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Abstract
In the design of service facilities, whenever the behaviour of customers is impacted
by queueing or congestion, the resulting equilibrium cannot be ignored by a firm
that strives to maximize revenue within a competitive environment. In the present
work, we address the problem faced by a firm that makes decisions with respect to
location, service levels and prices and that takes explicitly into account user behaviour.
This situation is modelled as a nonlinear mathematical program with equilibrium
constraints that involves both discrete and continuous variables, and for which we
propose an efficient algorithm based on an approximation that can be solved for its
global optimum.

Keywords Pricing · Location pricing · Bilevel programming · Mixed-integer
programming · Equilibrium · Queueing · Nonconvex

Mathematics Subject Classification 90C11 · 90C26 · 90C30 · 90C33
1 Introduction

In a competitive market, service levels and pricing, along with facility locations, are
critical decisions that a service provider faces in order to capture demandand maximize
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profit. In this context, an important trait of a user-choice market is congestion, which
has been often overlooked in the pricing literature, where one routinely assumes that
users patronize the closest facility, disregarding the delays that may arise at facilities
in the form of queues. However, in real-life situations, customers are sensitive to
service level as well as to prices. Actually, low prices that attract customers to a
facility may in turn induce large waiting times that will deter customers and shift
them to the competition. Alternatively, the smaller number of clients buying high-
priced items might be offset by the better experience associated with lower waiting
times. In such an environment, the firm that makes location and pricing decisions
must take into account not only the price and location attributes of its competitors,
but also the user-optimized behaviour of its potential customers, who patronize the
facility that maximizes their individual utility. This situation fits the framework of a
Stackelberg game and is best formulated as a bilevel program or, more generally, a
mathematical program with equilibrium constraints (MPEC). At the upper level, the
firm makes revenue-maximizing location and pricing decisions, taking into account
the user equilibrium resulting from those decisions.

The resulting MPEC, which involves highly nonlinear queueing terms, as well as
continuous (user flows) and discrete (location decision) variables, looks formidable.
The aim of this paper is to show that it is yet amenable to a strategy that involves
approximation by a tractable mixed-integer linear program. The paper’s contributions
are fourfold:

– The integration of location, service rates and prices as decision variables within a
user-choice process based on service level, queueing and pricing considerations.

– The integration of congestion and competition in the context of mill pricing, i.e.,
prices that can vary between facilities.

– The explicit modelling of the queueing process that takes place at the facilities.
– The design of an efficient heuristic algorithm based on mixed discrete, continuous
linear approximations and reformulations.

The remainder of this paper is organized as follows. In Sect. 1.1, we provide an
overview of the existing facility location and pricing literature. Section 2 is devoted
to the model, while, in Sect. 3, we describe the algorithmic framework. Numerical
experiments and a discussion of our results are reported in Sect. 4. Finally, in Sect. 5,
we draw conclusions and mention possible extensions of the current work.

1.1 Literature review

In this section, we outline works that are relevant to ours, either from the modelling
(facility location, pricing, user equilibrium) or from the computational (bilevel pro-
gramming, MPECs) points of view. For a more complete overview on facility location
and pricing, one may refer to Eiselt et al. (2015).

Although the facility location problem (FLP) has a rich history, most works dis-
regard user behaviour related to congestion and competition; i.e., similar users are
assigned to a single path leading to the facility they patronize. While some models
incorporate congestion in the form of capacity limits, more elaborate ones capture
congestion through nonlinear functions that can be derived from queueing theory.
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With respect to congestion, an early model can be found in Desrochers et al. (1995),
who studies a centralized facility location problem where travel time increases with
traffic, and users are assigned in away thatminimizes the total delay and costs. Towards
the end, the authors mention a bilevel user-choice version of their model, but do not
provide a solution algorithm. Within the same centralized framework, Fischetti et al.
(2016) propose a Benders decomposition method for a capacitated FLP. Similarly,
Marianov (2003) formulates a model for locating facilities in a centralized system
subject to congestion, and where demand is elastic with respect to travel time and
queue length. Users are assigned to centres that maximize total demand. In Castillo
et al. (2009), users are assigned to facilities so as to minimize the sum of the number of
waiting customers and the total opening and service costs. Similar toMarianov (2003),
Berman andDrezner (2006), Aboolian et al. (2008) andAboolian et al. (2012) consider
models characterized by elastic demand, subject to constraints on the waiting time at
facilities.Moreover, in Zhang et al. (2010) amodelmaximizing the participation rate is
considered, in a preventive healthcare setting, when demand is elastic and users choose
the facilities to patronize based on the waiting and travel time. Note that neither of the
above papers consider competition or pricing.

With respect to competitive congested facility location problems (CC–FLP), we
mention the work of Marianov et al. (2008), who were the first to address congestion
within a competitive user-choice environment. Similarly, Sun et al. (2008) consider a
generic bilevel facility location model, in which the upper level selects locations with
the aim of minimizing the sum of total cost and a congestion function, while the lower
level (users) minimizes a nonlinear cost. Both papers employ heuristics for solving
their model. A more recent development is that of Dan and Marcotte (2019), who
solve the competitive congested FLP using matheuristics and approximation algo-
rithms. The present work can be considered a pricing extension of Dan and Marcotte
(2019). Moreover, Ljubić and Moreno (2018) address a market share-maximization
competitive FLP, where captured customer demand is represented by a multinomial
logit model. The authors solve this problem using two branch-and-cut techniques,
namely outer approximation cuts and submodular cuts.

The pricing literature is vast. Actually, many authors have addressed joint location
and pricing problems, the common practice being to operate in a hierarchical manner:
locations are specified first, and then price competition is defined according to the
Bertrand model (Pérez et al. 2004; Panin et al. 2014). This approach can be justified
by the fact that location decisions are frequently made for the long term, while prices
may fluctuate in the short term. However, determining the pricing strategy after the
locations have been set limits the price choices and can yield suboptimal locations,
as argued in Hwang and Mai (1990), Cheung and Wang (1995) and Aboolian et al.
(2008). A joint decision is more suited in some practical applications and can provide
valuable insights into whether or not entry into a market is profitable.

