a passenger railway system
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network, since each station is independent of the others, from a platforming point of

view.

This tutorial is not meant to cover all versions nor all existing approaches of TTP

and TPP. In fact, our goal is to present the main concepts of the two problems and

some well-assessed models and algorithms. The tutorial aims at giving an overview

of the two problems in a didactic way, presenting a description of the problems

through examples, mixed integer programming (MIP) models and exact as well as

heuristic solution methods based on branch-and-price. Apart from the direct

application of such models and algorithms to the above mentioned problems, we

believe that they also represent ‘‘paradigms’’, in the sense that some concepts can be

adapted and applied to different contexts.

The tutorial is organized into two parts, the first one devoted to TTP and the

second one to TPP. Inside each part, we present a brief review of the literature

(Sects. 2.1, 3.1) and the problem description, specifying the input, the constraints

and the objective that are taken into account (Sects. 2.2, 3.2). Then, in Sect. 2.4, we

present two integer linear programming (ILP) models for the TTP (based on a graph

representation of the problem presented in Sect. 2.3). In Sect. 3.3, we present an

integer quadratic programming (IQP) model for TPP. All the presented models are

characterized by either an exponential or a very large number of variables. Finally,

we present solution methods to find optimal and heuristic solutions to the problems

(Sects. 2.5, 3.4). For each problem, a set of examples is presented. In Appendix 5,

we report the list of variables and parameters used in the described models for TTP

and TPP.

2 The train timetabling problem

2.1 Literature review

Train timetabling problem (TTP) has received considerable attention in the

literature. We refer the reader to Cacchiani (2009), Cacchiani and Toth (2012),

Caprara (2010), Caprara et al. (2007, 2011b), Harrod (2012), Huisman et al. (2005)

and Lusby et al. (2011) for recent surveys. Two are the main variants of train

timetabling: one is to consider a periodic (or cyclic) schedule of the trains that is

repeated every given time period (e.g. every hour), and the other one is to consider a

more congested network and/or a competitive market for which a non-periodic

schedule becomes more appropriate. Indeed, in the latter case, several train

operators run trains on the same infrastructure and it becomes harder to obtain

effective periodic schedules. The periodic timetabling was introduced by the

seminal paper (Serafini and Ukovich 1989), in which a mathematical model for the

periodic event scheduling problem is proposed. Many extensions of the model have

been considered in the literature, most of them based on cycle bases (see e.g. Kroon

and Peeters 2003; Liebchen and Möhring 2007; Liebchen et al. 2007; Lindner 2000;

Lindner and Zimmermann 2005; Nachtigall 1994; Odijk 1996; Peeters 2003;

Peeters and Kroon 2001; Schrijver and Steenbeek 1994). We refer the reader to

Liebchen (2006) for a survey and tutorial on periodic train timetabling. One of the
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first papers dealing with the non-periodic TTP is presented in Szpigel (1973), in

which a job-shop scheduling formulation for TTP on a single-track railroad is

proposed. Other works on non-periodic TTP propose exact methods (Cacchiani

et al. 2008; Jovanovic and Harker 1991) or heuristic methods (Brännlund et al.

1998; Burdett and Kozan 2010; Cai and Goh 1994; Caprara et al. 2006; Carey and

Lockwood 1995; Fischer et al. 2008; Higgings et al. 1997; Oliveira and Smith

2000). There are works dealing with a single one-way line (Cacchiani et al. 2008,

2010a, 2013; Cai and Goh 1994; Higgings et al. 1997; Szpigel 1973) or with a

general railway network (Borndörfer et al. 2006; Borndörfer and Schlechte 2008;

Cacchiani et al. 2010b; Fischer et al. 2008; Fischer and Helmberg 2013).

Another important classification of TTP consists in the distinction between

nominal problem and robust problem. In the nominal case, the goal is to determine

optimal timetables for a set of trains providing the maximum efficiency of the

railway system, e.g. scheduling as many trains as possible on the network or

obtaining the shortest travel time for the passengers between origin and destination.

In the robust case, the aim is to determine robust timetables for the trains, i.e. to find

a schedule that avoids, in case of disruptions in the railway network, delay

propagation as much as possible. Therefore, the objectives of the latter variants are

in contrast and usually a trade-off between them must be achieved. The robust

version of TTP has been studied by stochastic programming (Kroon et al. 2008),

light robustness (Fischetti and Monaci 2009; Fischetti et al. 2009), recoverable

robustness (Cicerone et al. 2009; Liebchen et al. 2009), delay management

(Liebchen et al. 2010) and bi-objective methods(Cacchiani et al. 2012; Schlechte

and Borndörfer 2010; Schöbel and Kratz 2009).

Recently, many works have been developed in the field of train timetable

rescheduling, concerning recovery models and algorithms for real time railway

delay and disruption management. This problem corresponds to the operational

stage of TTP (see e.g. Cacchiani et al. 2014). When delays or disruptions occur, the

timetables determined for the trains during the planning phase can become

infeasible because conflicts can arise. It is therefore necessary to compute a new

schedule for the trains, which is needed in a very short time, and which should be as

close as possible to the original plan. Much research is connected with the

Alternative Graph model introduced in Mascis and Pacciarelli (2002). Exact models

and branch-and-bound algorithms (see e.g. D’Ariano et al. 2007; Mannino and

Mascis 2009; Schöbel 2009), as well as heuristic algorithms (see e.g. D’Ariano et al.

2008; Dollevoet et al. 2012; Lusby et al. 2013) have been developed.

Another important distinction in TTP is between passenger trains and freight

trains. Often the schedule for the passenger trains is computed first, while the freight

train timetables are determined afterwards. When computing the schedule for the

passenger trains, usually empty capacity slots are left for the freight trains, in order

to ensure that they can be scheduled, based on freight demand and statistical data.

Different objectives and constraints can arise. For example, in the case of freight

trains, it is not important to build a periodic timetable, while having a periodic

schedule for passenger trains is very convenient for passengers. One goal for

passengers is to minimize their travel times from origin to destination, while this is

less important for freight trains and detours from the high-speed lines can be used.
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The peak hours are usually used to serve passenger traffic, and stops in minor

stations are also desired, as opposed to the case of freight trains. We refer the reader

to Caprara et al. (2007) for passenger railway optimization and to Cordeau et al.

(1998) for further details on freight train scheduling.

In the recent years, research has been devoted to studying the integration of two

or more subproblems of the optimization of a railway system. In particular, TTP has

been integrated with other phases both during the planning phase and in real time

rescheduling. We refer the reader to Barber et al. (2008) and to Lindner (2000) for

the integration with line planning, to Cadarso and Marı́n (2012) for the integration

with rolling stock assignment in the planning phase and to Adenso-Dı́az et al.

(1999) in the rescheduling phase, to Veelenturf et al. (2012) and Walker et al.

(2005) for the integration with crew rescheduling in real time.

2.2 Problem description

In this tutorial, we focus on non-periodic nominal train timetabling both for

passenger and freight trains (from now on shortly TTP) and take the point of view of

the infrastructure manager. TTP calls for providing a timetable for a set of trains on

a railway network, which satisfy the so-called track capacity constraints. An

infrastructure manager is in charge of handling the railway network and receives

requests from several train operators for scheduling trains to be operated for a given

time horizon. Each of these requests specifies a path for a train along with the arrival

and departure times for all stations along the path. Generally, these requests are

mutually incompatible. Therefore, the infrastructure manager has to modify the

arrival and/or departure times of some trains (and possibly to cancel some other

trains), in order to come up with a proposed feasible solution for the train operators.

The latter may either accept it or come up with new proposals. The process is

iterated until the solution proposed by the infrastructure manager is accepted by all

train operators.

For the sake of clarity, we present the case study of TTP on a single one-way line,

called main corridor. In fact, in many cases, once the timetable for the trains on the

main corridor has been determined, it is relatively easy to find a convenient

timetable for the trains on the other lines of the network. The extension to a general

railway network can easily be done (see e.g. Cacchiani et al. 2010b).

In the following, we give a formal definition of TTP, by specifying its input,

constraints and objective.

2.2.1 Problem input: railway topology and trains timetables

In TTP, one needs to specify the railway topology (in our case a single, one-way

track corridor linking two major stations, with a number of intermediate stations in

between) together with a set of trains that are candidate to be run everyday of a

given time horizon along the corridor. Let S ¼ f1; . . .; sg represent the set of

stations, numbered according to the order in which they appear along the corridor

for the running direction considered, and T ¼ f1; . . .; tg denote the set of candidate

trains. For each train j 2 T , a first (departure) station fj and a last (destination)
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station lj (lj [ fj) are given. Let Sj :¼ ffj; . . .; ljg � S be the ordered set of stations

visited by train j (j 2 T). A timetable defines, for each train j 2 T , the departure time

from fj, the arrival time at lj, and the arrival and departure times for the intermediate

stations fj þ 1; . . .; lj � 1. Each train is assigned by the train operator an ideal

timetable, representing the most desirable timetable for the train. The ideal

timetable defines a path for a train along with the arrival and departure times for all

stations along the path. It represents the preferred schedule for the train, according

to the train operator who associates an ideal timetable and an ideal profit to each

train, based on the passenger and freight demands, on the lines of the railway

network and on the available budget.

We present an example of a TTP instance that will be used through the TTP

sections. The railway topology that we consider is shown in Fig. 2 and consists of a

corridor with five stations S ¼ f1; 2; 3; 4; 5gð Þ:
Let T ¼ fA;B;Cg be the set of trains. For each train, we have the following

stations: SA ¼ f1; 2; 3g; SB ¼ f1; 2; 3; 4; 5g and SC ¼ f3; 4; 5g. Consequently, we

have: fA ¼ 1; lA ¼ 3; fB ¼ 1, lB ¼ 5; fC ¼ 3; lC ¼ 5. The ideal timetables provided

on input are presented in Table 1. For example, train A departs from station 1 at

9:00, arrives at station 2 at 9:05 where it stops until 9:07 and arrives at station 3 at

9:18. As you can see, trains can visit a subset of stations or all of them.

