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Abstract
We consider amodel of two parties’ competition organized as a Stackelberg game. The
parties open their facilities intending to maximize profit from serving the customers
that behave following a binary rule. The set of customers is unknown to the party
which opens its facilities first and is called the Leader. Instead, a finite list of possible
scenarios specifying this set is provided to the Leader. One of the scenarios is to be
realized in the future before the second party, called the Follower, would make their
own decision. The scenarios are supplied with known probabilities of realization,
and the Leader aims to maximize both the probability to get a profit not less than a
specific value, called a guaranteed profit, and the value of a guaranteed profit itself.We
formulate the Leader’s problem as a bi-objective bi-level mathematical program. To
approximate the set of efficient solutions of this problem, we develop an ε-constraint
method where a branch-and-bound algorithm solves a sequence of bi-level problems
with a single objective. Based on the properties of feasible solutions of a bi-level
program andmathematical programming techniques, we developed three upper bound
procedures for the branch-and-bound method mentioned. In numerical experiments,
we compare these procedures with each other. Besides that, we discuss relations of
the model under investigation and the stochastic competitive location model with
uncertain profit values.
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1 Introduction

Consider a situationwhen a firm enters themarket by opening facilities providing some
service to customers. In general, a decision about facilities’ location must anticipate
the competitors’ reaction which is rational and prescribed by a solution of some opti-
mization problem. Competitive nature of the process cannot be ignored since facilities’
income depends on the further actions of competitors. We assume that there is a single
competitor on the market or all the competitors can be aggregated into a single one.
Then, we can consider the party locating facilities as the Leader in a Stackelberg game
(Stackelberg 1952). The second player of this game, called the Follower, represents
the competitor who makes its decision when knowing the Leader’s one.

Parameters of demand for products or services, provided by the competing par-
ties, are affected by many factors and are hardly predictable. Besides the uncertainty
inherent to predicted data, the demand is sensitive to external factors influencing its
structure such as economic and political circumstances. We assume the Leader to con-
sider a finite number of possible demand scenarios. Each scenario fully characterizes
the set of customers with their attributes and has a known probability of realization.
One of the scenarios will be implemented in the future, but, at the moment of making a
decision, the available information is insufficient to determine which one it would be.

In a Stackelberg game framework, the Follower decides after the Leader. It provides
the Follower with knowledge about the location of the Leader’s facilities. Moreover,
additional pieces of evidence about the demand scenario reveal themselves, so the
Follower can distinguish the scenario realized beforemaking their own decision. Thus,
unlike the Leader, the Follower is in a situation of full information when all the
uncertainties have vanished. In this aspect, the BCompFLP can be considered as a
so-called two-stage model, where decisions referred to as here-and-now decisions
are made before revealing the values of uncertain parameters. When these values
are known, other decisions called wait-and-see are computed. In this terminology,
the Leader’s location decisions are here-and-now decisions, whereas the Follower’s
location and customer’s distribution are wait-and-see decisions since these values are
computed when the scenario is implemented.

Similarly to maximization facility location problem (Krarup and Pruzan 1983), we
assume the parties to maximize their profit calculated as an income from service the
customers minus fixed costs of open facilities. In a situation of uncertain demand
scenario, the Leader’s income is a random variable with a discrete distribution. To
compare different Leader’s solutions with each other, numeric characteristics of the
income distribution such as expected value, value-at-risk (VaRα), conditional value-
at-risk (CVaRα), and others could be used (Rockafellar and Uryasev 2002). The
expectation is naturally the most widely used metric. In the paper (Yanıkoğlu and
Kuhn 2018), the Leader’s objective function includes a mathematical expectation of
the revenue from serving the customers with uncertain demand volumes. The authors
consider the lower-level problem to be a linear programming problemwith continuous
variables. In our case, the wait-and-see variables are involved into the Follower’s
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location problem having a form of mixed-integer programming problem (MIP) being
significantly harder. We assume that the Leader maximizes a guaranteed profit instead
of the average one. At the same time, the Leader might be interested in knowing not
only the safest and conservative solution but more risky and profitable ones as well.
To satisfy this need, we supplement the Leader’s problem with the second objective
function, representing a probability of obtaining a guaranteed profit. Following this
way, we come to a bi-objective competitive facility location problem (BCompFLP),
where both the Leader’s profit and the probability of getting it are maximized on the
upper level. The lower-level problem of the BCompFLP is to maximize the Follower’s
profit in each of the scenarios.

Possible applications for the BCompFLP may arise when there are several projects
of reformations. For instance, a modification of the transportation system alters an
attainability of facilities. Reformation of the taxation scheme affects the prices and,
consequently, the demand of customers. Thus, each reformation project specifies
customers’ behavior and characterize an individual scenario. In this situation, the
probability of scenario implementation can be estimated by experts who are famil-
iar with practices of decision-making in reformation processes. Another application
case is the presence of different economic predictions provided by many experts. The
buying power of the customers and their interest in a certain kind of products or ser-
vices depends on the economic situation. The Leader may build scenarios based on
parameters predicted by experts, and the probabilities of scenarios implementation can
be coherent to the authority of the experts and their level of confidence. Finally, the
scenarios are generated by sampling the demand parameters from some anticipated
distribution when sample approximation (Emelogu et al. 2016) is applied to solve the
Leader’s problem with stochastic demand. All the scenarios are equiprobable in the
sample approximation problem, so this special class of BCompFLP instances, where
the probabilities of realization are equal, is of particular interest.

The current state of the competitive location area is shown in detail by the most
recent reviews (Kress and Pesch 2012; Karakitsiou 2015; Ashtiani 2016; Aras and
Küçükaydın 2017). To put the present paper into the context of existing studies, we list
the most significant modeling and algorithmic approaches to competitive location. As
it is noticed in Spoerhase (2010) andAshtiani (2016), the ingredients of the competitive
locationmodels are the space to establish facilities in, the customer behavior rule used,
the demand type, the possibility of redesign or relocate facilities, and other factors.
Besides, we refer to a review (Farahani et al. 2010) observing objective function types
used in multi-criteria location problems.

The underlying space where the parties locate their facilities is considered to be
either continuous or discrete. In continuous formulations, a facility can be placed at
any of an infinite number of points from the continuous space such as Euclidean plane
(Davydov et al. 2014; Saiz et al. 2009) or edges of a graph representing a transportation
network (Bandyapadhyay et al. 2015). The present paper considers a discrete location
model where the set of potential location is finite and can be represented by an abstract
finite set or a set of graph nodes.

Regarding the customers’ behavior model, in most cases, an initial point is a
definition of utility perceived by a customer from being served by a facility. Depend-
ing on aspects taken into account by the model, the utility is assumed to be a
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function of traveling distance, quality of the facility, service prices, and other mea-
surable factors. From the computed utilities, two kinds of behavior can be simulated
(Santos-Peñate et al. 2007). In proportional behavior rule, a customer’s demand is
split among the open facilities in proportion to utility values. Models incorporating
this rule are burdened by nonlinearities expressing the proportions and can be applied
to problems of simultaneously choosing the location and design of new facilities. A
short communication onmodels with a particular case of proportional rule calledHuff-
like or gravity-based rule is given in Fernández and Hendrix (2013). A cover-based
proportional rule, where the demand is equally split among the facilities covering the
customer by their spheres of influence, is presented in Drezner et al. (2015). Instead of
visiting all the facilities producing nonzero utility, a customer might choose a single
facility to get service from by maximizing the utility value perceived. In this case, we
come to a binary behavior rule. Generally, additional assumptions must be made to
break ties between facilities producing the same utility value. This issue is discussed
in detail in Pelegrín et al. (2015). If the utility value depends only on the location of the
facility and all the utility values perceived by a customer are different, we come to a
situation when the customer is associated with an order defined on the set of potential
facility locations. Based on the utility values, the customer may compare any couple
of facilities and decide which one they would prefer to another. In the present paper,
we assume the customers to be accompanied with linear-order relations representing
their preferences. Binary behavior rule can be formulatedwith linear inequalities and is
suitable for modeling the demand for homogeneous products. Polyhedral properties of
formulations for this rule are studied inVasilyev et al. (2013) andCanovas et al. (2007).