To the best of our knowledge, the first paper to consider simultaneous decisions
on location, price and capacity is Dobson and Stavrulaki (2007), who investigate a
monopolistic market where a firm sells a product to customers located on the Hotelling
line (Hotelling 1929). In his PhD thesis, Tong (2011) considers two profit maximizing
models in a network, single facility and multifacility, respectively. Competition is not
present, and demand is elastic with respect to travel distance, waiting time and price.
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The author analyses both a centralized system and a user-choice system. Within the
same framework, Abouee-Mehrizi et al. (2011) consider a model in which demand
is elastic with respect to price only, and clients spread among facilities based on
proximity, according to a multinomial logit random utility model. Congestion, which
arises at facilities, is characterized by queueing equations, and customers might balk
upon arrival. Furthermore, Pahlavani and Saidi-Mehrabad (2011) address a pricing
problem within a user-choice competitive network. Locations are fixed, and users
select the facility to patronize based on price and proximity. Also, they might balk and
veer, upon observation of the queue length. The authors propose two metaheuristics
for solving their model. More recent contributions are given by Hajipour et al. (2016)
and Tavakkoli-Moghaddam et al. (2017), who investigate multiobjective models for
the centralized facility location problemwith congestion and pricing policies. Demand
is elastic with respect to price and distance, while profit and congestion (waiting time,
and idle probability) are decision variables.We alsomention thework of Lüer-Villagra
and Marianov (2013), who formulate and solve a hub location and pricing problem in
a hub and spoke competitive network. An extensive review of the literature concerning
competition in queueing systems is provided in Hassin (2016).

From the algorithmic point of view, our approach borrows ideas from the bilevel
pricing literature, which was initiated by Labbé et al. (1998) and extended along
several directions to include population heterogeneity, congestion or design, as exem-
plified in the papers by Meng et al. (2012) or Brotcorne et al. (2008), to name only
two representative publications. We will in particular adapt a linearization technique
introduced in Julsain (1999) for coping with pricing of the arcs of a packet-switched
communication network.

2 Model formulation

The problem under consideration involves a firm that enters a market that is already
served by competitors that can accommodate the total demand. At the upper level of
the hierarchical model, a firm must make decisions pertaining to location, prices and
quality of service, anticipating that users will reach an equilibrium where individ-
ual utilities are maximized. Note that, when it comes to pricing, three strategies are
typically considered (Hanjoul et al. 1990):

– mill pricing: prices can vary between facilities;
– uniform pricing: all facilities charge the same price;
– discriminative pricing: customers patronizing the same facility can be charged
different prices.

In the present work, we consider mill pricing, which might be the most challenging
from the computational point of view. Indeed, uniform pricing involves amuch smaller
number of decision variables, while discriminative pricing allows for more flexibility.
In the latter case, the problem would actually separate into distinct problems for each
commodity, were it not for queueing at facilities.

At the lower level, customers purchase an item (this could be a service as well) at
the facility where their disutility, expressed as the weighted sum of (constant) travel
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time, queueing delay and price, is minimized. For the sake of simplicity, facilities
are modelled as M/M/1 queues, endowed with only one server. Nevertheless, any
M/M/s queues can be considered, provided that the number of servers s is fixed, and
the decision variable is the service rate μ.

Our decision to adopt service rate as decision variable is motivated by the argument
that it ‘leads to cleaner analytical results’ (Berman and Krass 2015) and that this
framework makes sense in a variety of applications. A medical clinic, for instance,
requires different types of personnel (doctors, nurses, machines, etc.), and it might be
easier to model the number of people served per hour rather than to model each server
separately. Alternatively, queues with continuous service rate provide a reasonable
approximation to multiserver queues and are more tractable from computational point
of view.

The assignment of users to facilities thus follows Wardrop’s user equilibrium prin-
ciple, i.e., disutility is minimized with respect to current flows.

We now introduce the parameters and variables of the model.

Sets

I : set of demand nodes;
J : set of candidate facility locations (leader and competitors); J = J1

⋃
Jc

J1: set of leader’s candidate sites;
Jc: set of competitors facilities;

Parameters

di : demand originating from node i ∈ I ;
ti j : travel time between nodes i ∈ I and j ∈ J ;
α: coefficient of the waiting time in the disutility formula;
β: coefficient of the price in the disutility formula;
fc: fixed cost associated with opening a new facility;
vc : cost per unit of service.

Decision variables

y j : binary variable set to 1 if a facility is open at site j , and to 0 otherwise;
μ j : service rate at a facility j ∈ J ; typically 0 if the facility is closed;
p j : price at an open facility j ∈ J .

Additional variables

xi j : arrival rate at facility j ∈ J originating from demand node i ∈ I ;
λ j = ∑

i∈I xi j : arrival rate at node j ∈ J ;
w j : mean queueing time at facility j .

At an open facility j , themeanwaiting time in the system,w j , is a bivariate function
depending on both the arrival rate and the service rate, namely

w j (λ j , μ j ) = 1

μ j − λ j
. (1)
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In the above, the waiting time w j is only defined for open facilities, i.e., those for
which μ j is positive. However, one can generalize Eq. (1) to all facilities, open or not,
through multiplication by μ j − λ j :

w jμ j − w jλ j = y j . (2)

Indeed, when facility j is closed, y j = μ j = λ j = 0, and w j can assume any value.
On the other hand, Eqs. (1) and (2) are equivalent when y j = 1. Nevertheless, for
simplicity and without loss of generality, we keep the original form (1) in the model
and will specify in Sect. 3.3 how we deal with null service rates.

