
EURO Journal on Computational Optimization (2019) 7:123–151
https://doi.org/10.1007/s13675-019-00110-y

ORIG INAL PAPER

Improving the linear relaxation of maximum k-cut
with semidefinite-based constraints

Vilmar Jefté Rodrigues de Sousa1 ·Miguel F. Anjos1 ·
Sébastien Le Digabel1

Received: 4 April 2018 / Accepted: 1 March 2019 / Published online: 16 March 2019
© The Association of European Operational Research Societies and Springer-Verlag GmbH Berlin Heidelberg
2019

Abstract
We consider the maximum k-cut problem that involves partitioning the vertex set of
a graph into k subsets such that the sum of the weights of the edges joining vertices
in different subsets is maximized. The associated semidefinite programming (SDP)
relaxation is known to provide strong bounds, but it has a high computational cost.
We use a cutting-plane algorithm that relies on the early termination of an interior
point method, and we study the performance of SDP and linear programming (LP)
relaxations for various values of k and instance types. The LP relaxation is strength-
ened using combinatorial facet-defining inequalities and SDP-based constraints. Our
computational results suggest that the LP approach, especially with the addition of
SDP-based constraints, outperforms the SDP relaxations for graphs with positive-
weight edges and k ≥ 7.

Keywords Maximum k-cut · Graph partitioning · Semidefinite programming ·
Eigenvalue constraint · Semi-infinite formulation

Mathematics Subject Classification 65K05 · 90C22 · 90C35

B Sébastien Le Digabel
sebastien.le.digabel@gerad.ca
http://www.gerad.ca/Sebastien.Le.Digabel

Vilmar Jefté Rodrigues de Sousa
Vilmar.de.sousa@gerad.ca

Miguel F. Anjos
anjos@stanfordalumni.org
http://www.miguelanjos.com

1 GERAD and Département de Mathématiques et Génie Industriel, École Polytechnique de Montréal,
C.P. 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13675-019-00110-y&domain=pdf
http://orcid.org/0000-0002-8258-9116
http://orcid.org/0000-0003-3148-5090

124 V. J. Rodrigues de Sousa et al.

1 Introduction

This work focuses on the graph partitioning problem known as the maximum k-cut
(max-k-cut). We consider an undirected graph G = (V , E) with edge weights wi j

for all (i, j) ∈ E . The task is to partition the vertex set V into at most k subsets
(sometimes called clusters or colors) such that the sum of the edges with end points
in different partitions is maximized.

Themax-k-cut problem is equivalent to theminimum k-partition problem (Ghaddar
et al. 2011; Wang and Hijazi 2017), and the special case k = 2 that is known as the
max-cut problem has attracted considerable attention; see, e.g., Barahona et al. (1988),
Goemans andWilliamson (1995), Krislock et al. (2012), Palagi et al. (2011), andRendl
et al. (2010).

Many industrial applications can be formulated as themax-k-cut problem, including
VLSI layout design (Barahona et al. 1988), statistical physics (Liers et al. 2005), and
wireless communication problems (Fairbrother et al. 2018; Niu et al. 2017).

The general max-k-cut is known to be NP-complete (Papadimitriou and Yan-
nakakis 1991). Nonetheless, many relaxations (Chopra and Rao 1995; Rendl 2012),
heuristics (Ma and Hao 2017), approximations (Frieze and Jerrum 1997; Karger et al.
1998), and exact methods (Anjos et al. 2013; Fairbrother and Letchford 2017;Mitchell
2003) have been proposed, some of which we study below.

We carry out a computational study to identify the relevance of an inequality based
on semidefinite programming (SDP) and to determine the strongest formulation for
each type of instance. To the best of our knowledge, no research to date has specifically
studied SDP-based inequalities for the linear relaxation of the max-k-cut.

This paper is organized as follows. Section 1.1 reviews the SDP and linear program-
ming (LP) formulations of the max-k-cut problem. Section 2 presents the SDP-based
inequalities. Section 3 describes in detail the cutting-plane algorithm (CPA) used to
solve the relaxations, and Sect. 4 discusses the test results. Finally, some concluding
remarks are made in Sect. 5.

1.1 Formulations

This section presents a literature review of the two formulations of the max-k-cut
problem studied in this work.