2.2.2 Problem constraints

The track capacity constraints impose that:

– overtaking between trains occurs only within a station (as we are dealing with a

corridor),

– for each station i 2 S, a minimum time interval ai between two consecutive

arrivals of trains must be respected,

– for each station i 2 S, a minimum time interval di between two consecutive

departures of trains must be respected.

1 2 3 4 5

Fig. 2 Considered corridor with five stations

Table 1 Example of three ideal timetables

Ideal timetable A Ideal timetable B Ideal timetable C

Stations Arr. time Dep. time Arr. time Dep. time Arr. time Dep. time

1 9:00 9:00

2 9:05 9:07 9:10 9:12

3 9:18 9:30 9:35 9:33

4 10:00 10:03 10:02 10:07

5 10:20 10:24
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The minimum time interval between arrivals or departures is called headway time.

Note that the headway times are checked at stations, i.e. two trains must respect a

minimum time distance when arriving at (departing from resp.) a station, but they

are related to the capacity of the corridor. In particular, constraints on the headway

times implicitly impose a minimum time interval between two consecutive trains in

the track connecting two consecutive stations. Let us consider ai ¼ 4 min for all

stations i 2 S n f1g and di ¼ 2 min for all stations i 2 S n fsg in our instance. An

example of violated overtaking, arrival and departure constraints is shown in Fig. 3.

The two parallel lines correspond to two consecutive stations s1 and s2 of the

corridor. The nodes on the upper line (lower line resp.) correspond to time instants

in which a train departs from (arrives at resp.) station s1 (s2 resp.). The

corresponding time instants are shown in the figure (time increases from left to

right). The arrows between nodes indicate the travel of trains from station s1 to

station s2. On the left picture of Fig. 3, we can see that the two trains are overtaking

each other since the train that leaves at 9:00 arrives later (at 9:09) than the train that

leaves at 9:02 (which arrives at 9:05). Note that arrival and departure constraints are

satisfied for the left picture. In the middle part of Fig. 3, the two trains are arriving at

station s2 too close in time to each other (only 3 min instead of 4 are in between the

two arrivals). On the right picture, we can see that the two trains are departing from

station s1 too close in time: only 1 min is in between the two departures (instead of

2 min).

Besides the track capacity constraints, additional constraints can arise, such as

manual block signaling (for managing a train on a track segment between two

consecutive stations), station capacities (i.e. maximum number of trains that can be

present in a station at the same time), prescribed timetable for a subset of the trains

(which is imposed when some of the trains are already scheduled on the railway line

and additional trains are to be inserted), or maintenance operations (that keep a track

segment occupied for a given period). We refer the reader to Caprara et al. (2006)

for a detailed description on how to deal with these constraints.

The ideal timetables given on input may be modified in order to satisfy the track

capacity (and eventually additional) constraints. In particular, one is allowed to

modify (anticipate or delay) the departure time of each train from its first station,

and to increase (but not decrease) the stopping time interval at the (intermediate)

stations. The first change is called shift and the latter change is called stretch.

Moreover, one can cancel the train if it is not profitable (see Sect. 2.2.3). We

consider the version of the problem in which the travel time of a given train between

Fig. 3 Examples of violated overtaking, arrival and departure constraints
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consecutive stations cannot be modified. In particular, the travel time is fixed to the

minimum one. In this case, it is possible to write the overtaking constraints in the

ILP in a form that is much stronger for the linear programming (LP) relaxation than

in the version with variable travel times. Moreover, consider any two consecutive

stations s1 and s2 and the track connecting them: increasing the stopping time of a

train at station s1 can be used to approximate the increase in speed along the track

that connects the two stations. We refer to Caprara et al. (2002) and Caprara et al.

(2006) for a comparison with the version in which this time can be increased as

well. The timetable obtained in the solution will be referred to as the actual

timetable.

2.2.3 Problem objective

The objective is to change as little as possible the ideal timetables given on input.

This is obtained by defining a profit for each train and maximizing the sum of the

profits of the scheduled trains, defined as follows. The profit achieved for each train

j 2 T is given by pj � ajmj � cjlj, i.e. the ideal profit is decreased by considering the

penalties due to shift or stretch changes, where:

– pj represents the ideal profit that is the profit achieved if the train travels

according to its ideal timetable: it can be thought as the amount of money that

the train operator is willing to pay if the train is scheduled according to his

request, and therefore, it is proportional to the importance given to the train;

– mj represents the shift that is the absolute difference between the departure times

from station fj in the ideal and actual timetables;

– lj represents the stretch that is the (non-negative) difference between the travel

time from fj to lj in the actual and ideal timetables (equal to the sum of the

stopping time increases over all intermediate stations);

– aj; cj are given non-negative parameters, which are expressed as profit loss per

time unit.

If the profit achieved by a train becomes null or negative due to the shift and/or

stretch changes, the train is cancelled.

In Table 2, we show an example of ideal profits, and shift and stretch penalties

for the three trains of our instance. These values are assigned to the trains by the

train operators. If a train operator assigns a high profit and small shift and stretch

penalties to a train, it means that he wants the train to be scheduled, even if with a

timetable substantially different from the ideal one. On the contrary, if a train

operator assigns a high profit and high shift and stretch penalties, it means that he

wants the train to be scheduled according to its ideal timetable. Therefore, these

values reflect the importance that the train operator gives to each train and to its

ideal schedule. In Table 3, we show three examples of actual timetables for train A,

derived by shifting and/or stretching its ideal timetable. The profits of the actual

timetables are shown in the last row of the table. Actual timetable1 is subject to shift

of 2 min, and therefore, its profit corresponds to the ideal profit of 200, decreased by

6 � 2. Actual timetable2 receives a stretch of 1 min at station 2 and its profit
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corresponds to 200 � 10. Finally, Actual timetable3 is shifted of 2 min and stretched

of 2 min at station 2, getting an overall profit of 200 � 6 � 2 � 10 � 2.

2.3 Graph representation

In this section, we outline the representation of the problem on a graph. This is a

very common way of representing the problem, which is also very convenient for

deriving an ILP model for it. Times are here discretized in minutes and expressed as

integers from 1 to q :¼ 1;440 (the number of minutes in a day), although a finer

discretization would also be possible without changing the model, the computing

times and the core memory requirements of the associated algorithms could increase

considerably.

Let G ¼ ðV ;AÞ be the (directed, acyclic) space-time multigraph in which nodes

represent arrivals/departures at/from a station in given time instants, and, for each

train j 2 T , a path from a node associated with station fj to a node associated with

station lj represents a timetable for train j. The node set V has the form

fr; sg [ ðU2 [ . . . [ UsÞ [ ðW1 [ . . . [Ws�1Þ, where

– r and s are an artificial source node and an artificial sink node, respectively;

– set Ui, i 2 S n f1g represents the set of time instants in which some train can

arrive at station i; the nodes in U2 [ . . . [ Us are called arrival nodes;

– set Wi, i 2 S n fsg, represents the set of time instants in which some train can

depart from station i; the nodes in W1 [ . . . [Ws�1 are called departure nodes.

Let hðvÞ be the time instant associated with a given node v 2 V . Moreover, let

Dðu; vÞ :¼ hðvÞ � hðuÞ if hðvÞ� hðuÞ, and Dðu; vÞ :¼ hðvÞ � hðuÞ þ q otherwise.

That is, the time distance Dðu; vÞ between two nodes u and v is expressed as the

Table 2 Example of ideal profits and shift/stretch penalties

Train A Train B Train C

Ideal profit p 200 100 200

Shift penalty a 6 2 10

Stretch penalty c 10 4 20

Table 3 Example of actual profits corresponding to different actual timetables for train A

Stations Actual timetable1 A Actual timetable2 A Actual timetable3 A

Arr. time Dep. time Arr. time Dep. time Arr. time Dep. time

1 9:02 9:00 9:02

2 9:07 9:09 9:05 9:08 9:07 9:11

3 9:20 9:19 9:22

Actual profits 200 - 6*2 200 - 10*1 200 - 6*2 - 10 *2
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difference between their corresponding time instants, taking into account the

periodicity of the time horizon. It is useful to define a precedence relation between

nodes for expressing the track capacity constraints in a mathematical way. We say

that node u precedes node v [i.e. u � v) if Dðv; uÞ�Dðu; vÞ (i.e. if the cyclic time

interval between hðvÞ and hðuÞ is not smaller than the cyclic time interval between

hðuÞ and hðvÞ].
Note that not all time instants correspond to possible arrivals/departures of a

given train j at a station i 2 Sj. Accordingly, let Vj � fr; sg [ ðUfjþ1 [ . . . [ UljÞ [
ðWfj [ . . . [Wlj�1Þ denote the set of nodes associated with time instants

corresponding to possible arrivals/departures of train j in a positive-profit timetable.