Due to the high computational complexity of bi-level programming problems,
multi-objective formulations are studied rarely in the literature. In Uno and Katagiri
(2008), the authors consider a problem to prevent an attacker from reaching important
nodes of the network. The Leader is a protection planner who opens defensive facil-
ities at some nodes, while the Follower, an attacker, minimizes an amount of energy
consumed while moving toward the important nodes. In the multi-objective formula-
tion, for each of the important nodes, a corresponding objective represents the amount
of energy the attacker has when it reaches the node. The authors propose a heuristic
approach to find satisfactory solutions. A series of works (Fernández and Tóth 2009;
Redondo et al. 2015) focuses on single-level nonlinear continuous competitive loca-
tion problems with two objectives: maximizing both the market share and the profit
obtained. In Gang et al. (2015) and references therein, evolution-based approaches are
utilized to solve some industrial problems formulated in terms of multi-objective bi-
level programming. Finally, in Alekseeva et al. (2017), the authors consider a bi-level
location problem where the lower-level problem has several objectives. That case is
complicated even in terms of definitions since multiple incomparable solutions of the
lower-level give different values to the Leader’s objective function. The authors over-
come terminological and computational difficulties and propose a hybrid procedure
to obtain near-optimal solutions for the upper-level problem.

The papers (Beresnev 2014; Hemmati and Smith 2016) consider formulations,
closely related to the one studied in the present paper. They propose exact algorithms
to maximize the Leader’s profit in a case when the demand scenario is known. The
algorithms implement the branch-and-bound approach and the cut generation scheme,
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respectively. In contrast to Beresnev (2014), in Hemmati and Smith (2016), another
interpretation of the location model is given where competing parties choose products
to place on themarket. Customers buy themost preferable product, whereas, according
to free choice of supplier rule used both in Beresnev (2014) and in the present paper, a
party can serve the customer by any facility which is preferred to all the competitor’s
ones.

In the present paper, we suggest an ε-constraint method (Ehrgott 2006) to find an
approximation of the Pareto frontier of BCompFLP. It consists in solving a series of
single-objective bi-level subproblemswhere the value of the second Leader’s objective
function, representing a probability of getting a guaranteed profit, is bounded from
below. Models of that type were considered in Ivanov and Morozova (2016) where a
local search procedure is suggested to find a good Leader’s solution. In Melnikov and
Beresnev (2016), we have formulated an estimating problem in the form of MIP pro-
viding an upper bound for the single-objective subproblem. Two reformulations of the
estimating problem have been suggested as well. In the present work, we incorporate
the suggested upper bound procedures into an implicit enumeration scheme called as
a subroutine in the ε-constraint method. To investigate the efficiency of elements of
this scheme, we perform numerical experiments with artificial data. Besides studying
the efficiency of the procedures developed, we explore connections of BCompFLP
with stochastic competitive location model where profit values are random parame-
ters with known distribution. In our experiments, we inspect the distribution of the
Leader’s objective function and try to answer the question if sample approximation of
the stochastic problem can be utilized to get quality solutions of the initial problem.

Thepaper is organized as follows: InSect. 2,we introduce all the necessary notations
and formalize the BCompFLP in terms of bi-level integer programming. Concepts of
feasibility are carefully discussed as well. The key ingredients of the proposed method
such as the branch-and-bound scheme to solve a constrained Leader’s problem and
the upper bound procedures utilized are presented in Sect. 3. Computational study of
the proposed procedures and experimental results are given in Sect. 4. Finally, Sect. 5
concludes the paper.

2 Mathematical model

Before formalizing the Leader’s problem, let us introduce some auxiliary terminology.
When taking risks, the Leader may consider only some of the scenarios available and
make a more specific decision leading to higher income. We call these scenarios
active, and the other ones inactive, respectively. The least profitable active scenario
determines the value of a guaranteed income, i.e., a tight lower bound for the value of
income in a case when the scenario realized is an active one.

In the mathematical model of BCompFLP, we use the following index sets:

I = {1, . . . ,m} is a set of locations available to open facilities;
S = {1, . . . , l} is a set of possible scenarios;
Js is a set of customers’ indexes in the scenario s ∈ S.

Without loss of generality, we assume that Js1 ∩ Js2 = ∅ for all s1, s2 ∈ S, s1 �= s2.
This assumption is not restrictive since any customer appearing in several scenarios can
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be duplicated so that all the copies would have different indexes. Let J = ⋃
s∈S Js =

{1, . . . , n} denote the set of all customers’ indexes.
The list of input parameters for BCompFLP consists of

fi , the fixed cost of opening the Leader’s facility i ∈ I ;
gi , the fixed cost of opening the Follower’s facility i ∈ I ;
ci j , the income of the Leader’s facility i from serving the customer j ∈ J ;
di j , the income of the Follower’s facility i from serving the customer j ∈ J ;
ps , the probability of realization of scenario s ∈ S.

Finally, we use the following binary variables.

xi is equal to one, if the Leader opens facility i , and zero otherwise;
zsi is equal to one, if the Follower opens facility i ∈ I in the scenario s ∈ S, and
zero otherwise;
xi j is equal to one, if the Leader’s facility i ∈ I is assigned to serve the customer
j ∈ J , and zero otherwise;
zi j is equal to one, if the Follower’s facility i ∈ I is assigned to serve the customer
j ∈ J , and zero otherwise;
δs is equal to one, if the scenario s ∈ S is active, and zero otherwise.

We assume that each customer is served by a single facility chosen with respect to
customer’s preferences represented by a linear order on the set I . Given i1, i2 ∈ I ,
j ∈ J the relation i1 � j i2 means that for the customer j , either i1 is more preferable
than i2 or i1 = i2. If i1 � j i2 and i1 �= i2, then we use the notation i1 � j i2. The
greatest element of a non-empty subset I ′ ⊆ I according to the order � j is denoted
with α j (I ′) = {i ′ ∈ I ′|i ′ � j k ∀k ∈ I ′}. Given a nonzero Boolean vector v = (vi ),
i ∈ I , we set α j (v) = α j ({i ∈ I |vi = 1}).

By using the introduced notations, the BCompFLP can be written as the following
a bi-objective bi-level program:

max
(xi ),(xi j ),(δs )

⎛

⎝−
∑

i∈I
fi xi + min

s∈S|δs=1

∑

i∈I

∑

j∈Js

ci j xi j

⎞

⎠ , (1)

max
(xi ),(xi j ),(δs )

∑

s∈S
psδs, (2)

xi ≥ xi j , i ∈ I , j ∈ J ; (3)
∑

i∈I
xi j ≤ δs, s ∈ S, j ∈ Js; (4)

z̃si +
∑

k∈I |i� j k

xk j ≤ 1, i ∈ I , s ∈ S, j ∈ Js; (5)

xi , δs, xi j ∈ {0, 1}, i ∈ I , j ∈ J , s ∈ S; (6)

(z̃si ), (z̃i j ) solves the Follower’s problem: (7)

max
(zsi ),(zi j )

∑

s∈S

⎛

⎝−
∑

i∈I
gi z

s
i +

∑

i∈I

∑

j∈Js

di j zi j

⎞

⎠ , (8)
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zsi ≥ zi j , i ∈ I , s ∈ S, j ∈ Js; (9)

xi +
∑

k∈I |i� j k

zk j ≤ 1, i ∈ I , j ∈ J ; (10)

xi + zsi ≤ 1, i ∈ I , s ∈ S; (11)

zsi , zi j ∈ {0, 1}, i ∈ I , j ∈ J , s ∈ S. (12)

The first objective function (1) of the upper-level problem represents the Leader’s
guaranteed profit calculated as fixed costs subtracted from the guaranteed income. The
second Leader’s objective (2) is to maximize the total probability of active scenario
realization. Inequalities (3) forbid to serve customers from closed facilities; (4) guar-
antee that customers from active scenarios cannot be served by more than one facility;
(5) ensure that the customer is served with a facility which is more preferable than
any competitor’s one.