1.1.1 Semidefinite programming formulation

The vertex formulation of the max-k-cut leads to an SDP relaxation. In the approx-
imation method of Frieze and Jerrum (1997), the authors define the SDP variable
X = (Xi j), i, j ∈ V , where Xi j = −1

k−1 if vertices i and j are in different partitions
of the k-cut of G and Xi j = 1 otherwise. The SDP formulation of the max-k-cut
problem, MkC-SDP, can then be expressed as:

123

Improving the linear relaxation of maximum k-cut with… 125

(MkC-SDP) max
X

(k − 1)

k

i< j∑

i, j∈V
wi j (1 − Xi j) (1)

s.t. Xii = 1 ∀i ∈ V (2)

Xi j ≥ −1

k − 1
∀i, j ∈ V , i < j (3)

X � 0 (4)

Note that the constraints Xi j ≤ 1 for i, j ∈ V are removed from this relaxation since
they are enforced implicitly by the constraints Xii = 1 and X � 0.

Because of the strength of the SDP, many researchers have used this formulation
to design approximations (de Klerk et al. 2004; Frieze and Jerrum 1997) and exact
methods (Anjos et al. 2013; Ghaddar et al. 2011). In particular, Frieze and Jerrum
(1997) extends the max-cut approximation of Goemans and Williamson (1995) to
the max-k-cut. In Anjos et al. (2013), the bundleBC algorithm is proposed to solve
max-k-cut problems with 60 vertices by combining the SDP branch-and-cut method
of Ghaddar et al. (2011) with the principles of the Biq Mac algorithm (Rendl et al.
2010). In Anjos et al. (2013), the authors show that their method achieves a dramatic
speedup in comparison with Ghaddar et al. (2011), especially when k = 3.

1.1.2 Linear formulation

Chopra and Rao (1995) presented an edge-only 0-1 formulation of max-k-cut. For
each e ∈ E , the variable x takes the value 0 when edge e is cut, and 1 otherwise.
Hence, the edge-only linear relaxation of max-k-cut can be formulated as:

(MkC-LP) max
x

i< j∑

i, j∈V
wi j (1 − xi j) (5)

s.t. xih + xhj − xi j ≤ 1 ∀i, j, h ∈ V (6)
∑

i, j∈Q,i< j

xi j ≥ 1 ∀Q ⊆ V with |Q| = k + 1 (7)

0 ≤ xi j ≤ 1 ∀i, j ∈ V (8)

where Constraints (6) and (7) correspond to the triangle and clique inequalities,
respectively. These families of inequalities imply that there are at most k partitions in
the integer formulation.

TheLP formulation ofmax-k-cut has been extensively studied; see, e.g., Chopra and
Rao (1993), Chopra and Rao (1995) and Mitchell (2003). In Chopra and Rao (1993)
and Chopra and Rao (1995), the authors give several valid inequalities and facet-
defining inequalities for MkC-LP and for “node-and-edge” formulations, i.e., linear
formulations with both node and edge variables. In Fairbrother and Letchford (2017),
via projection of the edge-only formulation, the authors obtain new families of valid

123

126 V. J. Rodrigues de Sousa et al.

inequalities, along with new separation algorithms for the node-and-edge formulation.
Their results show that these new inequalities are practical for large sparse graphs.

Two drawbacks of the MkC-LP formulation are mentioned in Fairbrother et al.
(2018). First, it cannot exploit structure of G, such as sparsity. Second, it has O(|E |)
variables and O(|V |k+1) constraints. These disadvantages can be reduced by simpli-
fying the input graph G. In this work, we exploit sparsity via a k-core reduction, a
block decomposition (Fairbrother et al. 2018; Hopcroft and Tarjan 1973; Seidman
1983), and a chordal extension (Heggernes 2006; Wang and Hijazi 2017). The sec-
ond disadvantage is mitigated by a CPA (Sect. 3) that overcomes the huge number of
inequalities by activating only important constraints in the relaxation.

Sparsity can also be exploited by node-and-edge formulations (Ales and Knippel
2016; Chopra and Rao 1995; Fairbrother et al. 2018). In Ales and Knippel (2016), the
authors used representative variables to break symmetry. They show that the relevance
of their formulation increases with the number of partitions, but our preliminary tests
show that node-and-edge formulations are expensive and impractical for large graphs.

1.1.3 SDP versus LP

Several researchers have compared the semidefinite relaxation with the linear relax-
ation for partitioning problems. In the branch-and-cut method for the minimum
k-partition problem (Ghaddar et al. 2011), the authors claim that linear bounds are
weak and that this could result in the enumeration of all the solutions in a branch-and-
bound method.

The relation between the LP and SDP polytopes is studied in Eisenblätter (2002),
where the authors show that the strength of the SDP bounds is related to the fact that
“hypermetric inequalities” are implicit in theMkC-SDP. For example, they show that
all triangle constraints are violated by at most

√
2 − 1 and all clique constraints by

less than 1/2 in the SDP relaxation, in comparison with a violation of 1 for the LP
relaxation. On the other hand, high computational times are the price to pay for the
strength of SDP relaxations (Anjos et al. 2013).