The arc set A is partitioned into sets A1; . . .;At, one for each train j 2 T . In

particular, for every train j 2 T , Aj contains

– a set of starting arcs ðr; vÞ, for each v 2 Wfj \ Vj, whose profit is

pðr;vÞ :¼ pj � ajmðvÞ, with mðvÞ :¼ minfDðv�; vÞ;Dðv; v�Þg, where v� is the node

associated with the departure of train j from station i in the ideal timetable. I.e.

we associate the ideal profit minus the possible shift penalty to the starting arcs;

– a set of segment arcs ðv; uÞ, for each i 2 Sj n fljg, v 2 Wi \ Vj and u 2
Uiþ1 \ Vj such that Dðv; uÞ is equal to the travel time of train j from station i to

station iþ 1, whose profit is pðv;uÞ :¼ 0;

– a set of station arcs ðu; vÞ, for each i 2 Sj n ffj; ljg, u 2 Ui \ Vj and v 2 Wi \ Vj

such that Dðu; vÞ is at least equal to the minimum stop time of train j in station i,

whose profit is pðu;vÞ :¼ �cjlðu; vÞ, with lðu; vÞ :¼ Dðu; vÞ � Dðu�; v�Þ, where

u� and v� are the nodes associated, respectively, with the arrival and departure of

train j at station i in the ideal timetable. I.e. we associate the stretch penalty to

the station arcs;

– a set of ending arcs ðu; sÞ, for each u 2 Ulj \ Vj, whose profit is pðu;sÞ :¼ 0.

To satisfy the track capacity constraints, one should impose that certain pairs of

arcs, associated with different trains, cannot be selected in the overall solution.

In Fig. 4, we show an example of the described multigraph for a corridor of 3

stations. For station 1, the set of departure nodes W1 is shown. For station 2, the sets

of arrival nodes U2 and departure nodes W2 are shown. For station 3, the set of

arrival nodes U3 is shown. The figure also shows the artificial source node r and the

artificial sink node s, the starting, segment, station and ending arcs corresponding to

two alternative paths (timetables) for a single train.

In Fig. 5, we show a graph representation of our instance presenting the ideal

timetables for trains A, B and C. We highlight in bold the conflicts arising between

the ideal timetables. In particular, train A and B depart at the same time (9:00),

therefore violating the minimum headway of 2 min between two departures. Trains

C and B overtake each other between stations 3 and 4. Finally, the arrivals of trains

B and C at station 4 are too close in time (only 2 min apart from each other instead

of at least 4 min).

As previously mentioned, in order to obtain a feasible solution, we can modify

the ideal timetables of the trains by shifting and/or stretching them. In Table 4, we
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show a feasible solution for the described instance. Train A has been shifted earlier

by 2 min. Train C receives a stretch of 6 min in station 3 and a stretch of 2 min in

station 4. Train B runs according to its ideal timetable.

In Fig 6, we show the paths corresponding to the actual timetables of Table 4.

Fig. 4 Multigraph representation

Fig. 5 Ideal paths of the presented example
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2.4 Integer linear programming models

In this section, we present two ILP models for TTP, both based on the graph

representation of the problem presented in Sect. 2.3. The first one uses binary

variables for each path of the graph, while the second one uses binary variables for

each arc of the graph.

2.4.1 Path model

We next present an ILP formulation for TTP using path variables. It is a simplified

version of the one proposed in Cacchiani et al. (2008) and is a set packing model.

For each j 2 T , let Pj be the collection of possible paths for train j, each associated

with a path from r to s in G containing only arcs in Aj (paths are seen as arc subsets)

and having positive profit. Furthermore, let P :¼ P1 [ . . . [ Pt be the overall

(multi-)collection of paths, and pP :¼
P

a2P pa the actual profit for path P 2 P. Let

Table 4 Example of actual feasible timetables

Stations Actual timetable A Actual timetable B Actual timetable C

Arr. time Dep. time Arr. time Dep. time Arr. time Dep. time

1 8:58 9:00

2 9:03 9:05 9:10 9:12

3 9:16 9:30 9:41 9:33

4 10:06 10:11 10:02 10:07

5 10:28 10:24

Fig. 6 Actual paths of the presented example
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us define a graph with one node for each feasible path P 2 P in the graph G from r
to s, with associated profit pP, and one edge joining each pair of nodes

corresponding to paths that can be both selected in the solution. Then, the ILP

model calls for determining a maximum-weight clique on this graph (see Cacchiani

et al. (2010a)).

We introduce a binary variable xP, P 2 P, for each possible path for a train, equal

to 1 if, and only if, the path is chosen in the solution. Considering that for each train

j 2 T the corresponding path can be shifted and/or stretched with respect to the ideal

path, there is an exponentially large number of possible paths for a train. Let

Pj
w � Pj be the (possibly empty) subcollection of paths for train j that visit node

w 2 Vj, and Pw :¼ P1
w [ . . . [ Pt

w be the subcollection of paths that visit node

w 2 V . Let rij and rik be the travel times of trains j and k (j 2 T , k 2 T , j 6¼ k) from

station i to station iþ 1 (i; iþ 1 2 Sj \ Sk), respectively. The ILP model is the

following

max
X

P2P
pPxP ð1Þ

subject to
X

P2Pj

xP � 1; 8j 2 T; ð2Þ
X

w2Ui:w	u;Dðu;wÞ\ai

X

P2Pw

xP � 1; 8i 2 S n f1g; 8u 2 Ui; ð3Þ
X

w2Wi:w	v;Dðv;wÞ\di

X

P2Pw

xP � 1; 8i 2 S n fsg; 8v 2 Wi; ð4Þ
X

P2Pj
v1

xP þ
X

P2Pk
v2

xP � 1;

8i 2 S n fsg; 8j; k 2 T ðwith j 6¼ k; i; iþ 1 2 Sj \ SkÞ; rij � rik;

8v1; v2 2 Wi v1 � v2; hðv2Þ� hðv1Þ þ rij � rik
ð5Þ

xP � 0; binary; 8P 2 P: ð6Þ

The objective function (1) asks for the maximization of the profits of the paths

selected in the solution. According to the definition of the profits, the goal is to

change as little as possible the ideal timetables. Constraints (2) require to select at

most one path for each train. Note that we do not need equality constraints in (2)

since we allow train cancellation. The arrival time constraints (3) and the departure

time constraints (4) prevent two consecutive arrivals and departures at the same

station i to be too close in time. In particular, constraints (3) are defined for each

arrival node u 2 Ui at station i 2 S n f1g (station 1 is not considered as it is the first

station of the corridor and no arrival is considered at this station). Given an arrival

node u, consider a time window starting at u and of length \ai: only one train can

arrive at station i within this time window. In Fig. 7, we show station i and a set of
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arrival nodes, together with a set of paths (of any train) arriving at station i at some

of these nodes. In Fig. 7, the dotted arcs correspond to arcs belonging to a set of

paths (of any train) arriving at station i at some of these nodes. In order to satisfy the

arrival constraints, one needs to consider a node u 2 Ui, a time window shorter than

ai (e.g. 4) and the nodes belonging to it (bold nodes from u to w in the figure). Then,

the constraints impose to select at most one path among all the ones visiting the

nodes in the time window. There must be a constraint for each node u 2 Ui (and

each station i 2 S n f1g). In the figure, the next window will be starting in node u0

and ending in node w0.
The same holds for constraints (4): they are defined for each departure node

v 2 Wi from station i 2 S n fsg (station s is not considered as it is the last station of

the corridor and no departure is considered from this station). Similarly to the arrival

time constraints, the departure time constraints consider a time window starting in u

and of length \di: only one train can depart from station i within this time window.

Constraints (5) are the overtaking constraints and impose to have no overtaking

between pairs of trains along the corridor. These constraints are expressed in a

clique form and require to select at most one path among conflicting ones, i.e. paths

that correspond to two trains overtaking each other along a track between two

consecutive stations. One needs to consider two trains, j and k, such that rij � rik, i.e. j

is the ‘‘slow’’ train and k is the ‘‘fast’’ train, and that both visit stations i and iþ 1

(see Fig. 8). Then, one needs to consider a departure node v1 of the slow train and a

departure node v2 of the fast train, and all the corresponding paths that visit these

nodes. The two trains are overtaking each other if v2 is after v1 and is before the first

departure (v1 þ rij � rik) of the fast train whose corresponding arrival coincides with

the arrival of the slow train (dotted node in Fig. 8). Indeed, recall that the travel

times cannot be modified. The overtaking constraints (5) impose to choose at most

one path among all the ones of the slow train visiting node v1 and all the ones of the

fast train visiting node v2.

Constraints (5) can be strengthened by including clique constraints that take into

account additional paths of trains j and k which are incompatible, in terms of

headway times violation, with those that correspond to an overtaking of the two

trains. We refer the reader to Cacchiani et al. (2008) for further details. Constraints

(6) impose the variables to assume positive integer values. Other ILP models for

TTP, calling for a maximum-profit collection of compatible paths in a suitable

graph, are presented in Cacchiani et al. (2010a). These models look for a maximum-

i

u wu’ w’

Fig. 7 Departure/arrival constraint
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weight clique in an exponentially large compatibility graph. We refer the reader to

Cacchiani et al. (2010a) for an analysis of these models.