The lower-level objective function (8) is a sum of profit values obtained by the
Follower in all the scenarios. Its maximization is equivalent to maximizing the profit
for each scenario individually. The constraints (9) and (10) have the same meaning
as the upper-level constraints (3) and (5), respectively. Finally, the inequalities (11)
provide that the Follower does not open facility in locations occupied by the Leader.

For brevity, further, we use the following vector notations. Vectors of Leader’s and
Follower’s location variables’ values (xi ), i ∈ I , and (zsi ), i ∈ I , s ∈ S, are denoted by
x and z, correspondingly. Similarly, values (δs) are stored in the vector δ. Assignment
matrices (xi j ) and (zi j ), i ∈ I , j ∈ J , are denoted by X and Z, respectively. Given x,
we denote the problemF , where the corresponding values of xi , i ∈ I , are introduced
into the inequalities (10), (11), by F(x). Analogously, the problem L with the value
of z in the constraints (5) is denoted byL(z). Whole model (1)–(12) is further referred
to as (L,F).

2.1 Pessimistic feasible solutions of the problem (L,F) and efficiency

Consider a triplet (X , δ, Z), where X = (x, X), Z = (z, Z).We say that it is a feasible
solution of the problem (L,F) induced by a pair (x, δ) if it satisfies constraints (3)–
(6), (9)–(12) and Z is an optimal solution of the problem F(x). To simplify the
presentation, we additionally assume that assignment variables (xi j ) and (zi j ) take
their optimal values in all the feasible solutions.

When the lower-level problem has multiple optimal solutions, it is necessary to
specify the rule to select the one to be incorporated in the upper-level problem. The
most common approach is considering optimistic and pessimistic feasible solutions
(Dempe 2002; Yanıkoğlu and Kuhn 2018). For a single-objective bi-level maximiza-
tion problem, these concepts assume that the lower-level optimal solution is chosen
which maximizes or minimizes the upper-level objective function, respectively. How-
ever, when the upper-level problem is multi-objective, it is unclear, which lower-level
solution is most or least desirable for the upper-level objective functions. This dif-
ficulty does not apply to the BCompFLP since the Follower influences the Leader’s
profit only. The set of active scenarios, determining the value of the second Leader’s
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objective function, can be chosen independently when locations and assignments of
the competing parties are known. Thus, we can base the rule of choosing the Follower’s
optimal solution on the value of the Leader’s profit. Often, a pessimistic formulation of
a bi-level problem is more difficult in terms of the existence of an optimal solution and
computing a feasible solution than an optimistic one. Here, we discuss a pessimistic
formulation, but an optimistic one can be covered with the same technique after a few
natural modifications.

Let L1(X , δ, Z) denotes the value of objective function (1) on the feasible
solution (X , δ, Z). Analogously, let L2(X , δ, Z) = ∑

s∈S psδs be the correspond-
ing value of the objective function (2). A feasible solution (X ′, δ, Z̃) induced
by the pair (x, δ) is called a pessimistic feasible solution of the problem (L,F)

if L1(X ′, δ, Z̃) ≤ L1(X , δ, Z) for any feasible solution (X , δ, Z) induced by
(x, δ).

Now we see that the pessimistic BCompFLP can be considered as a problem to
maximize an implicitly given vector-function f : {0, 1}m × {0, 1}l → R

2 such that,
for any pair of (0,1)-vectors (x, δ), we have fr (x, δ) = Lr (X , δ, Z̃), r = 1, 2, where
(X , δ, Z̃) is a pessimistic feasible solution induced by (x, δ).

To compute f(x, δ), we could find an optimal Follower’s location z̃ minimizing
the Leader’s profit in all the scenarios. Similarly to the single-scenario formu-
lation (Beresnev 2014), the procedure consists of two steps. At the first step,
we solve the problem F(x) and obtain its optimum F∗. At the second step, an
auxiliary MIP provides a Follower’s solution minimizing the Leader’s objective
function (1).

Having optimal location vector z̃s = (z̃si ) of the Follower, we compute the value
of Leader’s income from serving each of the customers:

u j = max
i |i� jα j ( z̃

s )
(ci j xi ), s ∈ S, j ∈ Js .

When δ is chosen, we can construct a pessimistic feasible solution induced by (x, δ).
If δs = 0 for some s ∈ S, then xi j = 0 for any i ∈ I , j ∈ Js . For s ∈ S such that

δs = 1, and all j ∈ Js such that u j > 0, let i j = argmaxi∈I ci j
(
xi − ∑

k|k� j i z
s
k

)
.

Then, we set xi j j = 1. For all other indexes i ∈ I , j ∈ J we set xi j = 0. The triplet

(X , δ, Z̃), X = (x, (xi j )) is a desired pessimistic feasible solution of the problem
(L,F). Now, f(x, δ) can be computed straightforwardly:

f1(x, δ) = −
∑

i∈I
fi xi + min

s|δs=1

∑

j∈Js

u j , f2(x, δ) =
∑

s∈S
psδs .

We say that the pair (x, δ) strongly dominates (x′, δ′) if f(x, δ) > f(x′, δ′). Addi-
tionally, (x, δ) dominates (x′, δ′) if f(x, δ) ≥ f(x′, δ′) and there exists r ∈ {1, 2} such
that fr (x, δ) > fr (x′, δ′). The pair (x, δ) is called (weakly) efficient if there is no other
pair that (strongly) dominates (x, δ).
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3 "-Constraint method

We have shown that BCompFLP can be considered as a problem tomaximize a vector-
function f : {0, 1}m × {0, 1}l → R

2 mapping an arbitrary pair of (0,1)-vectors (x, δ)

into the values of objective functions L1(X , δ, Z̃), L2(X , δ, Z̃) on the pessimistic fea-
sible solution (X , δ, Z̃) induced by the pair. Under solution of this problem, we would
mean the set of all efficient pessimistic feasible solutions or, in other terminology,
a Pareto frontier (Ehrgott 2006). Other objects related to a multi-objective problem
are so-called nadir points (Özpeynirci 2017) being efficient solutions with the worst
values of an individual objective function. Such solutions show the boundaries for
values of each of the objective functions. In our case, these are the “best-case” and the
“worst-case” solutions, i.e., whose ones where the set of active scenarios contains the
most profitable scenario and all the possible scenarios, respectively.

To approximate the set of efficient solutions, we develop an ε-constraint method
iteratively finding weakly efficient solutions of the Leader. On each iteration, the
objective function (1) is maximized while the function (2) is bounded from below.
Note that depending on δ, the function f2 takes value from the set P = {p′|p′ =∑

s∈S′ ps, S′ ⊆ S}. It implies that the set of weakly efficient solutions may contain up
to 2l elements. We start from some initial value of the probability threshold p0 and
solve the problem

max
x,δ

f1(x, δ), (13)

f2(x, δ) ≥ p0 (14)

by an implicit enumeration algorithm. Schematically, it is a parallel depth-first search
method with greedy branching function applied to location variables x.