The linear and semidefinite relaxations of the graph partitioning problem where
each partition must have about the same cardinality (also known as the k-equipartition
problem) are considered in Lisser and Rendl (2003). The mathematical and experi-
mental results indicate that the linear relaxation is stronger than the SDP relaxation
for large values of k when a bound separation is used (see Sect. 3.1.2). However, for
small values of k, the latter outperforms the former.

2 SDP-based inequality

The pioneering work of Shor (1998) leads to an approach to optimize semidefinite
programming based on integrating the constraint that restricts the smallest eigenvalue
of X to be nonnegative.We refer to this infinite class of valid inequalities as SDP-based
inequalities.

123

Improving the linear relaxation of maximum k-cut with… 127

Optimization problems with an infinite number of constraints are known as semi-
infinite programming (SIP) problems. This section briefly reviews SIP and presents a
class of SDP-based inequalities that can be used within the LP formulation.

2.1 Semi-infinite formulation of SDP

SIP can be defined as an optimization problem with finitely many variables and
infinitely many constraints. The survey paper (Hettich and Kortanek 1993) discusses
the theory, algorithms, and applications of semi-infinite programming.The linear semi-
infinite programming (LSIP) approach to solve generic SDPs was studied in Krishnan
and Mitchell (2001) and Sherali and Fraticelli (2002).

We note that the convex constraint (4) is equivalent to (Helmberg 2000, Theorem
1.1.8):

μT Xμ ≥ 0 ∀μ ∈ R
n, ‖μ‖ = 1 (9)

where n = |V |. By replacing (4) by (9) inMkC-SDP, we obtain the LSIP formulation
of SDP.

There is an infinite number of constraints in (9). In Sherali and Fraticelli (2002),
the authors propose the use of the SDP-based inequalities (or semidefinite cuts) as a
mechanism to tighten the reformulation linearization technique. Furthermore, in the
cut-and-price approach proposed in Krishnan and Mitchell (2006), the authors use the
LSIP of the dual SDP formulation for the max-cut problem. Their results suggest that
this approach is able to solve large-scale instances of SDP.

2.2 Variable transformations

To incorporate Constraint (9) in our linear formulation, we need to transform the

semidefinite variable X ∈
[−1
k−1 , 1

]
to the related x ∈ [0, 1] linear formulation. Using

the identities xi j = k−1
k Xi j + 1

k and Xi j = k
k−1 xi j − 1

k−1 for all i, j ∈ V , we can

map valid inequalities for the LP to the SDP and vice versa.

2.3 SDP-based inequality formulation

By applying the transformation proposed in Sect. 2.2 to Constraint (9), we derive the
following class of inequalities for MkC-LP:

i< j∑

i, j∈V
μiμ j xi j ≥ 1

k

i< j∑

i, j∈V
μiμ j − k − 1

2k

∑

i∈V
μiμi ∀μ ∈ R

n . (10)

These SDP-based cuts comprise a relaxation of the underlying semidefinite constraint.
In Krishnan and Mitchell (2001), the authors prove that these inequalities ensure that

123

128 V. J. Rodrigues de Sousa et al.

1. Initialize. Load the instance and set up the initial relaxation. Initialize the
iterate i.

2. Solve the relaxation to optimality or with duality tolerance (εT) (Section 3.3).

3. Search for violations. Use the separation routine to find violated inequalities
at the current solution (Section 3.1).

4. Add inequalities. If there are violated inequalities then add at most NbIneq
(see Section 3.1.4) of those that are most violated. Otherwise, if the relaxation
was solved to optimality in Step 2 then STOP because the algorithm cannot
improve the relaxation.

5. Drop inequalities. If any constraint is no longer important, remove it (Sec-
tion 3.2).

6. Modify current iterate. Increment i. Reduce or increase εT , if necessary.
Return to Step 2.

Fig. 1 Cutting-plane algorithm

the set of linear solutions is feasible for the SDP. In Sect. 3.1.3, we propose an exact
separation routine to deal with the infinite number of constraints.

3 Cutting-plane algorithm

A CPA is an iterative method used to obtain upper bounds on the optimal value of
max-k-cut and to prove optimality. First, the CPA solves the relaxed problem (SDP
or LP) to obtain an upper bound on the integer program, and then it searches for
violated inequalities and adds some of them to the relaxation. We first introduce the
generic algorithm, then discuss methods for choosing the inequalities to add/remove,
and finally present the method used to solve the relaxations.