2.4.2 Arc model

We present an ILP formulation for TTP using arc variables. The model was

presented in Caprara et al. (2002) and was extended to deal with a general railway

network in Cacchiani et al. (2010b). Let us introduce for each train j 2 T and each

arc a 2 Aj a binary variable xa equal to 1 if, and only if, arc a is selected in an

optimal solution. Let pa be the profit associated with each arc a 2 A, as defined in

Sect. 2.3. The arc variables are related with the path variables of model (1)–(6) as

follows: xa ¼
P

P2P:a2P xP. For convenience, we introduce binary variables yv equal

to 1 if, and only if, node v 2 V is visited by any train, and binary variables zjv equal

to 1 if, and only if, train j 2 T visits node v 2 V . Let dþj ðvÞ be the set of arcs of train

j leaving node v and d�j ðvÞ be the set of arcs of train j entering node v. Let rij and rik
be the travel times of trains j and k (j 2 T , k 2 T , j 6¼ k) from station i to station

iþ 1 (i; iþ 1 2 Sj \ Sk), respectively. The ILP model reads as follows:

max
X

a2A
paxa ð7Þ

subject to
X

a2dþj ðrÞ
xa � 1; 8j 2 T; ð8Þ

X

a2d�j ðvÞ
xa ¼

X

a2dþj ðvÞ
xa; 8j 2 T; 8v 2 Vj n fr; sg ð9Þ

zjv ¼
X

a2d�j ðvÞ
xa; 8j 2 T ; 8v 2 Vj n fr; sg ð10Þ

yv ¼
X

j2T :v2Vj

zjv; 8v 2 V n fr; sg ð11Þ
X

w2Ui:w	u;Dðu;wÞ\ai

yw � 1; 8i 2 S n f1g; 8u 2 Ui; ð12Þ

Fig. 8 Overtaking constraint
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X

w2Wi:w	v;Dðv;wÞ\di

yw � 1; 8i 2 S n fsg; 8v 2 Wi; ð13Þ

zjv1
þ zkv2

� 1;

8i 2 S n fsg; 8j; k 2 T ðwithj 6¼ k; 8i; iþ 1 2 Sj \ SkÞ; rij � rik;

8v1; v2 2 Wi v1 � v2; hðv2Þ� hðv1Þ þ rij � rik ð14Þ

xa � 0; binary; 8a 2 A; ð15Þ

yv � 0; binary; 8v 2 V; ð16Þ

zjv � 0; binary; 8j 2 T; 8v 2 V: ð17Þ

The meaning of objective function and constraints is analogous to the one pre-

sented for the path model. The objective function (7) asks for the maximization of

the profits of the arcs selected in the solution. Constraints (8) require to select at

most one timetable for each train, i.e. at most one arc among the starting arcs

from the source r for train j 2 T . Constraints (9) impose equality on the number

of selected arcs, associated with a given train, entering and leaving each arrival or

departure node. As a consequence, the set of selected arcs associated with a train

can either be empty, or define a path from the source r to the sink s. Constraints

(10) and (11) are the linking constraints between different types of variables. In

particular, zjv assumes value 1 if there is an arc of train j entering node v.

Similarly, yv assumes value 1 if there is any train j visiting node v. The arrival

time constraints (12) and the departure time constraints (13) prevent two con-

secutive arrivals and departures, respectively, at the same station i to be too close

in time (i.e. at least the minimum headway time must be respected). The y

variables are used to express easily these constraints. In order to satisfy the arrival

constraints one needs to consider a node u 2 Ui, a time window shorter than ai
and the nodes belonging to it (bold nodes from u to w in Fig. 7). Then, the

constraints impose that at most one node can be visited among all the ones in the

time window. There must be a constraint for each node u 2 Ui (and each station

i 2 S n f1g).

Constraints (13) can be explained in a similar way. Constraints (14) are the

overtaking constraints. The z variables are used to express these constraints. More

precisely, one needs to consider two trains, j and k, such that rij � rik, i.e. j is the

‘‘slow’’ train and k is the ‘‘fast’’ train, and that both visit stations i and iþ 1 (see Fig.

8). The overtaking constraints (14) impose to choose at most one arc between the

arc of the slow train leaving node v1 and the arc of the fast train leaving node v2.

Note that in the path model, we have in general more than one path visiting the same

node for the same train, while in the arc model, we have exactly one arc for a train

visiting a node.

Constraints (14) can be strengthened with similar considerations as for the

path model. Constraints (15)–(17) impose the variables to assume positive integer

values.
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2.5 Solution methods

In this section, we describe exact and heuristic solution methods for TTP, based on

the presented ILP models. The exact method consists of a branch-and-cut-and-price

algorithm, based on model (1)–(6) (see Sect. 2.5.1). This method is effective for

small/medium size real-world instances (see Cacchiani et al. (2008), in which

instances with up to 90 trains or 50 stations are solved to optimality). For larger size

instances, heuristic approaches are more appropriate. LP-based heuristic algorithms

are presented in Sect. 2.5.2. A Lagrangian-based heuristic algorithm, proposed in

Caprara et al. (2002) and based on model (7)–(17), is presented in Sect. 2.5.3. The

algorithm presented in Caprara et al. (2002) was extended in Cacchiani et al.

(2010b) to deal with a railway network and instances with up to 500 trains and 120

stations where heuristically solved.

2.5.1 Branch-and-cut-and-price algorithm

In this section, we describe the branch-and-cut-and-price algorithm presented in

Cacchiani et al. (2008) and refer the reader to that paper for a more detailed

description.

We first of all describe how the LP relaxation of model (1)–(6) can be solved

effectively.

2.5.1.1 LP relaxation solution The ILP model (1)–(6) has exponentially many

variables. A commonly used technique for dealing with it consists of using column

generation. The pricing problem calls for determining an optimal path in the

(acyclic) graph considered, i.e. a timetable for each train with a positive reduced

profit. Therefore, the pricing problem can be solved in polynomial time and makes

the approach effective (see Cacchiani et al. 2008; Caprara et al. 2002). The reduced

profit of a path takes into account the original profit of the path (including shift and

stretch penalties) and the dual variables associated to the visited nodes (which are

dealt with as penalties/prizes).

In addition, the ILP model has a very large number of constraints. These

constraints can be handled by constraint separation algorithms [also known as

constraint generation: see e.g. Nemhauser and Wolsey (1988)]. In particular, the

separation of constraints (3), (4) and (5) can be done by enumeration, taking into

account that the variables of the model can be fractional. The effect of adding new

constraints with non-negative dual variables simply corresponds to changing the

‘‘penalties’’ of some nodes in this path computation, i.e. the addition of new

constraints does not destroy the structure of the column generation problem (see

Cacchiani et al. 2010a).

The general structure of the method to solve the LP relaxation is the following:

1. Initialize a reduced LP with only the t variables associated with the ideal paths

for each train, constraints (2) and constraints:

xP � 0; 8P 2 P; ð18Þ
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2. Solve the reduced LP, obtaining the primal solution x� and the dual solution y�;

3. Apply column generation: if variables with positive reduced profit with respect

to y� are found, add them to the reduced LP and go to Step 2.;

4. Apply separation for constraints (3) and (4): if constraints violated by x� are

found, add them to the reduced LP and go to Step 2.;

5. Apply separation for constraints (5): if constraints violated by x� are found, add

them to the reduced LP and go to Step 2.;

6. Terminate since x�; y� is an optimal primal-dual pair for the whole LP (1)–

(5),(18).

2.5.1.2 Branching rules In the exact approach, upper bounds are computed by

solving the LP relaxation by column generation and constraint separation, as

described above. In order to derive integer solutions, different branching rules can

be implemented. One possibility is to branch on the choice of the arcs of the

multigraph. Indeed, branching on the choice of the columns is complicated because

the column generation process would generate again the same columns, unless

involved forbidding constraints are imposed (which could destroy the structure of

the pricing problem). In order to choose the arcs so as to construct the path for one

train after another, the following branching rule can be adopted:

– choose a train, say j, to branch on, based on the optimal LP solution x�.
– select a departure node v from its first station fj (including the possibility of not

scheduling the train) or, if the departure from fj has already been fixed, select a

departure node associated with the first not yet fixed station. Also in this case, it

is useful to base the choice on the optimal LP solution, trying to identify a

‘‘good’’ path for the train. Note that, as the travel times between consecutive

stations are fixed, the specification of all departure nodes for a train uniquely

identifies its path in the solution.

– branch by imposing that the path for train j visits the selected departure node

v 2 Wi \ Vj, by setting xP ¼ 0 for all paths P that do not visit that node.

At each node of the decision tree, the LP relaxation, amended by the branching

constraints, is solved by applying column generation and constraint separation as

described above. The branching conditions can easily be taken into account in the

column generation procedure, since it suffices to skip, in the computation of the

maximum reduced profit path of each train, the set of nodes that are incompatible

with those already fixed by the branching decisions.

It is generally useful to explore the decision tree according to a depth-first

strategy, in order to limit the storage requirement. In addition, heuristic algorithms

can be executed at the root node in order to determine a good lower bound.

2.5.2 LP-based heuristic algorithms

In this section, we present two heuristic algorithms based on the LP relaxation of

model (1)–(6). We refer the reader to Cacchiani et al. (2008) for further details.

Similar approaches can be obtained by considering the arc model. The construction
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of heuristic solutions from the LP-relaxation can be done as follows. Some variables

xP, associated with train paths, are fixed to 1 or to 0, based on the LP-solution. The

LP-relaxation is then solved again until an integer solution is found (or until the

problem turns out to be infeasible). An alternative approach is to construct the path

of each train step-by-step, as it is done in the enumerative algorithm of the previous

section (i.e. by choosing arcs in the graph for each train). Another way to obtain a

heuristic solution in short computing times is to consider the master problem

containing only the variables generated in the LP relaxation solution, and to solve it

with integrality constraints on the variables. Once a feasible solution has been

derived, it is very useful to apply local search procedures in order to improve it. A

simple local search is to consider k trains that were shifted and/or stretched and/or

cancelled in the solution found and to solve heuristically or optimally the ILP

model, by keeping fixed the paths for the remaining trains.