At the lower level, let γi denote the minimum disutility for users originating from
node i . The Wardrop conditions are expressed as the set of logical constraints

ti j + αw(λ j , μ j ) + β p j

{= γi , if xi j > 0
≥ γi , if xi j = 0

i ∈ I ; j ∈ J

In other words, the disutility of the paths having positive flow must be lower or
equal than the utility of paths carrying no flow. These conditions can alternatively be
formulated as the complementarity system

ti j + αw(λ j , μ j ) + β p j − γi ≥ 0 i ∈ I ; j ∈ J

xi j · (
ti j + αw(λ j , μ j ) + β p j − γi

) = 0 i ∈ I ; j ∈ J

xi j ≥ 0 i ∈ I ; j ∈ J .

Typically, the equilibrium equations should only be enforced for open facilities.
However, in our case, they are automatically satisfied for closed facilities, for the
following reason: if a facility j is closed, the service rate μ j and implicitly λ j and
xi j will be null, and w j can be set to any large value. Additionally, in our model, p j

can take any value for a closed facility (although this is suboptimal from an economic
standpoint), as its contribution to the objective value is cancelled by the null terms xi j .
It follows that the equilibrium constraints are satisfied even for closed facilities.

Our model is as follows:

P: (Leader)

max
y,μ,x,p,γ

z =
∑

i∈I

∑

j∈J1

xi j p j −
∑

j∈J1

(
fc · y j + vc · μ j

)
(3)

s.t. μ j ≤ M1 · y j j ∈ J1 (4)

y j ∈ {0, 1} j ∈ J1 (5)

μ j ≥ 0 j ∈ J1 (6)

(Users)

ti j + αw(λ j , μ j ) + β p j − γi ≥ 0 i ∈ I ; j ∈ J (7)

xi j · (
ti j + αw(λ j , μ j ) + β p j − γi

) = 0 i ∈ I ; j ∈ J (8)

w jμ j − w jλ j = y j j ∈ J (9)
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Fig. 1 Example of a two-demand node network, two location candidate sites

λ j =
∑

i∈I
xi j j ∈ J (10)

∑

j∈J

xi j = di i ∈ I (11)

λ j ≤ μ j j ∈ J (12)

xi j ≥ 0 i ∈ I ; j ∈ J . (13)

The decision variables are the location vectors y (binary) and service rate μ (con-
tinuous).

The user assignment x is the solution of an equilibrium problem that can be reduced
to a convex optimization problem. The leader’s objective in Eq. (3) is to maximize the
difference between the total profit and the opening and service costs. Constraint (4)
ensures that the service rate is strictly positive only at open facilities. When y = 1, it
also helps strengthen the formulation by computing a tight value for M1 such that μ

values yielding solely negative profit are eliminated.
Constraints (7), (8) and (13) characterize the user equilibrium problem, where γi is

the optimal disutility that users originating from node i are willing to incur. Typically,
the equilibrium equations should only be enforced for open facilities. However, we
can extend these equations to all facilities, as previously explained. Finally, constraint
(11) ensure that the total number of users originating from a demand point amounts
to the demand associated with this node, and Eq. (12) guarantees that the arrival rate
does not exceed the service rate at facility j .

For the sake of illustration, let us consider the example corresponding to the graph
and data of Fig. 1, where nodes 1 and 2 are endowed with a demand of 35 and 30,
respectively. The competitor’s facility situated at node C operates at a service rate
of 70.5 and charges a price of 12. The fixed and variable costs are set to 50 and 1,
respectively, α = 20 and β = 10. The values on the arcs represent the travel time
between demand nodes and facilities. In this example, the leader opens facilities at
both available sites. The profit is shown as a function of prices charged at the two
facilities, for service rates set to 37.3 for A and 32.5 for B.

The associated profit curve is illustrated in Fig. 2. While it lacks the discontinuities
associated with the basic network pricing problem (see Labbé et al. 1998), due to
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Fig. 2 Profit associated with open facilities A and B, for the network displayed in Fig. 1

the smoothing effect of the nonlinear queueing terms, it is still highly nonlinear and
nonconvex.

Observation 1 The waiting time w j is jointly convex in μ j and λ j , for all μ j >

0, λ j < μ j .

3 Amixed-integer linear approximation

The general idea that underlies the algorithmic approach is to replace the original
problem by a more manageable mixed-integer linear program (MILP) that we can fur-
ther solve using an off-the-shelf software. This idea is not entirely novel, as it has been
exploited before with different variants. For instance, in Dan andMarcotte (2019), the
lower-level problem is linearized using tangent planes, before the optimality condi-
tions are written. This yields a model containing bilinear and other nonlinear terms,
which are further linearized, for instance, by using the triangle method of D’Ambrosio
et al. (2010). Our approach is related to that of Julsain (1999), where univariate con-
gestion functions are linearized in the context of a network pricing problem. In our
case, concepts from network pricing and CC–FLP are merged into a single model,
which makes the problem much more challenging by the presence of facility location
and service level decision variables, as well as bivariate queueing delays.

The main steps of our resolution method are:

– Replace the bilinear terms in the objective with functions derived from the equi-
librium constraints.

– Perform linear approximations of the complementarity constraints and the remain-
ing nonlinear terms through the introduction of binary variables and ‘big-M’
constants.
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– Use off-the-shelf MILP technology to solve the resulting MILP, or a carefully
designed sequence of MILPs.

3.1 Reformulation of the objective function

The key issue is to eliminate the bilinear terms xi j p j , j ∈ J1, in the objective, through
substitution andother algebraicmanipulations of themodel’s constraints. FromEq. (8),
we have

xi j p j = − 1

β

(
ti j xi j + αxi jw j − xi jγi

)
, j ∈ J1, (14)

whose summation over i ∈ I and j ∈ J1 leads to

∑

i∈I

∑

j∈J1

xi j p j= − 1

β

⎛

⎝
∑

i∈I

∑

j∈J1

ti j xi j+α
∑

i∈I

∑

j∈J1

xi jw j −
∑

i∈I

∑

j∈J1

xi jγi

⎞

⎠ , j ∈ J1.

(15)
The RHS of Eq. (15) now contains linear and nonlinear terms. We can simplify

some of the most ‘complicating’ ones, namely the bilinear xi jγi , as follows.