We summarize the CPA in Fig. 1. We say that an iteration is completed every time
we enter Step 6, and we complete the CPAwhen we enter Step 4 for the last time. Note
that other termination criteria can be used, e.g., number of iterations, computational
time, and improvement at each iteration.

3.1 Separation routines

Separation routines are algorithms that search for violations of a given family of valid
inequalities in a relaxed solution. In this section, we present separation routines for
some inequalities studied in Rodrigues de Sousa et al. (2018), for Constraint (3) in the
SDP formulation, and for Constraint (10) proposed in this work.

123

Improving the linear relaxation of maximum k-cut with… 129

3.1.1 Separation of combinatorial inequalities

Some valid and facet-inducing inequalities have been proposed in Chopra and Rao
(1995) for the MkC-LP. Five of these families of constraints are explored computa-
tionally in Rodrigues de Sousa et al. (2018), where heuristic and exact methods are
proposed. In this work, we replicate the best separation routines of Rodrigues de Sousa
et al. (2018) for the following families of inequalities:

• Triangle: complete enumeration.
• Clique: greedy heuristic.
• General clique: greedy heuristic.
• Wheel: greedy heuristic.
• Bicycle wheel: genetic algorithm.

In Rodrigues de Sousa et al. (2018), the authors concluded that in practice, wheel
and triangle are the best inequalities. Hence, we prioritize these two families of
inequalities in our ranking algorithm (see Sect. 3.1.4).

3.1.2 Separation of bound inequalities

In Helmberg (2000), the author indicates that it is more efficient to start the CPA
with only the diagonal constraints (2) of the SDP formulation and to separate the
constraints (3) iteratively. The exact separation of constraints (3) can be done in poly-
nomial time with a complete enumeration of all edges e ∈ E of the graph. For each
iteration of the CPA, we add only the NbIneq most violated of these inequalities (see
Sect. 3.1.4).

Figure 2 shows data profiles (see explanation in Sect. 4.3.4) for the SDP formulation
with and without separation of the bound inequalities for k ∈ {3, 10} for 68 instances
of the Biq Mac library (see Sect. 4.2). Both methods in Fig. 2 apply the separation of
combinatorial inequalities (Sect. 3.1.1) and were solved with MOSEK (MOSEK ApS
2015). The difference between No separation and With bound separation is that the
latter method does not separate the constraints (2) in the CPA, i.e., the No separation
method inserts all the n(n − 1)/2 constraints in the first iteration of the CPA.

Figure 2 shows that themethod that applies the separation obtains better results. For
example, for k = 3 theWith bound separation method finds solutions with a gap [see
Eq. (12)] of 30% for more than 70% of the problems in less than 10 seconds, while
the No separationmethod solves the first instances only after 100 seconds. Moreover,
computational tests on instances with |V | ≥ 300 show that the first iteration of the
CPA takes more than 1h to be completed with the No separation method.

3.1.3 Separation of SDP-based inequalities

The family of SDP-based inequalities (10) integrates an infinite number of constraints
in the LP relaxation of max-k-cut. Rather than solving the semi-infinite program,
we adopt the strategy of generating only suitable constraints by a polynomial time
separation routine that is based on the eigenvalues of a symmetric matrix. Let x̂ be

123

130 V. J. Rodrigues de Sousa et al.

10
0

10
1

10
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

10
0

10
1

10
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Fi
g.
2

Se
pa
ra
tio

n
of

bo
un

d
in
eq
ua
lit
ie
s
(3
)
in

th
e
SD

P
fo
rm

ul
at
io
n
fo
r
a
ga
p
of

30
%

123

Improving the linear relaxation of maximum k-cut with… 131

an optimal solution ofMkC-LP. If the related symmetric matrix X̂ is not semidefinite
(X̂ � 0), then it has at least one negative eigenvalue λ < 0, and the following
inequalities are violated by x̂ :

i< j∑

i, j∈V
viv j xi j ≥ 1

k

i< j∑

i, j∈V
viv j − k − 1

2k

∑

i∈V
vivi ∀λ < 0 (11)

where vi is the i th entry of the eigenvector v corresponding to the eigenvalue λ of X̂ .
The addition of (11) to MkC-LP will cut off the LP solution and improve the iterate
in a cutting-plane scheme.

We use the term LP-EIG for the linear approach with this eigenvalue separation.We
use Eigen (Guennebaud et al. 2010) to compute the eigenvalues and eigenvectors
of X̂ . Eigen is a C++ template library for linear algebra, and it computes all the
eigenvalues and eigenvectors for a self-adjoint matrix (real symmetric matrix) using
a symmetric QR algorithm. The computational cost is approximately O(9n3).