The obtained solution (x∗, δ∗) is weakly efficient since, for any feasible solution
(x′, δ′) such that f2(x′, δ′) ≥ p0, it holds f1(x′, δ′) ≤ f1(x∗, δ∗). On the next iteration,
we increase the value of p0 and repeat the procedure while p0 ≤ 1.

Since the left-hand side of the constraint (14) takes values from the set P , it is
sufficient to consider all the elements of P as the probability threshold p0. Note that
if the pair (x0, δ0), where δ0 = 0, is weakly efficient, then f1(x, δ) = 0 for any
weakly efficient pair (x, δ). Thus, computing the set of weakly efficient solutions,
one may start from the initial value of p0 equal to mins∈S ps . Having the solution
(x∗, δ∗) of the problem (13)–(14), the next value of the threshold to be considered is
min{p ∈ P|p >

∑
s∈S psδ∗

s }. It is easy to see that the problem to find this value is NP-
hard since it is relative to a (0,1)-knapsack problemwith weights of items equal to their
costs. Based on additional assumptions about the values of ps , efficient approaches to
modify the threshold value p0 can be suggested. We apply a strategy to increase p0
by some predefined discretization parameter � after each iteration.

3.1 Solving a subproblem by implicit enumeration

To get an advantage of the power of modern computers, we have developed a parallel
branch-and-bound algorithm to solve a subproblem (13), (14). The algorithm is orga-
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nized in a master–worker framework. A master thread keeps all the information about
the computational process andmaintains exchanging data between worker threads. An
essential role of the master thread is balancing the load of the workers. It is performed
by splitting the unexplored part of the feasible region and assigning idling workers
to perform the searching process in the subregions obtained. Each of the workers
performs a depth-first search and informs the master about computational progress.

During the branching process, some components of the vector x become fixed to
a given value, 0 or 1. A worker stores the information about these components in a
partial solution y = (yi ) in a following way. A component yi , i ∈ I , is set to zero or
one if xi is fixed to take the corresponding value. Otherwise, yi is set to be equal to an
undetermined value “∗”. Further, we use additional notations I θ ( y) = {i ∈ I |yi = θ},
θ ∈ {0, 1, ∗}, and P( y) = {x ∈ {0, 1}m |xi = yi for all i ∈ I 0( y) ∪ I 1( y)}. The
problem L augmented with constraints xi = yi , i ∈ I 1( y) ∪ I 0( y), is further referred
to as L( y).

Having T working threads, we initialize a computation by generating T partial
solutions y1, y2, . . . , yT such that

⋃
t∈{1,...,T } P( yt ) = {0, 1}m and P( yt1)∩P( yt2) =

∅ for t1 �= t2. Further, the worker t is assigned to solve the problem L( yt ). When
a subset P( yt ) is explored, one of the workers, having a relatively large subset of
unexplored solutions, receives a command to split its workload. For a partial solution
y encoding the unexplored subset, two partial solutions y0 and y1 are generated. These
partial solutions differ from y in a single component i ∈ I ∗( y) in a such a way that
y0i = 0 and y1i = 1. A worker–donor proceeds with the partial solution y0, whereas a
worker–recipient initializes computations with y1.

An implicit enumeration of a subset P( y) relies on the upper bound for a maximum
of the function f1, which is computed by solving a specially constructed estimating
problem proposed in Melnikov and Beresnev (2016). The problem has a form of MIP
and can be tackled with a common MIP solver. Two alternative ways of computing
an upper bound, based on the mentioned model, are proposed as well. Further, we
describe all these procedures.

3.2 Estimating problemB(y)

Similarly to the single-scenario competitive location model considered in Beresnev
(2014), the upper bound for the optimumofL( y) can be obtained by solving a specially
constructed MIP. To formulate it, we compute a system of estimating subsets {I j ( y)},
j ∈ J . The algorithm of constructing the estimating subsets is given in Beresnev
(2013). The key property of these subsets is formulated in the following lemma.

Lemma 1 (Beresnev 2013) Given j ∈ J , let x ∈ P( y) and α j (x) /∈ I j ( y). Then,∑
k∈I |k� jα j (x) z̃k ≥ 1.

Further, we transform the incomematrix (ci j ) into amatrix (c′
i j )which is monotone

with respect to the preferences of customers andmajorizes (ci j ). It means that for every
j ∈ J , given i1, i2 ∈ I , the relation i1 � j i2 implies that c′

i1 j
≥ c′

i2 j
. Additionally,

c′
i j ≥ ci j for all i ∈ I , j ∈ J . Such a matrix can be constructed by setting c′

i j =
maxk|i� j k ck j for all i ∈ I and j ∈ J .
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Lemma 2 For every j ∈ J and every pessimistic feasible solution (X , δ, Z̃) of the
problem (L( y),F), the following inequality holds:

∑

i∈I
ci j xi j ≤ max

i∈I j
c′
i j xi , (15)

where maximum over the empty set equals zero.

Proof If x = 0, then the inequality holds. Assume that the condition (15) is violated
for some pessimistic feasible solution (X , δ, Z̃) of the problem (L( y),F) induced by
a pair (x, δ) with x �= 0. In this case, k = argmaxi∈I ci j xi j /∈ I j . Moreover, for any
i ∈ I j such that xi = 1 we have k � j i due to monotonicity of the matrix c′

i j . It
implies that α j (x) /∈ I j , but from Lemma 1 and conditions (5), xi j = 0 for any i ∈ I
since there exists a Follower’s facility which is more preferable for the customer j
than α j (x). Thus, we come to a contradiction. ��
By setting

c′′
i j =

{
c′
i j , if i ∈ I j ( y)
0, otherwise

for all i ∈ I , j ∈ J , we get the following estimating problem:

max
(xi ),(xi j ),(δs ),C

⎛

⎝−
∑

i∈I 1( y)
fi −

∑

i∈I ∗( y)
fi xi + C

⎞

⎠ , (16)

xi ≥ xi j , i ∈ I ∗( y), j ∈ J ; (17)
∑

i∈I\I 0( y)
xi j ≤ δs, s ∈ S, j ∈ Js; (18)

C ≤
∑

i∈I\I 0( y)

∑

j∈Js

c′′
i j xi j + Ms(1 − δs), s ∈ S; (19)

∑

s∈S
psδs ≥ p0; (20)

xi = yi , i ∈ I 0( y) ∪ I 1( y); (21)

xi , xi j , δs ∈ {0, 1}, i ∈ I ∗( y), s ∈ S; (22)

The model (16)–(22) is further referred to asB( y). Inequalities (17) and (18) are taken
from the problem L( y). Constraints (19) are the corollary of Lemma 2. Finally, the
inequality (20) bounds from below the value of the second objective function of the
Leader.

Notice that an appropriate choice of values Ms , s ∈ S, in the inequalities (19)
reduces the integrality gap of the model B( y) and speeds up the computation of the
upper bound.Given s′ ∈ S, we choose the value ofMs′ by the following rule. Firstly, for
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each s ∈ S, we compute a primitive upper bound for the sum
∑

i∈I\I 0( y)
∑

j∈Js c
′′
i j xi j

as C̄s = ∑
j∈Js maxi∈I\I 0( y) c′′

i j . Without loss of generality, let us assume that scenar-

ios are ordered in such a way that s′ = l and C̄1 ≥ C̄2 ≥ · · · ≥ C̄l−1. Let r ∈ S be
such an index that

∑
s<r ps < p0 and

∑
s≤r ps ≥ p0. If r = l, then all the scenarios

must be active, and the big-M term is unnecessary. Otherwise, we set Ms′ = C̄r . In
the following lemma, we show that this value is the tightest one which does not affect
the set of feasible solutions of the estimating problem.