∑

i∈I

∑

j∈J1

xi jγi =
∑

i∈I

⎛

⎝
∑

j∈J

xi jγi −
∑

j∈Jc

xi jγi

⎞

⎠ , (16)

and since J = J1 ∪ Jc and J1 ∩ Jc = ∅,
∑

i∈I

∑

j∈J1

xi jγi =
∑

i∈I
diγi −

∑

i∈I

∑

j∈Jc

xi jγi . (17)

For the bilinear terms xi jγi in theRHSof Eq. (17), wewrite the following equations,
derived from Eq. (8):

xi jγi = ti j xi j + αxi jw j + βxi j p j , i ∈ I , j ∈ Jc (18)

or, equivalently,

∑

i∈I

∑

j∈Jc

xi jγi =
∑

i∈I

∑

j∈Jc

(
ti j xi j + αxi jw j + βxi j p j

)
. (19)

Recall that the price is fixed at competitors’ facilities (i.e., j ∈ Jc), so xi j p j is not
a bilinear term when j ∈ Jc. Then, the only nonlinear terms in the RHS of Eq. (19)
are xi jw j . Putting together Eqs. (15), (17) and (19) yields:

123



70 T. Dan et al.

∑

i∈I

∑

j∈J1

xi j p j = − 1

β

⎛

⎝
∑

i∈I

∑

j∈J

ti j xi j + α
∑

j∈J

∑
i∈I xi j

μ j − ∑
i∈I xi j

−
∑

i∈I
diγi + β

∑

i∈I

∑

j∈Jc

p j xi j

⎞

⎠

and, since λ j = ∑
i∈I xi j , the objective function can be written as

z = − 1

β

∑

i∈I

∑

j∈J

ti j xi j − α

β

∑

j∈J

λ j

μ j − λ j
+

∑

i∈I

di
β

γi

−
∑

i∈I

∑

j∈Jc

p j xi j −
∑

j∈J1

(
fc · y j + vc · μ j

)
. (20)

All terms in Eq. (20) are linear, with the exception of λ j/(μ j −λ j ). Additionally, these
terms are undefined for μ j = 0. We overcome these issues during the linearization
process, as mentioned in Sect. 3.3. We now discuss some of their properties.

Proposition 3.1 Each term
α

β

λ j

μ j − λ j
is

– convex in λ j , and convex in μ j

– neither convex, nor concave jointly in λ j and μ j (see Fig. 3).
– pseudolinear jointly in λ j and μ j .

Fig. 3 Function λ/(μ − λ). Although neither convex nor concave, it is pseudolinear (pseudoconvex, and
pseudoconcave). The nonconvexity is more accentuated in the vicinity of the origin
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Proof The first statement is obvious. The proof of the second rests on the fact that the
Hessian of the function f (x, y) = x/(y − x) is indefinite. As for the pseudolinearity
claim, let us consider pseudoconcavity first. The gradient of f is

∇ f (x, y) =
(

y

(y − x)2
,

−x

(y − x)2

)

Let a = (xa, ya) and b = (xb, yb), such that ∇ f (a) · (b − a) ≥ 0. We have that

∇ f (a) · (b − a) =
(

ya
(ya − xa)2

,
−xa

(ya − xa)2

)

· (xb − xa, yb − ya) = yaxb − xa yb
(ya − xa)2

(21)
and

yaxb − xa yb
(ya − xa)2

≥ 0 ⇒ yaxb − xa yb ≥ 0. (22)

We now proceed by contradiction. Let us assume that f (b) < f (a). Then, xb/(yb −
xb) < xa/(ya − xa). This means that xb ya − xa yb < 0 and xb ya − xa yb ≥ 0 by
Eq. (22), a contradiction. This implies that

∇ f (a) · (b − a) ≥ 0 ⇒ f (a) ≤ f (b), (23)

as required.
Using the same arguments, we can prove the pseudoconvexity of − f and the pseu-

dolinearity of (α/β)(λ j )/(μ j − λ j ) follows. 
�

3.2 Bounds onw, p and�

Special attention is paid to tight bounds on the variables, since these will improve
the numerical efficiency of the resolution algorithm. Based on the parameters of the
network, we can derive upper and lower bounds for the waiting time at facilities, the
prices set by the emerging firm and the service rate profitable for the leader. It is
obvious that in order to make nonnegative profit, the minimum price that the leader
can set must exceed the variable cost vc associated with the service rate

pmin = vc.

Let (x ′, λ′, w′, γ ′) be the solution of the lower level problem under a competing
oligopoly. Then, the maximum disutility that users originating from node i are willing
to incur in order to access service is

γ ′
i = max

j∈Jc

{
ti, j + αw′

j + β p j

}
.

The equilibrium constraints guarantee that the above equation is satisfied even when
the new firm enters the market. Then, for all couples (i, j) that have positive flows,
the associated utility cannot exceed γ ′

i
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ti, j + αw j + β p j ≤ γ ′
i ,

and the bounds on p and w follow directly

w j ≤ (umax − β pmin)/α, p j ≤ umax/β

wmax = (umax − β pmin)/α, and pmax = umax/β,
(24)

where umax = maxi∈I {γ ′
i }.

The service rate at any given facility is limited by the service cost, the maximum
price, fixed cost and total demand. Themaximum possible profit of the firm is obtained
when all the demand is attracted, themaximum price is charged and only one facility is
open (fixed cost is minimal). Since the profit (objective function) must be nonnegative,
we must have that

pmax

∑

i∈I
di − fc − μmaxvc ≥ 0,

and the upper bound on μ follows directly:

μmax = pmax

vc

∑

i∈I
di − fc

vc
.

3.3 Linear approximation

This section is devoted to a detailed description of the techniques that allow to trans-
form the original problem into a mixed-integer linear program.

Sampling We performed piecewise linear interpolations of the nonlinear functions
involved in our model, namely λ j/(μ j − λ j ) and 1/(μ j − λ j ). These functions are
bivariate for the leader (μ is a decision variable) and univariate for the competitors.