3.1.4 Maximum number of inequalities in CPA

As shown in Rodrigues de Sousa et al. (2018), the inclusion of all the violated
inequalities in a CPA iteration can be computationally impractical. It is better to
rank the violated inequalities and append only those that are most violated. Empiri-
cal tests show that the maximum number of inequalities (NbIneq) should be set to
NbIneq = 2|V | for linear methods and NbIneq = 100 for the SDP formulations,
similarly to Rodrigues de Sousa et al. (2018).

3.2 Dropping inequalities

An inequality is said to be important when at optimality its slack variable (sk) is close
to zero, i.e., the inequality is active. Removing unimportant constraints reduces the
size of the relaxation and thus the computational time.

In Mitchell et al. (1999), the authors observed that tests based on ellipsoids can
determine when to drop a constraint, but the cost of these tests may exceed the com-
putational savings. Therefore, we simply test whether a slack variable is larger than a
fixed value (γ = 0.001), i.e., we remove inequalities with sk > 10−3.

Searching for unimportant inequalities at each CPA iteration takes time, and some
constraints can be repeatedly added and removed. Therefore, we use the variable
I tedrop to indicate the interval of CPA iterations that the search is realized. Com-
putational results for I tedrop ∈ {2, 3, 5, 7} show that the SDP and LP formulations
are more efficient when the dropping is executed at every third or fifth iteration of
the CPA. Therefore, we fix the dropping method at every third iteration of the CPA
method (I tedrop = 3).

123

132 V. J. Rodrigues de Sousa et al.

3.3 Solving the relaxations

One of themost important decisions in the CPA is the choice of the solutionmethod for
the relaxation.We solve the SDP and LP relaxations of themax-k-cut using the interior
pointmethod (IPM)ofMOSEK (MOSEKApS2015).Our computational tests indicated
that the default IPM is not efficient so, inspired by the PDCGM solver (Gondzio et al.
2016), we considerably modified the IPM to improve the CPA performance. This
section discusses the main changes; some of them are also applicable to other solvers.

In Gondzio (2012) and Mitchell (2000), the authors claim that IPMs are an alterna-
tive to the simplex method for LP problems; they show that IPMs enable the solution
of many large real-world problems. Furthermore, IPMs can exploit parallelism eas-
ily (Mitchell et al. 1999).

The main change performed in the IPM is that we use the early termination
technique. We apply the separation routine in a non-optimal solution that is obtained
by solving the relaxations approximately with a relative dual termination tolerance εT .
As shown in Munari and Gondzio (2013), non-extremal solutions may separate valid
inequalities effectively, because the cuts may be deeper and usually fewer are needed.
Inequalities generated by the early termination may provide deeper cuts because the
iterate is further from the boundary of the polyhedron.Moreover, the early termination
can save computational time by not executing all the IPM iterations.

InMitchell (2000), the author gives the two principal drawbacks of separating valid
inequalities before the current relaxation is solved to optimality. First, it may not be
possible to find a constraint, so the time spent is wasted. Second, the separation routine
may return inequalities that are violated by the current iterate but not by the optimal
solution, so we may end up solving a relaxation with unimportant constraints.

To reduce the impact of the first disadvantage, we use a dynamic tolerance to decide
when to stop the IPM, sowe search for violated inequalities onlywhen the duality gap is
below a tolerance (εT). We increase εT by 25% if the number of violated constraints is
greater than 2·NbIneq (see Sect. 3.1.4) and decrease εT ifwe have fewer than NbIneq
violated constraints. Experimental tests varying the initial εT ∈ {.25, .50, .75, .90}
show that on average, when εT = 0.75, the SDP and LP formulations obtain, for 50%
of the tests, the best results for k = 3 and 75% than for k = 10.

The second disadvantage is mitigated by occasionally solving the relaxation to
optimality. Thus, at each I teopt iteration of the CPA the relaxations are solved to their
optimality without applying the early termination. Computational tests with I teopt ∈
{1, 2, 5, 7, 9, 12, 15, 20} for the LP and SDP formulations show that the best results
are obtainedwhen I teopt ∈ {2, 5}. For example, when I teopt ∈ {2, 5} and k = {3, 10},
the SDP formulation solves 80% of instances with a gap inferior to 5% in 10 seconds,
while other options cannot solve 50% of instances with the same gap within the same
length of time. We fix I teopt L P = 5 for the LP formulations (i.e., we solved every
fifth relaxation) and I teopt SDP = 2 for SDP. When plotting the results, we show only
those obtained from relaxations solved to optimality.