2.5.3 Lagrangian-based heuristic algorithms

This section is devoted to describe Lagrangian-based heuristic algorithms. We give

an overview of these algorithms and refer the reader to Cacchiani et al. (2010b),

Caprara et al. (2002, 2006) for a deeper explanation. The arc model (7)–(17) can be

given on input to a general purpose ILP solver and solved to optimality. However,

both the number of variables and the number of constraints of formulation (7)–(17)

are very large for real-world TTP instances. As mentioned in Caprara et al. (2002),

with that time state-of-the-art ILP solvers, it was ‘‘impossible to design an exact

algorithm based on this model which is capable of finding an optimal solution

within reasonable computing time’’. Therefore, in Caprara et al. (2002), a

Lagrangian-based heuristic algorithm, combined with a subgradient optimization

procedure, was developed. Constraints (12), (13) and (14) are relaxed in a

Lagrangian way: there is a Lagrangian multiplier associated with the nodes of G

(due to the y variables) as well as a Lagrangian multiplier associated with train-node

pairs (due to the z variables). The resulting Lagrangian-relaxed problem calls for a

set of paths for the trains, each having maximum Lagrangian profit, given by the

sum of the original profits for the arcs in the path, minus the sum of the Lagrangian

multipliers associated with the nodes visited by the path. Near-optimal Lagrangian

multipliers can be determined through a subgradient optimization procedure. As the

number of relaxed constraints is very large, a dynamic constraint-generation scheme

is used (see Caprara et al. (2002) for further details). At each iteration of the

subgradient optimization procedure, a heuristic solution is computed as follows. The

trains are ranked according to decreasing values of the Lagrangian profit of the

associated path in the relaxed solution. Then, the trains are scheduled one by one,

choosing the path with maximum Lagrangian profit that is compatible with the paths

already computed (those corresponding to the trains with higher ranking). Choosing

the path with maximum Lagrangian profit, instead of the path with maximum actual

profit, is an attempt to take care of the trains with lower ranking which still have to

be scheduled. Local search procedures are applied in order to improve the solution

found.
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2.6 Computational experience

In this section, we present a comparison of the described solution methods with a set

of real-world instances provided by Rete Ferroviaria Italiana (the main Italian

railway infrastructure management company). The aim is to provide an insight into

strengths and weaknesses of the different methods. The results reported in Table 5

are taken from Cacchiani et al. (2008). All times reported are expressed in CPU

seconds on a PC Pentium IV 2.4 GHz with 512 Mb RAM. LP relaxation is solved

using CPLEX 9.0. A time limit of 100;000 seconds was imposed to the exact

branch-and-cut-and-price algorithm.

In the first three columns of Table 5, we report, respectively, the name of the

corridor instance, the number of stations (which is between 16 and 102) and the

number of trains (which is between 16 and 221) of the corresponding instance. The

planning horizon consists of one day and times are discretized in minutes. Table 5

shows a comparison of the results obtained with the Lagrangian heuristic (Lagr.

heur) described in Sect. 2.5.3 (see Caprara et al. 2006, 2002), the LP-based

heuristics (LP H1 and LP H2) described in Sect. 2.5.2 (see Cacchiani et al. 2008)

and the branch-and-cut-and-price method (B&C&P) described in Sect. 2.5.1 (see

Cacchiani et al. 2008). We refer the reader to Cacchiani et al. (2008), Caprara et al.

(2002, 2006) for further details. For each method, we report the value of the upper

bound, the corresponding computing time, the value of the solution, the

corresponding computing time, and the percentage gap between the best upper

bound (or the value of the optimal solution) and the value of the heuristic solution

found by the method. The Lagrangian upper bound is computed as described in Sect

2.5.3, and the LP relaxation upper bound, computed at the root node of the branch-

and-cut-and-price algorithm, is obtained as described in Sect. 2.5.1. A ‘‘-’’ for the

branch-and-cut-and-price indicates that the optimal solution was not found within

the time limit (indicated as TL). For each instance, we show in bold the best solution

found by the four methods.

The results show that 3 of the 11 instances were solved to optimality. When

comparing the upper bounds obtained, we can see that the LP upper bound

dominates the Lagrangian upper bound and can be computed within smaller

computing times. The solutions found by LP H2 are of quality comparable to those

found by Lagr. heur and require, on average, a similar computing time. In almost all

cases, the solutions found by LP H1 are better than those found by Lagr. heur, but

the associated computing time is much higher.

As it is evident from the results, the branch-and-cut-and-price approach is

suitable for instances of small/medium size. When the dimension becomes larger,

heuristic methods are more appropriate. The advantage of the Lagrangian-based

approaches is that they are able to deal with large and congested instances in

reasonable computing times (see e.g. Cacchiani et al. 2010b). However, the quality

of the solutions and their computing times are related to finding good Lagrangian

multipliers, and several iterations of subgradient optimization can be needed. The

strength of the LP-based approaches is that they obtain better upper bounds and

solutions. However, when dealing with instances on railway networks, if train

rerouting is allowed (i.e. if trains have ideal timetables that specify only origin and

304 V. Cacchiani et al.

123



T
a
b
le
5

C
o

m
p
ar

is
o

n
o

f
th

e
re

su
lt

s
o

b
ta

in
ed

w
it

h
th

e
L

ag
ra

n
g

ia
n

h
eu

ri
st

ic
o

f
C

ap
ra

ra
et

al
.

(2
0

0
6
),

th
e

L
P

-b
as

ed
h

eu
ri

st
ic

s
o

f
C

ac
ch

ia
n

i
et

al
.

(2
0

0
8
)

an
d

th
e

b
ra

n
ch

-a
n

d
-

cu
t-

an
d
-p

ri
ce

o
f

C
ac

ch
ia

n
i

et
al

.
(2

0
0

8
)

N
am

e
jS
j

jT
j

L
ag

r.
U

B
L

ag
r.

h
eu

r
L

P
U

B
L

P
H

1
L

P
H

2
B

&
C

&
P

V
al

u
e

T
im

e
V

al
u

e
T

im
e

G
ap

%
V

al
u

e
T

im
e

V
al

u
e

T
im

e
G

ap
%

V
al

u
e

T
im

e
G

ap
%

V
al

u
e

T
im

e

P
C

-B
O

-1
1

7
4

0
4

,3
1

4
6

5
3

,6
2

9
5

4
1

1
.2

9
4

,0
9

1
1

4
3
,7
7
6

5
,8

3
6

7
.7

0
3

,7
2
5

1
3

7
8

.9
5

–
T

L

M
U

-V
R

4
8

5
4

5
,0

3
2

1
2

8
4

,2
1

1
9

7
1

3
.9

6
4

,8
9

4
1

9
4
,2
5
3

5
,2

1
0

1
3

.1
0

3
,9

6
8

4
2

1
8

.9
2

–
T

L

B
Z

-V
R

2
7

1
2

8
1

6
,1

5
2

2
5

9
1

5
,9

9
4

2
6

0
0

.6
7

1
6

,1
0

2
1

1
1

5
,9

7
7

2
,2

9
7

0
.7

8
1
5
,9
9
7

1
2

0
.6

5
–

T
L

P
C

-B
O

-2
1

7
9

3
1

0
,9

5
3

7
5

1
0

,8
6

1
7

8
0

.1
9

1
0

,9
1

4
6

1
0
,8
8
2

5
0

4
0

.0
0

1
0

,7
2

7
3

1
.4

2
1
0
,8
8
2

6
8

3

P
C

-B
O

-3
1

7
6

0
7

,2
3

5
7

3
7

,1
3

5
7

3
0

.3
6

7
,2

0
0

4
7

,1
5

3
6

4
4

0
.1

1
7

,1
3
8

6
0

.3
2

7
,1
61

7
7

,5
6

2

P
C

-B
O

-4
1

7
2

2
1

2
4

,2
4

3
6

1
6

2
1

,4
2

5
5

2
3

1
0

.3
3

2
3

,8
9

4
7

6
1

2
2
,0
4
1

4
3

,2
0

0
7

.7
6

2
1

,7
5

3
6

,0
2
9

8
.9

6
–

T
L

C
H

-R
M

1
0

2
4

1
5

,8
5

0
3

9
2

5
,5

6
7

3
8

3
4

.4
0

5
,8

2
3

2
6

5
,5
7
4

5
,5

3
0

4
.2

8
5

,4
0
7

7
3

7
.1

4
–

T
L

B
N

-B
O

4
8

6
8

6
,9

0
9

1
2

6
6
,7
7
4

1
2

3
1

.1
4

6
,8

5
2

6
6

,7
1

6
1

,8
1
1

1
.9

8
6

,6
4
9

5
2

.9
6

–
T

L

C
H

-M
I

1
6

1
9

4
2

1
,2

5
9

2
3

2
2

0
,8

1
6

2
3

2
1

.4
9

2
1

,1
3

1
1

5
2
1
,0
2
2

1
3

,6
5

3
0

.5
2

2
0

,9
1

9
3

1
1

.0
0

–
T

L

M
O

-M
I-

1
5

4
1

6
1

,7
2

7
1

7
1
,6
8
4

1
5

0
.0

0
1

,7
0

8
2

1
,6
8
4

3
6

0
.0

0
1

,6
3
4

3
2

.9
7

1
,6
84

4
4

M
O

-M
I-

2
5

4
1

0
0

1
1

,3
3

6
4

1
5

9
,3

1
8

3
5

4
1

6
.6

9
1

1
,1

8
5

2
8

8
9

,4
5

3
4

8
,0

5
1

1
5

.4
9

9
,4
98

1
,2

3
9

1
5

.0
8

–
T

L

Non-periodic train timetabling and platforming problems 305

123



destination stations with the corresponding ideal departure/arrival times, without

fixing any intermediate station to be visited), there can be many alternative paths for

each train. In this case, the convergence of the column generation process can

become slow. In addition, as seen in Table 5, the LP-based approaches can require

much longer computing times.

3 The train platforming problem

The goal of the train platforming phase, following the train timetabling phase, is to

find an assignment of trains to platforms in a railway station, and the corresponding

routing inside the station. The practical relevance of the problem inspired the

definition of a few different versions, depending on the infrastructure manager and

train operators requirements. The TPP is relatively easy to solve for small contexts,

i.e. stations with very few platforms and alternative paths to route the trains.