Lemma 3 For any feasible solution (x, X, δ,C) of the problemB( y) such that δs′ = 0,
it holds C ≤ C̄r . There exists a feasible solution (x′, X ′, δ′,C ′) of the problem B( y)
such that δs′ = 0 and C ′ = C̄r .

Proof From feasibility of (x, X, δ,C), we have
∑

s∈S psδs ≥ p0. Let Cs =∑
i∈I

∑
j∈Js ci j xi j . The following relations hold:

C ≤ min
s|δs=1

Cs ≤ min
s|δs=1

C̄s ≤ C̄r .

The first inequality follows from (19). The second one is true due to Cs ≤ C̄s for any
s ∈ S. And the last relation results from δs′ = 0 and the choice of r .

The solution (x′, X ′, δ′,C ′) from the second part of the lemma statement can be
constructed directly. Let x ′

i = 1 for all i ∈ I\I 0( y). Further, we set δ′
s = 1 if s ≤ r

and δ′
s = 0 otherwise. For s ≤ r and any given j ∈ Js , we set x ′

k j = 1, where k =
argmaxi∈I\I 0( y) c′′

i j . It is easy to see that C
′ = mins|δ′

s=1
∑

j∈Js

∑
i∈I c′′

i j x
′
i j = C̄r .

��
The lemmas above imply the following theorem.

Theorem 1 The optimum of the problem B( y) is an upper bound for the value
maxx,δ f1(x, δ), where x ∈ P(y) and f2(x, δ) ≥ p0.

3.3 Relaxation of a largeMIP and a cutting-planemethod

ThemodelB( y) can be reformulated as aMIPwith an exponential number of variables.
Denote the set of all subsets of S with R. For each R ∈ R, we introduce a new
boolean variable uR equal to one, if the set of active scenarios is equal to R, and zero
otherwise. Additionally, we define a (0, 1)-matrix (asR), s ∈ S, R ∈ R such that
asR is equal to one, if s ∈ R, and zero otherwise. By using the above definitions, we
can replace the variables δs , s ∈ S, as δs = ∑

R∈R asRuR . An additional constraint∑
R∈R uR = 1, ensuring that the only set of active scenarios must be chosen, finalizes

the reformulation.
Numerical experiments show that the introduced large MIP is tighter than B( y) in

terms of integrality gap (Melnikov and Beresnev 2016). Direct solving such a large
model is likely to be inefficient, but its linear relaxation can be considered as an
alternative way to calculate an upper bound in a branch-and-bound scheme.We obtain
an optimum of the relaxation by solving its dual problem by a cutting-plane method
(Briant et al. 2008). The dual program is written as follows:
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min
(αs ),(β j ),(γi j ),η,λ

⎛

⎝−
∑

i∈I 1( y)
fi + λ − p0η +

∑

s∈S
Msαs +

∑

i∈I 1( y)

∑

j∈J

γi j

⎞

⎠ (23)

∑

j∈J

γi j ≤ fi , i ∈ I ∗( y); (24)

β j + γi j ≥ c′′
i jαs, i ∈ I\I 0( y), s ∈ S, j ∈ Js; (25)

∑

s∈S
αs = 1; (26)

λ ≥
∑

s∈S
asR

⎛

⎝psη +
∑

j∈Js

β j − Msαs

⎞

⎠ , R ∈ R; (27)

αs, β j , γi j , η ≥ 0, i ∈ I\I 0( y), s ∈ S, j ∈ J . (28)

Let D(R′) = (
(αs), (β j ), (γi j ), η, λ

)
be an optimal solution of the problem (23)–

(28), where an exponentially large index set R in (27) is replaced by its relatively
small subset R′ ⊆ R. If D(R′) satisfies (27) for all R ∈ R, it is an optimal solution
of the dual problem and provides a required upper bound. Otherwise, there exists a
(0, 1)-vector δ such that

∑

s∈S
δs

⎛

⎝psη +
∑

j∈Js

β j − Msαs

⎞

⎠ > λ. (29)

To check if there exists such a vector, we solve the following problem:

max
δ

∑

s∈S
wsδs (30)

∑

s∈S
δs ps ≥ p0 (31)

δs ∈ {0, 1}, s ∈ S, (32)

where ws = psη + ∑
j∈Js β j − Msαs .

Given an optimal solution δ∗ of the problem (30)–(32), if the inequality∑
s∈S wsδ

∗
s ≤ λ holds, then the solution D(R′) satisfies (27) for any R ∈ R.

Otherwise, one of constraints violated by D(R′) corresponds to the set of scenar-
ios {s ∈ S|δ∗

s = 1}. We include it into R′ and get back to solving the dual problem
with a new constraint of type (27).

Thus, the cutting-plane (CP) scheme to calculate an upper bound for the value
maxx,δ f1(x, δ) is an iterative process. On each iteration, we solve a restricted dual
problem and check if its optimal solution is feasible in the initial dual problem. In
the case of an affirmative answer, a valid upper bound is obtained, and the procedure
terminates. Otherwise, a cut is generated by solving a knapsack-type problem (30)–
(32), and a new iteration begins.
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To guarantee feasibility of the restricted dual problem at the first iteration, we set
R′ to contain a randomly chosen subset S′ ⊆ S such that

∑
s∈S′ ps ≥ p0.

3.4 Equiprobable scenarios and estimating problemB′(y)

The case of equiprobable scenarios, i.e., when ps = 1/l for all s ∈ S, is an important
case of BCompFLP arising, for instance, in sample approximations of stochastic pro-
gramming problems (Shapiro 2008). Given x, a set of active scenarios maximizing
f1(x, δ) contains exactly �lp0� elements with the greatest income. Let us introduce
variables (Cs), s ∈ S, storing the value of income in the corresponding scenario. The
set ofmost profitable active scenarios can be chosen by solving the following knapsack
problem:

max
(δs )

∑

s∈S
Csδs, (33)

∑

s∈S
δs = �lp0�; (34)

δs ∈ {0, 1}, s ∈ S. (35)

Notice that this model is equivalent to its linear relaxation since the simplexmethod
obtains an optimal solution with no fractional components. Its linear relaxation can be
equivalently rewritten in the form of complementary slackness conditions (Audet et al.
1997) which are nonlinear initially. After linearizing these expressions, we introduce
new constraints into the estimating problem and obtain its another reformulationB′( y)
looking as follows:

max
(xi ),(xi j ),(δs ),(Cs ),C

⎛

⎝−
∑

i∈I 1(y)
fi −

∑

i∈I ∗(y)
fi xi + C

⎞

⎠ , (36)

xi ≥ xi j , i ∈ I ∗( y), j ∈ J ; (37)
∑

i∈I\I 0( y)
xi j ≤ δs, s ∈ S, j ∈ Js; (38)

Cs =
∑

i∈I\I 0( y)

∑

j∈Js

c′′
i j xi j , s ∈ S; (39)

C ≤ Cs + Ms(1 − δs), s ∈ S; (40)
∑

s∈S
δs = �lp0�; (41)

us ≤ Mδs, s ∈ S; (42)

us + w ≥ Cs, s ∈ S; (43)

us + w ≤ Cs + M(1 − δs), s ∈ S; (44)

xi = yi , i ∈ I 0( y) ∪ I 1( y); (45)

xi , δs, xi j ∈ {0, 1}; Cs,C ≥ 0, i ∈ I , j ∈ J , s ∈ S. (46)
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Here, w and (us), s ∈ S are dual variables for constraints (34) and (35), respectively.
Variables (δs), s ∈ S are boolean in this model due to linearization purposes.