Figure 3 plots the data profiles (see Sect. 4.3) of the early termination and standard
IPM for the SDP and LP-EIG relaxations; the CPU time is limited to 300s. This figure
gives the average results for 40 random dense (density=0.9) instances with |V | = 100

123

Improving the linear relaxation of maximum k-cut with… 133

0
5

10
15

20
25

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

S
ta

nd
ar

d

E
ar

ly
 T

er
m

in
at

io
n

0
5

10
15

20
25

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Fi
g.
3

St
ud
y
of

ea
rl
y
te
rm

in
at
io
n
in

IP
M

123

134 V. J. Rodrigues de Sousa et al.

and k = 3, and the results can be generalized to other graphs. The gap (12) is smaller
for SDP than for LP-EIG because the latter formulations are unable to solve these
problems with a gap below 10%. We conclude that SDP is stronger than LP-EIG for
k = 3. However, in the next sections we show that this is not always the case: LP-EIG
can be much stronger than SDP.

Figure 3 shows that early termination outperforms the standard IPM, especially
for the linear formulation of max-k-cut. For example, with a gap of 20% the early
termination solves all the LP-EIG problems in 10s, whereas standard IPM solves
just 55% of these problems. Therefore, we use the early termination method in our
computational tests in the next section.

4 Computational tests

We solve the SDP and LP relaxations of max-k-cut using the IPM of MOSEK (MOSEK
ApS 2015) on a Linux PC with two Intel(R) Xeon(R) 3.07GHz processors. We per-
formed tests for k ∈ {3, 4, 6, 7, 10, 0.1|V |} on 228 test problems.

4.1 Terminology

In this section, we present the terminology used for our analysis.

• Best feasible solution (LBp): The value of the best known integer solution for
problem p. If the optimal solution is unknown, we calculate a feasible solution
using the variable neighborhood search metaheuristic (Mladenović and Hansen
1997).

• Final solution (UBp,m): The value of methodm at the end of the CPA for problem
p. It is also known as the upper bound for method m.

• Performance ratio (gapp,m): The gap of method m is the difference between its
upper bound and the best feasible solution. It is calculated as follows:

gapp,m = UBp,m − LBp

LBp
(12)

• Iteration time (i timep,m): The CPU time for one CPA iteration for method m and
problem p. The time to solve the final iteration of a problem is tLast .

• Set of methods (M): The three methods listed below are relaxations of the max-
k-cut problem, and all of them use CPA to improve their formulation with the
separation of combinatorial inequalities (Sect. 3.1.1):

– LP: Solves the LP formulation.
– LP-EIG: Solves the LP formulation with the separation of SDP-based inequal-
ities [Constraint (10)].

– SDP: Solves the SDP formulation with the separation of bound inequalities
(Sect. 3.1.2).

123

Improving the linear relaxation of maximum k-cut with… 135

4.2 Instances

We consider 228 instances; 68 are from the Biq Mac library (Wiegele 2015), and
160 were randomly generated using rudy (Rinaldi 2018).

• Biq Mac problems:

– be: These are the Billionnet and Elloumi instances. For each density d ∈
{0.3, 0.8}, we use ten problems with edge weights chosen from {−50, 50}.

– bqp: Ten weighted graphs with dimension 100, density 0.1, and edge weights
chosen from {−100, 0, 100}.

– g05: Ten unweighted graphs with edge probability 0.5 and dimension 100.
– ising2: Six one-dimensional Ising chain instances for dimension |V | ∈

{200, 250, 300}.
– ising3: Six one-dimensional Ising chain instances for dimension |V | ∈

{200, 250, 300}.
– pm1d: Tenweighted graphswith edgeweights chosen from {−1, 0, 1}, density
0.99, and dimension 100.

– pm1s: Ten weighted instances with edge weights chosen from {−1, 0, 1},
density 0.1, and dimension 100.

– pm1s: Ten weighted instances with edge weights chosen from {−1, 0, 1},
density 0.1, and dimension 100.

• Random problems:

– nRnd_d: Ten weighted problems for density d ∈ {0.2, 0.8} and dimension
|V | ∈ {100, 200, 300, 500} with edge weights chosen from {−100, 100}.

– pRnd_d: Ten weighted problems for density d ∈ {0.2, 0.8} and dimension
|V | ∈ {100, 200, 300, 500} with edge weights chosen from {1, 100}. These
problems are also known as the positive-weight instances.

4.3 Comparisonmethodology

We generate a substantial amount of data for each instance; because of space limi-
tations, we provide only the most important information. This section explains the
tools used to analyze our results: separation routine tables, performance tables, data
profiles (Moré and Wild 2009), and performance profiles (Dolan and Moré 2002).
We define our comparisons in terms of a set P of problems, a set M of optimization
algorithms, and a set of partition sizes K.