However, it becomes a difficult optimization problem when applied to complex

railway station topologies, such as those associated with the main European stations,

having hundreds of trains and tens of platforms. In this section, we present the train

platforming problem as proposed by the main Italian infrastructure manager Rete

Ferroviaria Italiana (RFI) and considered in Caprara et al. (2011a) and Galli

(2011). This version has many features in common with the Netherland Railways

version addressed in Kroon et al. (1997), Zwaneveld (1997), Zwaneveld et al.

(2001), Zwaneveld et al. (1996). We start our presentation with a brief literature

review and introduce the platforming optimization problem using a small example.

Next, we show a possible 0–1 quadratic programming (01-QP) model having a large

number of variables, and a solution approach based on a branch-and-cut-and-price

algorithm.

3.1 Literature review

As it is often the case with practical problems, every reference generally considers a

different version, making it difficult to compare the proposed methods. The easiest

version is the one considered by De Luca Cardillo and Mione (1999) and Billionnet

(2003), who address a simplified case in which, for each train, the scheduled arrival

and departure times cannot be changed and the paths used to route the trains within

the station are uniquely determined by the choice of the platform. A more general

version of the problem, similar to the one we present (see Caprara et al. 2011a), in

which arrival and departure times and arrival and departure paths are not fixed a

priori is addressed in Zwaneveld (1997), Zwaneveld et al. (1996, 2001), Kroon et al.

(1997). Finally, the version addressed in Carey and Carville (2003) is an

intermediate one, in that arrival and departure times can be changed, but the

assignment of a train to a platform uniquely determines the paths that the train will

follow on its way to and from the platform. Recently, Caprara et al. (2014)

developed a delay robust model for event scheduling problems and show that TPP

belongs to this class.
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3.2 Problem description

In the following, we describe TPP by specifying its input, constraints and objective

function, using a small example. We refer the reader to Caprara et al. (2011a) for a

more detailed description.

3.2.1 Problem input: station topology and train timetable

Similarly to TTP, the input of TPP consists of a topology and a timetable and all

times are discretized (e.g. in minutes). The topology required by TPP is a station

topology, because TPP is solved for a specific railway station. In Fig. 9, we present

an example of TPP topology instance that will be used throughout this section.

Station topologies are diagrams consisting of nodes and segments that represent

physical elements of the train station. The topology in Fig. 9 consists of 3 platforms,

2 directions, 5 arrival paths and 4 departure paths, which will be explained in the

following.

There are several points at which a train may stop within the station to load/

unload passengers and/or goods; these points are called platforms and can be of

different type and length. The set B of platforms includes regular platforms,

corresponding to platforms that one foresees to use, and dummy platforms,

corresponding to virtual additional platforms that one would like not to use but that

may be necessary to find a feasible solution. In the example of Fig. 9, the regular

platforms are indicated with a bold line and correspond to the three segments

delimited by nodes with Roman numbers I, II and III (clearly, the dummy platforms

are never depicted). The concept of dummy platform was introduced in order to

measure the lack of capacity in a railway station, if not all trains can be assigned to

regular platforms according to the given timetable. For long-term planning, the use

of dummy platforms suggests to enlarge the station, whereas for medium-term

planning, it is a clear indication that not all trains can be scheduled (unless the safety

margins are relaxed).

We also have a set D of directions for train arrivals and departures and a

collection R of paths connecting directions and platforms. For each direction d 2 D,

we have a travel time gd for all paths connecting d to any platform (independent of

the specific path, platform and train). Moreover, for each ordered pair ðd1; d2Þ 2
D
 D corresponding to arrival direction d1 and departure direction d2, the input

specifies a preference list Ld1;d2
� B of preferred platforms for all trains that arrive

from direction d1 and depart to direction d2. In our example, directions are named

D1 and D2. Both directions are associated with arrival and departure tracks denoted

by an ‘‘inbound’’ and an ‘‘outbound’’ arrow, respectively. Inbound nodes and tracks

are represented using a ‘‘dashed’’ line; outbound nodes and tracks are represented

using a ‘‘dotted’’ line. Inbound nodes D1 and D2 represent ‘‘entry’’ points from

direction D1 and D2, respectively. Outbound nodes D1 and D2 represent ‘‘exit’’

points towards direction D1 and D2, respectively. We assume the travel time

gd ¼ 5 min for all directions, and no preference list is given, for simplicity.

For each direction d 2 D and platform b 2 B, we have a (possibly empty) set

Rd;b � R of paths linking direction d to platform b. Specifically, we have
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Rd;b ¼ Ra
d;b [Rd

d;b, where the paths in Ra
d;b are arrival paths to get from d to b and

Rd
d;b are departure paths to get from b to d. Note that we may have paths in

Ra
d;b \Rd

d;b called two-way paths. For each path R 2 R, we are given a list IR � R
of incompatible paths, i.e. paths that share at least one physical element. (In

particular, a path R is always incompatible with itself.) In our example, there is one

arrival path from direction D1 to platform I (passing through node a), two arrival

paths from direction D1 to platform II (one passing through node a, the other

through node e), and two arrival paths from direction D2 to platforms II and III,

passing through node d. The arrival paths are represented with dashed lines.

Similarly, there are two departure paths towards direction D1 from platforms II and

III passing through node b, and two departure paths towards direction D2 from

platforms I and II passing through node c. The departure paths are represented with

dotted lines. Note that the following pairs of paths are mutually incompatible:

– arrival paths from direction D1 to platforms I and II, passing through node a,

because they share the same (inbound) track and node a

– arrival paths from direction D2 to platforms II and III, passing through node d,

because they share the same (inbound) track and node d

– departure paths from platforms I and II towards direction D2, passing through

node c, because they share the same (outbound) track and node c

– departure paths from platforms II and III towards direction D1, passing through

node b, because they share the same (outbound) track and node b.

However, the arrival paths from direction D1 passing through node a are compatible

with the arrival path from direction D1 passing through node e. This is because

although trains coming from the same direction could have incompatibilities on the

railway line, yet these incompatibilities are outside the railway station and are

resolved in the timetabling phase.

The timetable required by TPP is the one produced after the TTP phase, restricted

to the trains that go through the considered station. Each train t 2 T has an

associated ideal arrival time ua
t at a platform, along with a maximum arrival shift sa

t ,

and an associated ideal departure time ud
t from the platform, along with a maximum

departure shift sd
t , meaning that the train must arrive to a platform in the interval

½ua
t � sa

t ; u
a
t þ sa

t � and depart in the interval ½ud
t � sd

t ; u
d
t þ sd

t �. Each train also

specifies a minimum stopping time, in our example 1 min. Moreover, each t 2 T has

D1 a c D2

D1 b

II II

D2III III d

II

Platform I

Platform II

Platform III

e

Fig. 9 Station topology example
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an associated arrival direction da
t 2 D, a departure direction dd

t 2 D and a set Ct � B

of candidate platforms where it may stop, corresponding to the platforms for which

there exist at least two paths linking respectively the arrival and departure directions

of t to the given platform.

In our example, let T ¼ f1; 2; 3g be the set of trains. The timetable provided on

input is presented in Table 6. For all trains, we have sa
t ¼ sd

t ¼ 1, i.e. the maximum

arrival and departure shifts are 1 min. The set of candidate platforms is indicated,

for each train, in column ‘‘Platf.’’ of Table 6.

3.2.2 Problem constraints

Assignment constraints impose that every train in the timetable must be assigned a

platform, an arrival path and a departure path. If there are not enough regular

platforms for all the trains, then a dummy platform must be used. Clearly, as we

will see in the objective function section, this has a ‘‘very high’’ cost because it

corresponds to a ‘‘practically infeasible’’ solution. Note that if a dummy platform

is chosen, one does not need to select the paths, because dummy platforms are

only meant to measure the lack of platform capacity in the station, so no routing

information is required. In our example, train 1 can either go to platform I or go

to platform II. If we select platform II, there are two possible arrival paths,

namely ‘‘entry’’ D1, node a, platform II or ‘‘entry’’ D1, node e, platform II; the

only possible departure path is platform II, node c, ‘‘exit’’ D2. As said in the

previous section, each train also has a maximum arrival and departure shift time.

Therefore, one can modify the timetable to some extent and define different actual

arrival and departure times for each train. In our example, the actual arrival time

va
1 of train 1 must belong to the interval [8:59, 9:01] and the actual departure time

vd
1 must belong to the interval [9:02, 9:04]. To summarize, assignment constraints

ask for assigning each train a 5-tuple consisting of platform, arrival path,

departure path, shift on arrival, and shift on departure. (Of course, shifts can be

equal to zero). Operational constraints apply both to platforms and paths as

follows:

– A platform cannot be assigned to more than one train at the same time.

– Incompatible paths can be assigned to different trains at the same time, only if

the overlapping time interval is under a threshold p. In our example, we assume

p ¼ 2 min.

Table 6 Example of a schedule

Directions Times Shifts

Train Arr. Dir. Dep. Dir. Arr. Time Dep. Time Arr. Shift Dep. Shift Platf.