For the leader, we consider Nμ+1 equidistant sampling points on the x axis, within
the interval [0, μmax]: {μ̃n}, n ∈ {1, . . . , Nμ} such that μ̃i < μ̃ j for all 1 ≤ i < j ≤
Nμ. Next, for each sample μ̃n , we define λnmax = μ̃n − 1/wmax, and we sample each
interval [0, λnmax] using Nλ points {λ̃nk}, k ∈ {1, . . . , Nλ}, such that λ̃ni < λ̃nj for all
1 ≤ i < j ≤ Nλ. A similar sampling is performed for every facility of the competitor,
where the sampling interval for λ is [0, μ j ], ∀ j ∈ Jc.

Special attention is paid to the type of sampling we use for λ. The sampling can
be equidistant either ‘horizontally’ or ‘vertically’. In the ‘horizontal’ case, for a given
μ̃n the difference between two consecutive values, λ̃ni − λ̃ni+1, remains constant.
In contrast, in the vertical case, the samples are computed such that, for a given μ̃n ,
and for any two consecutive λ samples, λ̃ni and λ̃ni+1, the difference between their
respective waiting time, 1/(μ̃n − λ̃ni ) − 1/(μ̃n − λ̃ni+1), is constant. Both cases are
illustrated in Fig. 4.

When using samples that are equidistant on the x axis, the approximation of waiting
times is best on the region where the slope is small. It is important that this function
be well approximated in this area, as a small change in the waiting time value would
cause a significant change in the x-variable and thus approximate badly the resulting
objective function. On the other hand, a rougher approximation of the congested part
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(a) (b)

Fig. 4 Illustration of the impact of sampling type on the approximation

would not yield a large error in the x-values, which justifies performing the sampling
equidistant on y axis.

Piecewise linearizationWe now detail the linear approximation of the terms
λ j

μ j − λ j

in the reformulated objective function, and
1

μ j − λ j
in constraints (9). To this end,

we use the sampling described above in a triangle piecewise linearization technique
from D’Ambrosio et al. (2010). At a given point (λ̃, μ̃), the function of interest is
approximated by a convex combination of the function values at the vertices of the
triangle containing the point (λ̃, μ̃).

First, we approximate
λ j

μ j − λ j
and

1

μ j − λ j
for the leader, using the following

sets of variables:

– l j,n,k and l j,n,k are binary variables denoting the lower and upper triangles, respec-
tively, used for evaluating the convex combinations for n ∈ {1, . . . , Nμ}, k ∈
{1, . . . , Nλ}, j ∈ J . In a feasible solution, these variables equal 1 if the point of
interest falls inside their associated triangle, and 0 otherwise.

– s j,n,k represents the weight of the convex combination associated with the vertices
of the triangle containing the point of interest.

– u and w hold the approximated values of
λ j

μ j − λ j
and

1

μ j − λ j
, respectively.

The following constraints allow to linearize
λ j

μ j − λ j
and

1

μ j − λ j
in the original

model. Since they are not defined for μ j = 0, by convention, we set them to 0,
whenever μ j = 0. The motivation is that users cannot patronize a facility offering no
service, yielding a null waiting time at facilities. To accommodate this, the summation
starts at n = 2 in constraints (30) and (31).

Nμ∑

n=1

Nλ∑

k=1

(
l j,n,k + l j,n,k

)
= 1 j ∈ J1 (25)
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s j,n,k ≤ l j,n−1,k + l j,n−1,k−1 + l j,n,k+l j,n,k + l j,n−1,k−1 + l j,n,k−1

j ∈ J1; n ∈ {1, . . . , Nμ}; k ∈ {1, . . . , Nλ}
(26)

Nμ∑

n=1

Nλ∑

k=1

s j,n,k = 1 j ∈ J1 (27)

λ j =
Nμ∑

n=1

Nλ∑

k=1

s j,n,k λ̃
nk j ∈ J1 (28)

μ j =
Nμ∑

n=1

Nλ∑

k=1

s j,n,kμ̃
n j ∈ J1 (29)

w j =
Nμ∑

n=2

Nλ∑

k=1

1

μ̃n − λ̃nk
· s j,n,k j ∈ J1 (30)

u j =
Nμ∑

n=2

Nλ∑

k=1

λ̃nk

μ̃n − λ̃nk
· s j,n,k j ∈ J1 (31)

l j,n,k, l j,n,k ∈ {0, 1} j ∈ J1; n ∈ {1, . . . , Nμ}; k ∈ {1, . . ., Nλ}
(32)

0≤ s j,n,k ≤ 1 j ∈ J1; n ∈ {1, . . . , Nμ}; k ∈ {1, . . . , Nλ}
(33)

l j,n,0 = 0, l j,n,0 = 0 j ∈ J1; n ∈ {0, . . . , Nμ}. (34)

l j,n,Nλ = 0, l j,n,Nλ
= 0 j ∈ J1; n ∈ {0, . . . , Nμ} (35)

l j,0,k = 0, l j,0k = 0 j ∈ J1; k ∈ {0, . . . , Nλ} (36)

l j,Nμ,k = 0, l j,Nμ,k = 0 j ∈ J1; k ∈ {0, . . . , Nλ}. (37)

We perform a similar linearization for the competitor. Recall that, in this case, the
service rate, μ j , is constant. We introduce variables, l̂, ŝ ŵ and û, having similar

meaning to their leader counterparts. Given wmax, we compute λ̂
j
max = μ j − 1/wmax,

and we sample the interval [0, λ̂ j
max] using Nc points λ̂ jn, n ∈ {1, . . . , Nc} such that

λ̂ jn < λ̂ jm for all 1 ≤ n < m ≤ Nc, and obtain the linearization

Nc∑

n=1

ŝ j,n = 1 j ∈ Jc (38)

λ j =
Nc∑

n=1

ŝ j,n λ̂
jn j ∈ Jc (39)