4.3.1 Separation routine tables

The separation routine tables show the performance of the separation routine of each
constraint presented in Sect. 3.1 for eachmethod, after 1h of CPU time. In these tables,
the results are averages over the instances presented in Sect. 4.2. For clarity, we only
show results for dense instances (density superior to 50%). The following information
is provided in each table:

123

136 V. J. Rodrigues de Sousa et al.

• Column 1 presents the number of partitions k ∈ {3, 10} allowed.
• Column 2 lists the separation routines:

– The rows triangle, clique, general clique, wheel and bicycle wheel report
results for combinatorial inequalities.

– The row eigen presents the results for separation routine of the SDP-based
inequalities (see Sect. 3.1.3). Therefore, it is applicable only for the LP-EIG
method.

– The row SDP bound gives the results for the separation of the SDP bounds
(see Sect. 3.1.2).

– The row entitled MOSEK presents the results of the average percentage of time
spent to solve the relaxation by MOSEK using IPM.

– The last row of each partition shows the average time, in seconds, of iterations
of the CPA and the total number of iterations (i te) performed within 1h for
each method.

• Columns 3 to 8 present, for each method, the percentage of time spent (% time)
for each constraint and the average number of inequalities incorporated at each
iteration of the CPA (ineq/i te). For the row “CPA iterations”, the value given
under ineq/i te is the total number of CPA iterations executed for each method
until the stopping criteria are satisfied.

4.3.2 Performance tables

The performance tables show the improvement of each method after 1h of CPU time
in our CPA. The results are divided into partitions of equal size, k ∈ {3, 10}. For each
value of k, we provide a table with the following information:

• Column 1 gives the instance name for the Biq Mac instances, and the range of
the weights for the random instances.

• Columns 2 and 3 give, respectively, the density and dimension (|V |) of the
instances.

• Columns 4 to 15 report the UB gap at the start of CPA, the UB gap at the end,
the CPU time (s) of the final iteration (tLast), and the number of iterations (#i te)
performed for each method m ∈ M over 1h. Moreover, tLast is defined for the
final iteration for which the IPM is solved to optimality.

The results in the performance tables are averages for each family.

4.3.3 Data profiles

As observed in our earlier work (Rodrigues de Sousa et al. 2018), data profiles are
useful for selecting the bestmethodwhen a computational time limit is imposed. These
profiles show the temporal evolution of methods to a specific gap (gapmax). They are
defined in terms of the iteration time i timep,m : For a given time β, we define the data
profile of method m by

123

Improving the linear relaxation of maximum k-cut with… 137

dm(β) = 1

|P| size{p ∈ P : i timep,m ≤ β and gapp,m ≤ gapmax }. (13)

Thus, for a given gapmax and time β, we know the proportion of problems that can
be solved for method m ∈ S.

4.3.4 Performance profiles

The performance profiles are defined in terms of the gap for problem p ∈ P . For
method m ∈ M, the performance profile is the proportion of problems for which the
gap is at most α, i.e.,

ρm(α) = 1

|P| size{p ∈ P : U Pp,m ≤ α}. (14)

Thus, for a given α we know the proportion of problems p ∈ P that are solved for
method m ∈ M.

4.4 Computational results

This section presents and analyzes our computational results. Section 4.4.2 shows
the separation routine study tables for the dense instances. Section 4.4.2 shows the
performance tables for the Biq Mac instances. Section 4.4.3 presents these tables for
the random instances. To compare the performance of SDP and LP-EIG, we present
the data profiles in Sect. 4.4.4 and the performance profiles in Sect. 4.4.5.

4.4.1 Separation routine tables

Tables 1 and 2 show the results of the separation routines for the SDP , LP , and
LP-EIG methods for dense instances. Table 1 plots the results for instances with
mixed-weight edges (we ∈ [−100, 100]), and Table 2 presents results for instances
that have positive weights (we ∈ [1, 100]). The results in both tables demonstrate
that the IPM used to solve the relaxations takes on average 86% of the time of each
iteration of the CPA. The separation routine of bicycle wheel is most expensive.

For the LP method, triangle followed by wheel and bicycle wheel are the most
important inequalities. Moreover, we observe that due to the large number of inequali-
ties that are included at each iteration of the CPA, the LP is themost expensivemethod
when k = 3. However, in Sect. 4.4.2, we observe that LP is often the method with
the smallest final iteration CPU time (tLast). The reason is that tLast is calculated after
dropping unimportant inequalities.