4 Numerical experiments

In this section,we study performance of the suggested procedures and investigate some
properties of the solutions obtained by the ε-constraint method. Firstly, we consider a
family of randomly generated instances of BCompFLP, where scenarios correspond to
different variations of the transportation network. These instances are used to compare
branch-and-boundmethods equippedwith different upper bound procedures and study
a Pareto frontier of theBCompFLP. Further, we come to an important application of the
BCompFLP related to the issue of stability of competitive location model’s solution
with respect to perturbations of numerical data, and, namely, perturbations of the profit
matrix. We concentrate on studying the question about does consideration of multiple
demand scenarios help to obtain more “stable” solutions in a situation of uncertain
demand parameters values.

All the calculations are performed by a workstation with two six-core processors
Intel Xeon X5675 3.07 GHz and 96 GB RAM. The methods are implemented in
C# programming language and get solutions of arising optimization problems from
Gurobi 8.0 MIP solver (Gurobi Optimization 2016).

4.1 Instances based on transportation network variations

Consider a graph with a set of vertices divided into two disjoint non-empty subsets,
V1 and V2. Nodes of the subset V1 form a connected subgraph and represent potential
locations to open facilities. The set of the customers is represented by vertices of
the set V2. Each vertex v ∈ V2 has exactly four edges connecting it with randomly
chosen vertices from V1. Lengths of these edges are generated randomly for each of
the scenarios. Preferences of the customer located in the vertex v ∈ V2 are based on
distances from v to vertices from V1: The shorter the distance, the more preferable the
facility located in the corresponding vertex. Thus, scenarios are different from each
other only in the preferences of the customers.

Each customer j ∈ J is assumed to have a budget b j which is the same for all the
scenarios. Income from serving the customer j does not depend on the serving facility
and equals b j for both the Leader and the Follower, i. e. ci j = di j = b j , for all i ∈ I .
Values of the parameters are independently chosen with uniform distribution from the
corresponding integer segments: fi from {7, 8, . . . , 13}; gi from {4, 5, . . . , 10}; b j

from {1, 2, . . . , 5}.
For all the generated test instances, we have |V2| = 30 and 15 scenarios in total.

Thus, we have a set J containing 450 customers, where each of the customers is
represented by fifteen copies having different preferences resulting from variations of
distance matrix corresponding to each of the scenarios.
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Fig. 1 Network with m = 10
vertices

We consider four classes of instances that differ from each other in a topology of
the network formed by vertices from V1. These classes are named in accordance with
the topology of the network: Tree, Plane�1 , Sphere, and Grid.

The class Tree contains instanceswhere connections between vertices from V1 form
a tree. Each of the connections is represented either by a short or a long edge. The
length of a short edge is an integer between 1 and 15, while the long edge’s length
varies between 100 and 150. An edge is short with probability 0.9 and is long other-
wise. Experiments with relative competitive location models show that this topology
specifies a relatively simple structure of preferences allowing to solve instance faster
(Mel’nikov 2014).

The second class considered is called Plane�1 because the set V1 is represented by
points of the unit square. The coordinates of points are chosen independently with
uniform distribution. All the vertices are connected, and the length of connection is
computed by �1-metric as a sum of absolute values of coordinate differences.

Similarly to the class Plane�1 , in the class Sphere, all the vertices from V1 are
connected with each other. Being represented by points of a sphere, whose polar and
azimuthal angles are chosen randomlywith uniform distribution, these vertices are less
likely to contain “peripheral” and “internal” ones. A distance between two vertices is
computed along a great circle passing through the points representing them.

Finally, in the classGrid, the network organized by vertices from V1 is a rectangular
grid. In this structure, the vertices can be thought to be elements of a matrix. Each
element is connected with its nearest neighbors located at the same column or the same
row. Thus, all the vertices have up to four edges. The edges’ lengths are randomly
chosen integers from 1 to 3.

To illustrate the model’s outcomes on instances generated, let us consider a trans-
portation network shown in Fig. 1. It represents the connections between the ten
vertices available to establish facilities forming the set V1. On the base of the network,
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Table 1 Weakly efficient solutions of the instance with m = 10 vertices

s ps p0
0.2 0.4 0.6 0.8 1

1 0.02 −3 −5 −10 −1 0

2 0.05 4 10 3 7 0

3 0.1 1 2 5 10 0

4 0.05 1 18 1 14 0

5 0.07 9 11 5 2 0

6 0.02 4 7 8 −1 0

7 0.1 −6 −7 −12 4 0

8 0.07 9 6 6 1 0

9 0.02 5 14 20 14 0

10 0.05 17 3 9 7 0

11 0.07 19 16 11 6 0

12 0.1 0 4 3 3 0

13 0.1 −1 0 7 3 0

14 0.1 19 13 19 10 0

15 0.07 6 19 11 8 0

f1(x.δ) 17 10 5 3 0

f2(x.δ) 0.22 0.44 0.61 0.8 1

i ∈ I |xi = 1 3, 10 2, 3, 8, 10 1, 3, 8, 10 3, 8 −

we obtain an instance from the class Tree. All the parameters’ values of the instance
are generated in the manner described earlier.

Table 1 provides the characteristics of weakly efficient solutions obtained for differ-
ent values of the threshold p0. The right part of the table hasfive columns corresponding
to the solutions with the value of p0 given in the second row of the table header. The
main part of the table is divided into 15 rows representing the demand scenarios.
For each scenario s, the probability of its realization, ps , and the Leader’s profit for
each of the solutions are given. The profit values in active scenarios are shown in
bold. In the bottom part of the table, the values of the Leader’s objective functions
are given. The last row provides the vertex numbers where the Leader’s facilities are
established.

Note that the Leader has no location decision that guarantees a positive profit in all
the scenarios since the solution for p0 = 1 is an empty one. More risky solutions may
result in a higher guaranteed profit. At the same time, possible losses in non-active
scenarios are not taken into account, so more risky solutions can perform better in a
worst-case scenario than the less risky ones. We observe this for the solutions with
p0 = 0.4, where the Leader gets a negative profit of −7, and p0 = 0.6 with the profit
of −12 in the worst scenario.
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4.2 Choosing the upper bound procedure

In this subsection, we aim to compare the performances of a branch-and-bound algo-
rithm equipped with different upper bound procedures. For brevity, we refer these
algorithms as AB, AB′ , and ACP, respectively. In Melnikov and Beresnev (2016), we
studied the procedures independently and concluded that the modelB′ performs better
than B on instances with equiprobable scenarios. Additionally, the upper bound pro-
vided by CP takes less time than solving B and B′, while the value obtained is more
accurate than optimums of these models’ relaxations. It is necessary to mention that an
optimization library Microsoft Solver Foundation 3.1 used in Melnikov and Beresnev
(2016) to solve MIPs turned up to be significantly slower than the latest versions of
commercial optimization software. Thus, our interest is to investigate how the sug-
gested models perform when being installed into the branch-and-bound framework
and solved by very recent optimization tools.

In Tables 2 and 3, we present results of numerical experiments with instances
where scenarios have equal and randomly generated probabilities, correspondingly.
The experimentwas organized in the followingway. For each of the classes considered,
instances with |I | = m = 9, 16, and 25 were generated. Instances of the class Grid
are based on 3 × 3, 4 × 4, and 5 × 5 grids formed by vertices from V1, respectively.
For each instance, four values of threshold p0 were considered: 0.25, 0.5, 0.75, and 1.
Computations had been stopped when reaching the time limit of 30 min. The tables
contain the following columns:

– TB, TB′ , and TCP are for computation times of AB, AB′ , and ACP, respectively. In
a case when the time limit is reached and the computations are not finished, we
provide the progress of the algorithm written in italics. The progress is computed
as a percentage of leaves of a branching tree that are explored by the algorithm.

– NB, NB′ , and NCP are for the total number of nodes of the branching tree explored
by the corresponding algorithm.