1 D1 D2 9:00 9:03 1 1 I, II

2 D2 D1 9:05 9:10 1 1 II, III

3 D1 D1 9:09 9:12 1 1 II
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Conventionally, a train occupies a platform for the interval ½va
t � h; vd

t þ h�, where h

is a so-called headway value introduced for safety reasons. In our example, we

assume h ¼ 3. Moreover, the train occupies arrival path Ra for the interval ½va
t �

gda
t
; va

t � 1� and the departure path Rd for the interval ½vd
t þ 1; vd

t þ gdd
t
�, recalling the

path travel times defined above. So, if we assign train 1 to platform II with no time

shifts, the actual arrival and departure times are va
1 ¼9:00, vd

1 ¼9:03 and the

occupation time intervals for arrival path, platform and departure path are given in

Table 7. Note again that there are two possible arrival paths from direction D1

towards platform II. In our solution example we choose the path passing through

node a. With regards to train 2, even if we shift forward its arrival time, it will

always occupy the platform for an interval that overlaps with the (platform) interval

of train 1, see Table 7. Therefore, we must assign the two trains to different

platforms. If we select platform III for train 2, the only available (arrival and

departure) paths are those passing through nodes d and b connecting platform III to

direction D2 and D1, respectively. We assume no shift is applied to train 2 and the

occupation time intervals are shown in Table 7. Note that the paths used by train 1

and 2 are compatible, since they have nothing in common. Finally, train 3 can only

be assigned to platform II, for example using the arrival path from direction D1

through node e and the (only) departure path towards direction D1 through node b.

Again, the occupation time intervals are shown in Table 7. Note that the platform

occupation time interval of train 3 overlaps with that of train 1 and both trains are

assigned to platform II. So we need to shift forward (by 1 min) the arrival time of

train 3 (note that the departure time of train 3 is not changed). Also the departure

paths of trains 2 and 3 are incompatible and the corresponding time intervals

overlap by 3 min (i.e. 9:13, 9:14, 9:15), whereas the threshold p is 2 min. Again, we

need to use shifts, in this case it is enough to shift forward (by 1 min) the departure

time of train 3. The complete platforming information for our example are shown in

Table 8. The arrival and departure times of train 3 are, respectively, 9:10 and 9:13.

3.2.3 Problem objective

The objective function is computed using the following coefficients, for which we

also report the numerical values to give an idea of their relative importance:

a1 ¼ 1;000, a2 ¼ 100;000, a3 ¼ 1, a4 ¼ 100, a5 ¼ 10;000, a6 ¼ 5.

The objective function consists of three parts: fixed platform costs, train

platforming costs, and path incompatibility costs. Each platform cost is given by

Table 7 Occupation time intervals

Train Arrival path Platform Departure path

1 8:55–8:59 8:57–9:06 9:04–9:08

2 9:00–9:04 9:02–9:13 9:11–9:15

3 9:04–9:08 9:06–9:15 9:13–9:17
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cb ¼ a1 if b is a regular platform, and cb ¼ a2 if b is a dummy platform (in other

words the cost for using a dummy platform is two orders of magnitude larger than

the cost for using a regular platform). Each train platforming cost ct is given by

a3 � st, where st is the total shift (expressed in minutes) of train t (counting both the

arrival and departure shifts), plus a4 if the train uses a regular platform not in the

preference list Lda
t ;d

d
t
, plus a5 if, instead, the train uses a dummy platform. Finally,

for each pair of trains t1 and t2, we have a penalty a6 � ot1;t2 , where ot1;t2 is the sum of

the durations of the time intervals (in minutes) in which trains t1 and t2 occupy

incompatible paths at the same time. Let’s see the cost in our example. We use 2

regular platforms, so the platform cost is 2 � a1 ¼ 2 � 1;000 ¼ 2;000. Train 1 and 2

use regular platforms, no shift, no preference list, so their cost is 0. Train 3 uses a

regular platform, 1 min of shift on arrival and 1 min of shift on departure (2 min of

shift in total), no preference list, so the cost is 2 � a3 ¼ 2 � 1 ¼ 2. Finally, with

regards to penalties for incompatible paths, the only pair of trains that uses

incompatible paths at the same time is pair (2; 3). As said above, we have 2 min of

overlapping between the departure intervals of trains 2 and 3 that use incompatible

paths, so the penalty is 2 � a6 ¼ 2 � 5 ¼ 10. The total cost of our solution is

2;000 þ 2 þ 10 ¼ 2;012.

3.3 A 0-1 quadratic model

As we mentioned in the previous section, each train t must be assigned a 5-tuple

consisting of a platform b 2 Ct, an arrival path Ra 2 Ra
da
t ;b

, a departure path

Rd 2 Rd
dd
t ;b

, and the corresponding actual arrival time va
t 2 ½ua

t � sa
t ; u

a
t þ sa

t � and

actual departure time vd
t 2 ½ud

t � sd
t ; u

d
t þ sd

t �. In the following, we call this 5-tuple a

pattern. We denote with Pt the set of patterns that can be assigned to train t 2 T . We

also discussed operational constraints forbidding the assignment of patterns to

trains if this implies occupying the same platform at the same time, or using arrival/

departure paths that intersect at the same time if the overlapping time interval is

larger than a threshold p. This can be easily represented by defining a pattern

incompatibility graph with one node for each train-pattern pair ðt; pÞ, with p 2 Pt,

and an edge joining each pair ðt1; p1Þ; ðt2; p2Þ of incompatible patterns. This graph

models ‘‘hard’’ incompatibilities that must be forbidden in a feasible solution. Note

that there are also ‘‘soft’’ incompatibilities, generally associated with the use of

incompatible arrival/departure paths if the overlapping is under the threshold p, that

Table 8 Solution example

Train Arrival path Platform Departure path Arrival shift Departure shift

1 D1-a-II II II-c-D2 0 0

2 D2-d-III III III-b-D1 0 0

3 D1-e-II II II-b-D1 ?1 ?1
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are admitted but penalized in the objective function, as illustrated in the previous

section, so they do not appear in the pattern incompatibility graph.

TPP requires the assignment of a pattern p 2 Pt to each train t 2 T so that no two

incompatible patterns are assigned and the objective function defined by the

following coefficients is minimized. There are a cost cb for each platform b 2 B that

is used in the solution, a cost ct;p associated with the assignment of pattern p 2 Pt to

train t 2 T , and a cost ct1;p1;t2;p2
associated with the assignment of pattern p1 2 Pt1 to

train t1 and of pattern p2 2 Pt2 to train t2 for ðt1; t2Þ 2 T2, in case these two patterns

have a ‘‘soft’’ incompatibility. Note that the cost ct;p is the train platforming cost if

pattern p is assigned to train t, and the cost ct1;p1;t2;p2
is the path incompatibility cost

if patterns p1 and p2 are assigned to trains t1, t2, respectively.

Here, T2 � fðt1; t2Þ : t1; t2 2 T; t1 6¼ t2g denotes the set of pairs of distinct trains

whose patterns may have a ‘‘hard’’ or ‘‘soft’’ incompatibility.

We now present the 0–1 quadratic programming (0–1 QP) model proposed in

Caprara et al. (2011a). Let G be the pattern incompatibility graph, and let K be

the whole collection of cliques in G and Kb be the collection of cliques in G

associated with sets of patterns that use platform b at the same time. That is, for

each K 2 Kb with ðt1; p1Þ 2 K and ðt2; p2Þ 2 K, pattern p1 for train t1 and pattern

p2 for train t2 both use platform b and occupy it for overlapping intervals. The

straightforward 0–1 QP formulation of the problem, using a binary variable yb for

each b 2 B, with yb ¼ 1 if and only if platform b is used, and a binary variable xt;p
for each t 2 T and p 2 Pt, with xt;p ¼ 1 if and only if train t is assigned pattern p,

is the following:

min
X

b2B
cbyb þ

X

t2T

X

p2Pt

ct;p xt;p þ
X

ðt1;t2Þ2T2

X

p12Pt1

X

p22Pt2

ct1;p1;t2;p2
xt1;p1

xt2;p2 ð19Þ

subject to
X

p2Pt

xt;p ¼ 1; t 2 T; ð20Þ
X

ðt;pÞ2K
xt;p � yb; K 2 Kb; ð21Þ

X

ðt;pÞ2K
xt;p � 1; K 2 K; ð22Þ

yb; xt;p 2 f0; 1g; b 2 B; t 2 T; p 2 Pt: ð23Þ

Constraints (20) guarantee that each train is assigned a pattern, constraints (21)

impose that at most one train at a time occupies a given platform b, and if this ever

happens that variable yb takes the value 1, and constraints (22) forbid the assignment

of patterns that are pairwise incompatible. Note that the objective function is

quadratic; hence, the overall model is a discrete nonlinear model. These models are

particularly complex, because they combine the difficulties of nonlinear functions

with integrality constraints on the variables.

312 V. Cacchiani et al.

123



3.4 Solution methods

In this section, we simply aim at pointing out the main features of the model

presented in the previous section. We do not intend to discuss in detail the solution

methods, since they are many, but let the reader know what are the available

algorithmic approaches and hopefully give some useful references.

Quadratic objective function: The model is a 0–1 QP problem. There are many

ways to deal with it, but basically there are two main approaches: treat it as an

integer nonlinear model or linearize it and use ‘‘standard’’ ILP techniques to solve

it. In particular, given that the integer variables are all binary, one can exploit

many techniques developed for the 0–1 quadratic case. A good recent survey on

this topic can be found in Burer and Letchford (2012). With regards to

linearization, one can apply classical linearization techniques proposed for the

quadratic assignment problem (QAP), see Burkard et al. (2009), or use Caprara

et al. (2011a)’s linearization method, which guarantees a strong continuous

relaxation and a fast separation algorithm.

Clique constraints: These constraints are exponentially many, so one needs to add

them dynamically. In Caprara et al. (2011a), the authors present a simple exact

separation technique. Of course one could also develop fast heuristic separation

algorithms to be run before the exact one.

Pattern variables: The model has a large number of pattern variables, so it is not

convenient to deal with the whole model. Yet, the number of patterns for real-

world instances allows direct enumeration. So in Caprara et al. (2011a), the

authors simply enumerate all pattern variables, calculate the corresponding

reduced cost and dynamically add only those having a negative reduced cost.