ŵ j =
Nc∑

n=1

1

μ j − λ̂ jn
· ŝ j,n j ∈ Jc (40)
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û j =
Nc∑

n=1

λ̂ j,n

μ j − λ̂ jn
· ŝ j,n j ∈ Jc (41)

Nc∑

n=1

l̂ j,n = 1 j ∈ Jc (42)

ŝ j,n ≤ l̂ j,n + l̂ j,n−1 j ∈ Jc; n ∈ {1, . . . , Nc} (43)

l̂ j,n ∈ {0, 1} j ∈ Jc; n ∈ {1, . . . , Nc} (44)

0 ≤ ŝ j,n ≤ 1 j ∈ Jc; n ∈ {1, . . . , Nc} (45)

l̂ j,0 = 0, l̂ j,Nc = 0 j ∈ Jc. (46)

At last, the complementarity constraints Eq. (8) are linearized through the intro-
duction of binary variables and big-M constants as follows:

ti j + αw j + β p j − γi ≤ M2,i si j i ∈ I ; j ∈ J1 (47)

ti j + αŵ j + β p j − γi ≤ M2,i si j i ∈ I ; j ∈ Jc (48)

xi j ≤ M3,i (1 − si j ) i ∈ I ; j ∈ J (49)

si j ∈ {0, 1} i ∈ I ; j ∈ J . (50)

The values of M2,i and M3,i must be sufficiently large not to forbid feasible solutions,
but not too large that they slow down the enumeration algorithm, due to a weak
continuous relaxation. Based on the network’s parameters, the following ‘tight’ values
for M2,i and M3,i hold:

M2,i = max
j∈J

{ti j } + αwmax + β pmax

M3,i = di .

Putting together all linear terms yields the following MILP approximation of P:

PL:

max
y,c,x,γ

z= − 1

β

∑

i∈I

∑

j∈J

ti j xi j− α

β

∑

j∈J1

u j− α

β

∑

j∈Jc

û j+
∑

i∈I

di
β

γi −
∑

i∈I

∑

j∈Jc

p j xi j −
∑

j∈J1

(
fc · y j+vc · μ j

)

s.t. ti j + αw + β p j − γi ≥ 0 i ∈ I ; j ∈ J1

ti j + αŵ + β p j − γi ≥ 0 i ∈ I ; j ∈ Jc

constraints (4)−(6), (10)−(13), (25)−(50).

(51)

An interesting feature of this reformulation–linearization is that, since we use the
same set of variables and constraints to approximate two different functions simulta-
neously, the number of variables is greatly reduced. This would not be the case if we
were to linearize separately the waiting time and the bilinear terms xi j p j present in
the original formulation.
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Table 1 Instances characteristics
for each problem size

Problem size

15 nodes 20 nodes 25 nodes

No of demand nodes 15 20 25

No of location nodes 15 20 25

No of competitor nodes 4–5 5–8 6–8

Travel time 0–150 0–150 0–150

Demand rate 1–50 1–70 1–50

Competitor service rate 1–120 25–210 20–110

Competitors prices 8–20 9–25 6–20

The last four rows display the range of uniform random variables

Another interesting feature of this reformulation is the pseudolinearity of the func-
tions replacing the bilinear terms in the objective. Although we do not exploit this
property directly, we expect the linearization to be well behaved.

Finally, an alternative algorithmic approach based on the power-based transforma-
tion originally proposed in Teles et al. (2011) was initially implemented but did not
perform satisfactorily. The main idea is to transform nonlinear polynomial problems
into an MILP, by applying a term-wise disaggregation scheme, notwithstanding, with
additional discrete and continuous variables. Kolodziej et. al incorporate this technique
into a global optimization algorithm for bilinear programs (Kolodziej et al. 2013). The
authors argue that this technique scales better than the piecewiseMcCormick envelopes
and is comparable with global optimization solvers.

For the sake of completeness, and to warn other researchers tempted by that path,
we thought it is useful to mention it. The interested reader can find it in the appendix
of this Ph.D. thesis (Dan 2018).

4 Experimental setup and results

The algorithm has been tested on randomly generated data.We focused on challenging
instances, in which, at optimality, the number of open facilities represents more than
one-fifth of the nodes. Our experiments have been conducted on synthetic data, where
ten instances (numbered 0–9) were generated for each problem size, the latter defined
as the total number of nodes (location and demand). Table 1 displays the network
features for 15-, 20- and 25-sized problems. The competitors’ service rates have been
adjusted such that the entire demand could be satisfied before the entrance of the new
firm. In order to generate challenging instances, the combinations of fixed and variable
costs were chosen such that there exist feasible solutions yielding nonnegative profit
involving a large (more than half) number of open facilities.

Travel times were generated as follows. First, the networks were split into 4 to 7
components, and the distances between nodes were set to random values in the interval
(0, 50). Next, we ensured that the graph was connected by setting the distance between
random pair of nodes to some large number (100). This operation was performed such
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Table 2 CPU time (seconds) on 15-node networks for different number of samples

Test # # of samples (λ and μ)

5 10 20 30 40 60 (gap%)

1 4 9 25 9473 1363 14,205

2 14 20 110 398 3883 86,409 (10.95)

3 9 26 30 361 19,837 86,404 (9.97)

4 4 32 172 13,814 21,694 34,066

5 6 18 149 11,025 52,951 73,124

6 2 5 54 5982 18,408 86,402 (1.03)

7 5 15 92 18,006 8831 86,402 (3.94)

8 3 11 51 3535 9160 86,402 (1.86)

9 2 10 88 30,486 24,153 86,402 (8.22)

10 1 9 52 8010 9830 1406

Average 5 14 82 10,109 17,011 64,122 (3.60)

as to generate challenging instances where the optimal solution would involve more
than one open facility.