– Opt is for the optimal value of the function f1; for instances which are not solved by
some of the algorithms,we give the best objective value obtained. Themodification
of the method delivered this value is given in brackets when the methods were
terminated with different results.

– B is an initial upper bound value computed by AB and AB′ .
– CP is an initial upper bound value computed by ACP.

As we can see from Tables 2 and 3, the structure of the graph specifying customers
preferences significantly affects computational time needed to solve the instance.
Similarly to the previously studied competitive location models (Mel’nikov 2014),
instances based on trees are simpler than the ones based on graphs with higher con-
nectivity. Oppositely, grids and similar regular graph structures induce instances that
are more difficult for our approach because the intricate structure of preferencesmakes
the upper bound computed by using the models based on estimating subsets overly
optimistic.

Another general observation considers the role of the parameter p0. For all the
considered instances, the case p0 = 1 is the simplest one. One of the reasons for this
is that big-M terms vanish from the estimating problem formulations in this case. The
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Table 2 Branch-and-bound: equiprobable scenarios

m p0 TB TB′ TCP NB NB′ NCP Opt B CP

Tree

9 0.25 4 4 30 73 82 357 34 43 75

9 0.5 3 4 19 48 54 267 24 35 59

9 0.75 3 3 14 91 84 261 14 31 43

9 1 3 3 2 67 67 77 6 20 25

16 0.25 7 8 222 89 74 2k 21 27 70

16 0.5 4 5 120 46 47 1k 14 23 51

16 0.75 12 11 73 132 136 829 7 15 32

16 1 11 12 12 75 76 91 0 4 9

25 0.25 490 502 45% 4k 4k 8k 12 25 66

25 0.5 690 757 73% 5k 6k 10k 5 14 46

25 0.75 315 328 98% 2k 2k 11k 0 8 26

25 1 21 20 21 74 74 92 0 2 6

Plane�1
9 0.25 12 14 52 255 279 548 21 38 69

9 0.5 10 11 29 214 222 443 15 30 55

9 0.75 11 10 21 267 220 351 10 24 41

9 1 6 6 6 145 157 184 6 22 27

16 0.25 121 120 827 1k 1k 5k 14 31 65

16 0.5 235 216 592 2k 2k 5k 7 26 50

16 0.75 204 192 394 2k 2k 4k 2 19 35

16 1 42 37 33 385 368 413 0 14 19

25 0.25 56% 52% 24% 13k 13k 7k 16 (CP) 37 75

25 0.5 37% 38% 25% 11k 12k 9k 8 (CP) 31 58

25 0.75 65% 65% 28% 12k 12k 11k 2 25 41

25 1 99% 99% 1533 11k 11k 13k 0 21 25

Sphere

9 0.25 15 12 61 359 227 537 22 38 69

9 0.5 11 12 33 278 281 513 15 29 55

9 0.75 8 9 22 217 212 451 10 26 42

9 1 6 6 5 143 143 156 6 20 27

16 0.25 80 94 549 876 975 3k 18 36 67

16 0.5 92 93 384 1k 1k 3k 11 32 53

16 0.75 87 86 212 854 881 2k 6 23 39

16 1 36 32 37 351 349 472 1 15 20

25 0.25 40% 34% 12% 12k 12k 7k 16 (B) 43 77

25 0.5 28% 22% 19% 13k 12k 9k 9 (B′
) 36 62

25 0.75 32% 32% 19% 12k 12k 12k 0 32 47

25 1 87% 86% 95% 11k 12k 16k 0 25 31
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Table 2 continued

m p0 TB TB′ TCP NB NB′ NCP Opt B CP

Grid

9 0.25 15 14 83 323 320 800 17 37 68

9 0.5 16 18 52 369 388 698 10 26 53

9 0.75 13 13 25 266 265 535 5 22 38

9 1 5 5 5 127 127 144 0 14 23

16 0.25 215 219 1490 2k 2k 9k 15 34 68

16 0.5 320 327 976 3k 3k 7k 8 28 53

16 0.75 331 346 469 3k 3k 4k 4 23 38

16 1 101 108 116 1k 987 1k 0 17 20

25 0.25 89% 93% 25% 11k 13k 7k 11(B,B′
) 33 70

25 0.5 84% 85% 55% 12k 12k 9k 7(CP) 29 54

25 0.75 1021 951 73% 7k 7k 10k 4 23 38

25 1 472 456 393 3k 3k 3k 0 17 22

enumeration speeds up due to a faster computation of the upper bound. Additionally,
the method, using CP to calculate the upper bound, shows itself more competitive for
these instances.

When analyzing Table 2, one would notice that the difference between the
upper bounds presented in columns B and CP is significant. The value pro-
vided by CP is around two times higher than the one provided by MIP. It results
in a weak performance of the branch-and-bound equipped with CP. For Grid
instances with m = 9 and p0 = 0.25, 0.5, ACP explores around seven hun-
dreds of nodes which is more than the total number of possible location decisions.
Another notable effect is that the number of nodes explored by CP is signifi-
cantly higher than the one explored by B and B′ for the class Tree. For other
classes, which are more difficult in terms of computational time, the situation is
the opposite. It results from the behavior of the cutting-plane method which needs
fewer iterations to converge when the structure of preferences is relatively sim-
ple. AB and AB′ perform similarly, and the data do not give priority to any of
them.

In Table 3, scenarios with different probabilities of realization were considered. To
generate the probabilities, we choose at random a set of integers {ρs} from the interval
{1, . . . , 4}. For the scenario s ∈ S, we set ps = ρs/

∑
s∈S ρs . The model B′ cannot be

applied in this situation, and our goal is to compare B and CP with each other. As we
can see, the key points regarding performances of the methods noted from the analysis
of Table 2 stay the same in a case of different probabilities. Thus, the modification
AB showed itself the most universal and capable among the considered ones, and the
following computations are performed using this tool.
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Table 3 Branch-and-bound:
scenarios with different
probabilities

m p0 TB TCP NB NCP Opt B CP

Tree

9 0.25 7 39 103 368 34 45 76

9 0.5 7 25 121 324 27 37 61

9 0.75 3 15 77 246 17 32 46

9 1 3 3 67 85 6 20 25

16 0.25 13 326 185 2k 21 27 71

16 0.5 14 257 196 2k 11 21 53

16 0.75 15 181 196 2k 6 15 35

16 1 11 11 75 101 0 4 9

25 0.25 450 44% 3k 7k 12 (B) 21 66

25 0.5 356 67% 2k 8k 6 (B) 13 47

25 0.75 272 93% 2k 10k 1 9 29

25 1 21 21 74 110 0 2 6

Plane�1
9 0.25 10 60 207 480 21 36 69

9 0.5 9 33 212 481 15 30 55

9 0.75 7 20 163 342 11 25 41

9 1 6 5 161 145 6 22 27

16 0.25 277 1229 3k 8k 10 29 66

16 0.5 278 655 3k 5k 7 24 52

16 0.75 206 505 2k 4k 2 20 37

16 1 32 35 379 422 0 14 19

25 0.25 60% 19% 12k 6k 15 (B) 42 76

25 0.5 57% 20% 12k 8k 9 31 61

25 0.75 54% 27% 12k 9k 4 (CP) 28 46

25 1 1788 1616 11k 12k 0 21 25

Sphere

9 0.25 9 46 186 495 22 34 69

9 0.5 7 38 155 450 16 29 55

9 0.75 8 17 147 307 12 26 42

9 1 6 6 141 178 6 20 27

16 0.25 109 663 1k 4k 16 36 67

16 0.5 106 494 1k 3k 11 31 54

16 0.75 109 280 1k 2k 6 25 41

16 1 35 36 375 442 1 15 20

25 0.25 36% 16% 12k 6k 17 (B) 47 78

25 0.5 59% 13% 12k 8k 11 (B) 37 64

25 0.75 29% 18% 11k 9k 1 (B) 32 50

25 1 87% 87% 11k 13k 0 25 31
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Table 3 continued m p0 TB TCP NB NCP Opt B CP