The overall solution method presented in Caprara et al. (2011a) is a branch-and-cut-

and-price method because both variables and constraints are added dynamically

through separation and pricing procedures, respectively. Note that in Caprara et al.

(2011a), branching is aimed at quickly finding a ‘‘good’’ feasible solution. This

makes it essentially a canonical diving heuristic algorithm that, rather than

terminating at the end of the ‘‘dive’’, continues as a canonical depth-first branch-

and-bound method until optimality is proved (or the time limit is reached).

3.5 Computational experience

In this section, we present some computational results on a set of real-world

instances provided by Rete Ferroviaria Italiana. We consider three Italian railway

stations: Palermo Centrale (PA C.LE), Genova Porta Principe (GE P.PR.) and Bari

Centrale (BA C.LE). In Table 9, we compare the solutions obtained by a

(computationally very fast) heuristic method used by Rete Ferroviaria Italiana with

the best integer solutions produced by the branch-and-cut-and-price (B&C&P)

algorithm described in Sect. 3.4 with a time limit of 1 day (24 hours), recalling that

TPP is a planning problem to be solved each time a new timetable is released.

We tested all the possible integer values of the dynamic threshold p. These values

range from 0, in which case the occupation of incompatible paths at the same time is
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forbidden and the quadratic part in the objective function vanishes, to gmax
d

(maximum travelling time for direction d), in which case two patterns are

incompatible if and only if they occupy the same platform at the same time, whereas

simultaneous occupation of incompatible paths does not affect the problem

feasibility but only the quadratic part in the objective function.

In Table 9, we report the value of p, the solution value found by the heuristic

method currently used by Rete Ferroviaria Italiana (curr), and the rounded-up value

and the associated computing time of the LP relaxation at the root problem (LP).

Moreover, we report the value and computing time of the first feasible solution

found by the B&C&P algorithm (first), and of the best feasible solution found by the

B&C&P algorithm within the time limit (best). A ‘‘*’’ means that the solution found

is optimal.

The table shows that in all cases, the B&C&P algorithm was able to improve

significantly over the current heuristic solution. In most cases, it found the best

solution, or a solution of value very close to the best one, after a fairly small running

time (some minutes). In 4 out of 14 cases, the best solution found is provably

optimal (and the first solution found is very close to the optimal one), in other 5

cases the percentage gap between the first solution value and the LP lower bound is

\1%.

4 Conclusion

In this tutorial, we present two important railway planning problems: train

timetabling and platforming. These problems are strictly connected, so we treat

Table 9 Results of the branch-and-cut-and-price method for the instances PA C.LE, GE P.PR, BA C.LE

Instance p Curr LP First Best

Value Time Value Time Value Time

PA C.LE. 0 749,012 334,038 27 349,037 48 339,039 56

PA C.LE. 1 410,139 10,159 56 120,155 96 120,155 96

PA C.LE. 2 380,182 10,159 53 10,176 86 10,176 86

PA C.LE. 3 11,431 10,159 54 10,172 106 10,172 106

GE P.PR. 0 745,000 306,020 67 306,020* 115 306,020* 115

GE P.PR. 1 705,005 147,069 192 147,087 490 147,080 825

GE P.PR. 2 458,065 8,116 274 8,121 499 8,116* 4,617

GE P.PR. 3 336,340 8,116 572 8,121 1,057 8,116* 13,647

GE P.PR. 4 8,692 8,116 434 8,126 866 8,116* 1,040

BA C.LE. 0 1,576,300 653,264 122 808,255 350 808,255 350

BA C.LE. 1 1,398,330 373,486 123 438,685 642 438,685 642

BA C.LE. 2 1,197,485 128,896 199 148,867 542 148,867 542

BA C.LE. 3 838,235 8,885 216 8,924 656 8,924 656

BA C.LE. 4 11,290 8,877 198 8,912 880 8,911 52,943
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them together. The timetabling and platforming problems are solved in closed

sequence by the railway infrastructure manager, who is responsible for both. To

our knowledge, this tutorial is the first joint treatment of (non-periodic)

timetabling and platforming. We believe that the importance of a joint treatment

lies in showing the reader that these problems are not independent one another.

These are two strictly connected phases of the complex railway planning process

and work on the same resources (e.g. railway lines, station capacity etc.) On one

hand, we concentrate on the non-periodic version, because the periodic case is

based on a different paradigm called periodic event scheduling problem and

should be treated separately. On the other hand, even though there exist many

variants of non-periodic TTP and TPP, we believe the topics we present are

general enough to be easily extended to other similar contexts. The purpose of this

tutorial is to introduce the non-expert reader to general variants of non-periodic

TTP and TPP and show some standard, but successful, solution approaches based

on integer programming.

Appendix

TTP variables and parameters

In the following, we list parameters and variables of the TTP models presented in

Sect. 2.4.

The input consists of:

– S ¼ f1; . . .; sg is the set of stations, numbered according to the order in which

they appear along the corridor for the running direction considered

– T ¼ f1; . . .; tg is the set of candidate trains

– For each train j 2 T , a first (departure) station fj and a last (destination) station lj
(lj [ fj) are given

– Sj :¼ ffj; . . .; ljg � S is the ordered set of stations visited by train j 2 T

– ai is the minimum time interval for station i 2 S between two consecutive

arrivals of trains

– di is the minimum time interval for station i 2 S between two consecutive

departures of trains

– pj is the ideal profit of train j 2 T

– mj is the shift of train j 2 T

– lj is the stretch of train j 2 T

– aj is the penalty for each minute of shift for train j 2 T

– cj is the penalty for each minute of stretch for train j 2 T :

Both models are based on the graph representation discussed in Sect. 2.3, consisting

of a (directed, acyclic) space-time multigraph G ¼ ðV;AÞ.
The node set V has the form fr; sg [ ðU2 [ . . . [ UsÞ [ ðW1 [ . . . [Ws�1Þ, where

– r and s are an artificial source node and an artificial sink node, respectively
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– set Ui, i 2 S n f1g, represents the set of time instants in which some train can

arrive at station i; the nodes in U2 [ . . . [ Us are called arrival nodes.

– set Wi, i 2 S n fsg, represents the set of time instants in which some train can

depart from station i; the nodes in W1 [ . . . [Ws�1 are called departure nodes.

The arc set A is partitioned into sets A1; . . .;At, one for each train j 2 T .

– hðvÞ is the time instant associated with node v 2 V

– Dðu; vÞ is the time distance between two nodes u and v, with u; v 2 V

– Vj denotes the set of nodes associated with time instants corresponding to

possible arrivals/departures of train j:

TTP path model

– P is the collection of all possible paths in graph G ¼ ðV ;AÞ
– Pj is the collection of possible paths for train j in graph G ¼ ðV ;AÞ
– pP :¼

P
a2P pa is the profit for path P 2 P (pa is the profit associated with each

arc a 2 A, as defined in Sect. 2.3)

– Pj
w � Pj is the (possibly empty) subcollection of paths for train j that visit node

w 2 Vj

– Pw :¼ P1
w [ . . . [ Pt

w is the subcollection of paths that visit node w 2 V

– rij is the travel time of train j 2 T from station i to station iþ 1 (i; iþ 1 2 Sj)

– xP is a binary variable for each possible path P 2 P for a train, equal to 1 if, and

only if, the path is chosen in the solution.

TTP arc model

– pa is the profit associated with each arc a 2 A, as defined in Sect. 2.3

– dþj ðvÞ is the set of arcs of train j leaving node v and d�j ðvÞ is the set of arcs of

train j entering node v

– rij is the travel time of train j 2 T from station i to station iþ 1 (i; iþ 1 2 Sj)

– xa is a binary variable, for each train j 2 T and each arc a 2 Aj, equal to 1 if, and

only if, arc a is selected in an optimal solution

– yv is a binary variable equal to 1 if, and only if, node v 2 V is visited by any train

– zjv is a binary variable equal to 1 if, and only if, train j 2 T visits node v 2 V:

.

TPP variables and parameters

In the following, we list parameters and variables of the TPP model presented in

Sect. 3.3.

The input consists of:

– T is the set of trains
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– B is the set of platforms

– D is the set of directions for train arrivals and departures

– R is the set of paths connecting directions and platforms

– gd is the travel time for all paths connecting direction d 2 D to any platform

– Ld1;d2
� B is the preference list of preferred platforms for the ordered pair

ðd1; d2Þ 2 D
 D

– Rd;b � R is the subset of paths linking direction d 2 D to platform b 2 B

– IR � R is a list of incompatible paths

– ua
t is the ideal arrival time of train t 2 T at a platform

– ud
t is the ideal departure time of train t 2 T from a platform

– sa
t is the maximum arrival shift of train t 2 T

– sd
t is the maximum departure shift of train t 2 T

– da
t 2 D is the arrival direction of train t 2 T

– dd
t 2 D is the departure direction of train t 2 T

– Ct � B is the set of candidate platforms where train t 2 T may stop.

The model is based on the concept of pattern and pattern incompatibility graph

defined in Sect. 3.3.

– Pt is the set of patterns that can be assigned to train t 2 T

– ct;p is the train platforming cost if pattern p 2 Pt is assigned to train t 2 T

– ct1;p1;t2;p2
is the path incompatibility cost if patterns p1 2 Pt1 and p2 2 Pt2 are

assigned to trains t1 2 T and t2 2 T , respectively

– K is the whole collection of cliques in the pattern incompatibility graph

– Kb is the collection of cliques in the pattern incompatibility graph associated

with the sets of patterns that use platform b 2 B at the same time

– yb is a binary variable for each b 2 B, with yb ¼ 1 if and only if platform b is

used

– xt;p is a binary variable for each t 2 T and p 2 Pt, with xt;p ¼ 1 if and only if

train t is assigned pattern p:
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