All procedures were implemented in Java, and the MILP formulations were solved
by IBM CPLEX Optimizer version 12.6. The tests were performed on a computer
equipped with 96 GB of RAM, and two 6-core Intel(R) Xeon(R) X5675 processors
running at 3.07GHz. The default values of the parameters α and β were set to 20
and 10, respectively, unless specified otherwise. In all tests, the maximum tree size
was set to 30GB. Throughout this section, the estimated objective refers to the MILP
objective value as returned by CPLEX, whereas the recovered objective is computed
as follows: decision variables (locations, service levels and prices) were set to the
optimal values found by CPLEX, and the convex lower-level optimum was solved
to optimality, using Frank–Wolfe algorithm. The obtained solution (arrival rates at
facilities) were then plugged into the objective function of the original formulation in
order to obtain its associated objective value.

4.1 Solving theMILP with different number of samples

An initial set of experiments was intended to assess the performance of the linear
approximation method. The algorithm was stopped as soon as the optimality gap
dropped below CPLEX’s default value (10−4), the 86,400 s (24 h) limit was reached,
or the tree size exceeded 30GB. Tables 2, 3 and 4 report the CPU needed, for various
number of approximating samples or linear segments. The relativeMILP gap is shown
in percentage, next to the CPU. The gap is omitted if the algorithm terminated at
optimality (i.e., gap < 10−4).

For five and ten samples, the algorithm needs less than 100 s, and on average less
than 35 s, to reach optimality. The CPU increases abruptly with the number of samples,
which is to be expected. For 15-node networks, all tests finished at optimality when
the number of samples is lower than 60. However, six over ten instances exceeded

123



78 T. Dan et al.

Table 3 CPU time (seconds) on 20-node networks for different number of samples

Test # # of samples (λ and μ)

5 10 20 (gap%) 30 (gap%) 40 (gap%)

1 22 94 1459 64,348 (0.30) 86,402 (5.17)

2 6 15 1297 59,626 77,542

3 12 52 86,401 (3.60) 86,403 (0.95) 86,402 (2.04)

4 7 24 1035 1853 86,401 (0.24)

5 13 20 86,402 (0.27) 86,402 (6.12) 86,401 (4.76)

6 7 13 782 86,402 (0.13) 52,097 (0.75)

7 6 27 228 30,892 86,401 (1.73)

8 7 20 305 2462 28,330

9 20 78 86,401 (0.07) 86,401 (0.04) 86,402 (6.71)

10 3 9 146 86,401 (0.56) 18,096

Average 10 35 26,446 (0.39) 59,119 (0.81) 69,447 (2.14)

Table 4 CPU time (seconds) on 25-node networks for different number of samples

Test # # of samples (λ and μ)

5 10 20 (gap%) 30 (gap%) 40 (gap%)

1 3 5 143 86,402 (0.59) 22,702 (0.48)

2 9 23 259 5891 (2.25) 86,403 (3.97)

3 2 11 233 78,143 (0.50) 37,895 (1.15)

4 8 32 86,401 (0.73) 25,010 (0.84) 16,177 (2.51)

5 8 24 86,413 (0.76) 86,401 (4.18) 86,403 (5.14)

6 4 12 58,331 68,406 (2.43) 86,403 (2.27)

7 3 24 86,402 (2.40) 15,545 (3.08) 7,864 (3.88)

8 5 30 9650 86,405 (3.12) 71,371 (2.50)

9 2 16 170 6633 (0.69) 68,635 (0.54)

10 3 17 9127 (0.36) 86,402 (1.57) 8,789 (4.10)

Average 4 19 33,713 (0.43) 54,524 (1.93) 49,264 (2.65)

the allotted time or memory when using 60 samples. For larger, 20-node networks,
the algorithm terminated at optimality on very few instances, when using more than
30 samples, and ran out of time on all 25-node network instances. Figure 5 displays
the algorithm’s average behaviour over all 20- and 25-node instances, respectively.
Both charts suggest that the good solutions are found in the early stages, while the
remaining steps are used to close the gap and prove optimality.

The increase in the running time is compensated by an improvement in the approx-
imation quality, as illustrated in Fig. 6. These charts show averages over all instances
that were able to find feasible solutions on all tests, within 24 h. For this reason,
instances 9 and 5 were removed from the 20- and 25-node tests, respectively. The
difference between the estimated (MILP) optimal objective value and the recovered
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Fig. 5 Variation of estimated (MILP) and recovered objective value with respect to time

Fig. 6 Evolution of the MILP objective value (‘Estimated’) and the true objective value (‘Recovered’), as
the number of samples increases

one is decreasing with the increase in the number of samples, suggesting a solid
improvement in the quality of the approximation. Note that not all instances finished
to optimality, but they were within 6 relative gap.

4.2 Amatheuristic approach

After careful inspection of the solutions, we have noticed that the number of facilities
opened at optimality does not vary significantly with the number of samples, nor with
the allotted execution time (on average around 5–7 are opened for the 20 and 25-node
instances). This suggests that quasi-optimal locations are found on the early stages of
the algorithm, or for coarse approximations.

Next, we assessed the quality of these opened facilities, restricting the problem
to the determination of price and service levels, which remains a difficult nonlinear
bilevel problem.Wenowsolve the linearizedproblemPLusing the following algorithm
whose main steps are:

I. Solve PL for a small number of samples and a limited time.
II. Retrieve the locations associated with the incumbent.
III. Solve PL, where locations are fixed from step II, using a more fine-grained

sampling, for a limited time.
IV. Retrieve the associated solution (μ and p) and compute the lower-level equilib-

rium required to obtain the true objective. This last operation can be achieved
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Table 5 Objective value comparison on 20-node networks, when 40 samples are used for linearization,
locations are fixed and the CPU is limited to 1 h in total (including the warm start)

Test # 40 samples, 1 h in total 40 samples,
1 h

50 samples,
1 h

50 samples,
24 h

From 5
samples

From 10
samples

From 30
samples,
30 min

1 3454.01 3454.01 3454.01 345.14 – 3455.85

2 4931.14 4931.14 4931.14 4931.14 4933.98 4933.98

3 10,083.30 10,083.30 10,091.46 10,091.46 – 10,145.76

4 4892.30 4892.30 4892.30 4892.30 4887.66 4887.66

5 5106.06 5862.84 5788.60 5757.25 6219.17 6201.88

6 4200.60 4200.60 4200.60 4200.60 4227.83 4227.83

7 4398.22 4398.22 4201.22 4345.16 4401.96 4401.96

8 3141.79 3141.79 3141.79 3141.79 3154.11 3154.11

9 3318.63 3318.63 3318.63 3291.84 3325.85 3354.89

10 – – – – – –

by solving a convex program. To this purpose, we implemented the classical
Frank–Wolfe algorithm.