Grid

9 0.25 16 63 370 652 18 33 68

9 0.5 15 58 375 736 10 26 54

9 0.75 20 37 435 649 4 22 40

9 1 5 5 127 165 0 14 23

16 0.25 217 933 2k 5k 16 38 69

16 0.5 280 841 2k 6k 9 28 55

16 0.75 309 743 3k 6k 4 23 41

16 1 103 110 957 1k 0 17 20

25 0.25 66% 25% 12k 7k 6 (B) 33 70

25 0.5 77% 44% 12k 8k 7 (CP) 29 56

25 0.75 1153 58% 8k 9k 4 (B) 23 40

25 1 447 398 3k 3k 0 17 22

4.3 Dealing with uncertainty in the CompFLPmodel

The model BCompFLP provides a rich set of instruments for making a decision in a
situation of uncertainty. Let us back to the basic CompFLP model (Beresnev 2014),
which can be regarded as BCompFLP with a single scenario. In the benchmark library
(Discrete location problems 2018), a series of instances of CompFLP with known
optimal solutions is collected. Our interest in this subsection is to investigate what
happens with these solutions when the elements of the profit matrix slightly change,
and how the BCompFLP model can support decisions when profits are stochastic.

Consider the class of instances A20 fromDiscrete location problems (2018). There,
similarly to previously introduced instances, both the set of customers and the set of
potential facility locations are represented by vertices of a randomly generated graph.
The Leader’s fixed costs are set to 40 for all i ∈ I , whereas the Follower’s ones are
randomly chosen from 25 to 35. Instances have names of a form ‘a20-xx,’ where the
postfix ‘xx’ is formed by an individual number of instance.

In the class A20, profit matrices of both players are equal, i. e. ci j = di j for all
i ∈ I , j ∈ J , and their elements are taken from the integer interval {10, . . . , 20}.
Let us assume these elements are determined with an accuracy of 10%. To take into
account possible variations of these parameters, we generate a list of scenarios where
the same set of customers is attributed to different realizations of the profit matrix.
Given the facility i and the customer j , we set the corresponding value of the profit
matrix to a random positive integer from the interval [0.9ci j , 1.1ci j ] independently
for each of the scenarios.

In our experiments, we considered instances of BCompFLP with 10, 15, and 20
realizations of the profit matrix (scenarios), whereas the total number of possible
variations is sufficiently higher. Each of these variations determines the value of the
Leader’s profit provided that the Follower’s reaction is rational. Thus, each Leader’s
decision on facilities’ location is characterized by a distribution of the profit value. To
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express this distribution, given the Leader’s location, we sample ν = 1000 variations
of the profit matrix and compute the corresponding value of the Leader’s profit.

The graphs in Fig. 2 show the profit distribution for five solutions computed by the
ε-constraint method for p0 = 0.2, 0.4, 0.6, 0.8, and 1. The value of p0 is shown on
the horizontal axis, whereas the vertical axis corresponds to the profit value.

A distribution is visualized by both a box and a violin-type plots. Boxes’ whiskers
show minimal and maximal value among ν computed values of the profit. Lower and
upper sides of a box show the first and the third quartile for this set of values. Finally, a
band inside a box represents amedian value. A general look of a distribution function is
shown by shaded vertically oriented shapes, where thicker parts of a shape correspond
to more probable values of profit.

On the figures, two line graphs are depicted as well. The light-gray line shows the
value f∗1(p0)which is an optimal value of f1 in the BCompFLPmodel with f2 ≥ p0. To
compare this value with the real value of the profit guaranteed with a probability p0,

Fig. 2 Distribution of the Leader’s profit for solutions obtained for different values of p0
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Fig. 2 continued

we added a dark-gray line showing the value fν1(p0) which is the �(1− p0)ν�-th-order
statistic for a set of profit values computed for ν sampled profit matrices.

From the graphs presented, we notice that the density function of f1 is often
multimodal. Given the Leader’s location, the optimal solution of the Follower and,
consequently, the set of customers captured by the Leader depend on the realization
of the profit matrix. For the numerical data under consideration, the function f1 takes
similar values for variations of the profit matrix inducing the same optimal solution
of the Follower. At the same time, changing the Follower’s solution may influence f1
heavily. It results in that the shape of the distribution is represented by several clusters.
Values from the same cluster correspond to a single location of the parties and differ
from each other due to deviations of the profit matrix.

Distribution of the profit value tends to be more concentrated for solutions obtained
with higher p0. At the same time, these solutions are often less preferable than ones
computed for lower p0. It is true for the instance a20-01, 10 scenarios, p0 = 1, for
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a20-04, 20 scenarios, p0 = 1, and in several other cases. We suppose that here we
observe a phenomenon similar to so-called overfitting in the machine learning area. It
manifests itself in that the solution strongly adapts to the specific of the numeric data
appeared in the scenarios considered and performs worse on the data unseen before.

One could suggest that f∗1(p0) converges to limν→+∞ fν1(p0) when the number of
scenarios considered in the BCompFLP model tends to infinity. The graphs support
this suggestion. Comparison of the graphs built for a different number of scenarios
shows that the convergence rate decreases when p0 grows. The values f∗1(p0) and
fν1(p0), represented by light and dark lines, respectively, tend to be closer for smaller
p0 and could differ significantly for p0 close to one. The question of convergence of
the sample average approximation to the actual solution of the stochastic model with
expectation objective function is considered in Shapiro (2008). To our knowledge, the
case of quantile objective function remains unstudied.

5 Conclusion

In this paper, we considered a competitive location model BCompFLP where the
Leader makes a decision in a situation where multiple demand scenarios are possible.
It allows taking into account uncertainty in all the aspects characterizing the demand
such as the number of customers, their preferences, and income from serving them.We
formulate the Leader’s problem as a bi-objective bi-level program aiming to maximize
both the Leader’s profit and the probability to get it. Efficient solutions of the model
provide information about trade-offs between revenues and risks as well as about
regrets which are possible in concrete circumstances. Thus, BCompFLP is a powerful
tool supporting a decision-making process in situations meeting assumptions of the
model.

To approximate the Pareto frontier of the problem, we developed an ε-constraint
method providing a subset of weakly efficient solutions. In the method, a series of
bi-level problems with a single objective is solved by a branch-and-bound algorithm.
Three upper bound procedures built on the basis of a specially constructed estimating
problem in a form of MIP were built in the algorithm and compared with each other
in numerical experiments.

Further, we performed a series of experiments aiming to investigate relationships
between the stochastic competitive location problem with uncertain profits and its
sample approximation that can be written as a BCompFLP. The data show that the
value of guaranteed profit in the sample approximation BCompFLP converges to the
corresponding profit value in the stochastic model. At the same time, the number of
scenarios that are to be included in the BCompFLP model depends on the probability
p0 of obtaining the guaranteed profit. The higher p0, the more scenarios are needed
to get a good approximation of the guaranteed profit.

Another effect observed in our experiments is analogous to overfitting in the
machine learning area. It manifests itself in that solutions obtained for high probability
p0 are sometimes worse in terms of profit distribution than the ones corresponding to
lower p0. As an instance, a location obtained for p0 = 1 exploits all the specific of

123



58 V. Beresnev, A. Melnikov

scenarios when aiming to optimize the profit in all of them. It leads to a decrease in
the profit in unseen scenarios and worsening the profit distribution.

Our future research is oriented on developing models for stochastic competitive
location and methods to solve them.
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