This matheuristic version of our algorithmic approach has been tested on instances
involving 5, 10 and 30 samples, and a time limit of 30 min, at step I, and 40 samples
and a time limit of 1 h in total, for all three steps. Tables 5 and 6 show the comparison
between the values obtained in this way, and the objective values yielded by the
original algorithm for 40- and 50-sample approximations, with running time limited
to 1 h, and a 50-sample approximation running for 24 h, for 20- and 25-node networks,
respectively.

For the 20-node networks, the best performance corresponds to the ten-sample
starting point. On one instance, it outperformed the 50-sample approximation, and on
eight instances, it falls, on average, within 2.4% of the optimum found by the latter, at
a much smaller computational cost (1 h for the ten-sample starting point as opposed to
24 h for the 50 samples). On most tests, the deviation is less than 1%, but the average
is increased by an outlier (instance # 5) that has an error of 11%. The five- and 30-
sample starting point yields similar results. In almost all cases in which the 40- and
50-sample algorithm finds an initial solution in 1 h, such a solution is as good, or even
better than the 40-sample boosted by the ten-sample locations. However, the boosted
version looks more robust.

Table 6 tells a similar story about the 25-node networks. On almost half of the
instances, the 30-sample starting point outperforms the 50-sample approximation,
and on the other half of instances, it falls, on average, within 0.3% of the optimum,
and at a much smaller computational cost (1 h for the 40-sample starting point as
opposed to 24 h for the 50 samples). When the 40- and 50-sample algorithm finds
an initial solution in 1 h, such a solution is equally good, or even better than the 40
samples boosted by the 30 samples locations.
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Table 6 Objective value comparison on 25-node networks, when 40 samples are used for linearization,
locations are fixed and the CPU is limited to 1 h

Test # 40 samples, 1 h in total 40 samples,
1 h

50 samples,
1 h

50 samples,
24 h

From 5
samples

From 10
samples

From 40
samples,
30 min

1 2783.93 2783.93 2820.28 2820.28 2840.15 2840.15

2 3653.74 3751.08 3775.86 3775.86 – 3775.44

3 3531.34 3531.34 3549.39 3549.39 3550.34 3550.34

4 3477.32 3477.32 3482.76 3482.76 – 3482.60

5 3793.96 3841.20 3849.36 3849.36 3793.38 3849.02

6 3211.12 3211.12 3223.18 3223.18 – –

7 3401.53 3441.98 3450.50 3450.50 3427.26 3452.59

8 2881.09 2881.09 2881.09 2881.07 – 2883.04

9 4590.49 4590.49 4590.49 4590.49 4590.80 4592.41

10 4277.79 4277.79 4304.77 4353.92 4347.62 4347.62

These results demonstrate that ‘good’ locations are found in the initial stages of
the algorithm. From an execution time point of view, it is advantageous to stop the
algorithm early on, retrieve the locations and then solve for optimal service levels and
prices, using a limited number of samples, for a small running time.

4.3 Comparison with general-purpose solvers

Finally,we compare our linear approximation algorithmwith a general-purpose solvers
for mixed-integer nonlinear optimization problems, such as BARON. We have mea-
sured the objective values yielded by BARON, and we compare them with the results
of our reformulation technique run for 1000s.

Next, we attempted to improve the solutions found by our algorithm, using IPOPT,
an open-source software for large-scale nonlinear optimization based on a primal–dual
interior-point algorithm (Wächter and Biegler 2006). For this experiment, we fixed the
locations given by a 30-sample approximation within 1 h, yielding a fully continuous
restricted problem.We have warm-started IPOPTwith the respective 30-sample price,
service levels and user flows. The results are shown in Table 7.

All BARONand IPOPT tests were run for 1000 s on theNEOS server, on computers
equipped with 64 GB of RAM, and processors running at a frequency between 2.2
and 2.8 GHz.1

Our reformulation technique clearly outperforms BARON on all instances. IPOPT
is capable of improving the initial solution only in three instances while, on the others,
the solution worsens significantly. On one instance, marked with * in the table, the

1 A detailed description of the NEOS server computers’ specifications can be found here https://neos-
guide.org/content/FAQ.
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Table 7 Objective value comparison with BARON and IPOPT on 20-node networks

30 samples (1000s) BARON (1000s) y from30 samples, 1h,
IPOPT (1000s)

1 3454.28 3330.10 3139.12

2 4932.44 4444.79 3625.29

3 9926.58 9385.23 6147.16

4 4891.93 4323.95 3053.51

5 5336.68 4446.12 5195.17

6 4105.17 3901.16 3965.02

7 4426.14 3789.63 * −6419.41

8 3093.31 2550.13 2852.44

9 3215.63 2666.95 2374.10

10 4053.45 2689.02 667.08

objective value is negative, despite being warm started with a good (positive) solution,
likely indication of numerical difficulties.

5 Conclusions

In this paper, we addressed a highly nonlinear bilevel pricing location model involving
both combinatorial and continuous elements and proposed for its solution an algorithm
based on reformulation and piecewise linear approximations.

Our results are encouraging, but our algorithms have some limitations. For instance,
one of the remaining challenges is to design algorithms that scale well and can be
applied successfully on large networks.

Future work could integrate other realistic features, such as variable demand. On
the algorithmic side, an interesting development could be a method that exploits the
pseudolinearity property of the nonlinear terms present in the reformulated objective
function.
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