For the SDP method, triangle and SDP bound are the most important inequalities.
We observe that the CPA iterations of SDP are more expensive for a large number
of partitions (k = 10) mostly due to the number of SDP bound inequalities that are
violated (added). Results in Table 2 demonstrate that the SDP method includes more
SDP bound inequalities and that its CPA iterations are more expensive for instances
with positive weight than for mixed-weight instances.

123

138 V. J. Rodrigues de Sousa et al.

Table 1 Separation routine study for dense instances with weights we ∈ [−100, 100]
Partition Separation routine SDP LP LP-EIG

Time ineq/ite Time ineq/ite Time ineq/ite

k = 3 triangle 0.1% 27 0.1% 572 0.0% 8

clique 0.1% 4 0.1% 57 0.1% 17

general clique 0.1% 2 0.1% 56 0.2% 0

wheel 0.2% 12 0.1% 112 0.2% 52

bicycle wheel 11.7% 7 7.7% 165 4.4% 17

eigen – – – – 0.3% 6

SDP bound 0.0% 9 – – – –

MOSEK 88.4% – 79.2% – 93.5% –

CPA iterations 34.6 s 100 i te 48.0 s 76 i te 30.5 s 120 i te

k = 10 triangle 0.0% 8 0.1% 644 0.0% 13

clique 0.4% 0 0.5% 0 0.9% 0

general clique 0.5% 0 0.6% 0 1.1% 0

wheel 0.1% 46 0.1% 141 0.2% 61

bicycle wheel 7.1% 1 8.2% 214 7.1% 21

eigen – – – – 0.4% 6

SDP bound 0.0% 38 – – – –

MOSEK 92.1% – 81.5% – 88.6% –

CPA iterations 65.1 s 56 i te 47.3 s 77 i te 25.4 s 145 i te

For the LP-EIGmethod, wheel and bicycle wheel are the most important inequal-
ities. The LP-EIG is the method that performs more CPA iterations in one hour.
Therefore, it is the method with the fastest iterations. In general, LP-EIG does not
include general clique inequalities and just a few SDP-based inequalities are needed
at each iteration of the CPA.

For k = 10, the LP and LP-EIG methods are able to perform almost double the
number of CPA iterations for the instances with positive weights than for those of
mixed weights.

We point out that the percentages in Tables 1 and 2 do not always add up to 100%
because the results in these tables do not include all the procedures of the CPA.
For example, the time spent dropping unimportant inequalities (see Sect. 3.2) is not
considered.

4.4.2 Performance tables: Biq Mac instances

Table 3 shows the performance of SDP , LP , and LP-EIG for the Biq Mac problems
when k = 3. The SDP outperforms the linear methods in all the tests. For example,
for be and bqp the first iteration of SDP is stronger than the final iterations of the
linear methods. For ising2 and ising3, the SDP bounds are close to a feasible solution,
but their computation is expensive: It takes approximately 1200s to solve the IPM.

123

Improving the linear relaxation of maximum k-cut with… 139

Table 2 Separation routine study for dense instances with we ∈ [1, 100]
Partition Separation routine SDP LP LP-EIG

Time ineq/i te Time ineq/i te Time ineq/i te

k = 3 triangle 0.1% 19 0.1% 572 0.0% 6

clique 0.1% 7 0.1% 57 0.1% 14

general clique 0.1% 3 0.1% 56 0.2% 0

wheel 0.2% 11 0.1% 112 0.1% 58

bicycle wheel 10.1% 5 7.7% 165 3.1% 16

eigen – – – – 0.3% 6

SDP bound 0.0% 11 – – – –

MOSEK 87.2% – 79.2% – 94.9% –

CPA iterations 43.4 s 83 i te 48.0 s 76 i te 30.6 s 119 i te

k = 10 triangle 0.0% 9 0.3% 618 0.1% 7

clique 0.4% 0 0.7% 13 1.6% 0

general clique 0.4% 0 0.7% 11 1.9% 1

wheel 0.1% 55 0.4% 121 0.4% 62

bicycle wheel 6.5% 1 26.4% 118 26.7% 4

eigen – – – – 0.6% 4

SDP bound 0.0% 205 – – – –

MOSEK 92.8% – 55.4% – 66.5% –

CPA iterations 69.5 s 48 i te 16.0 s 226 i te 14.5 s 249 i te

Moreover, the results show that the SDP-based Constraint (10) improves the final gap
by an average of 5% in Table 3.

Table 4 shows the performance of SDP , LP , and LP-EIG for k = 10. For k = 10,
the SDP method is more expensive and has worse performance than for k = 3.
Moreover, LP-EIG outperforms SDP in 75% of the problems, with a smaller iteration
time in most cases. The final gap of SDP is larger than the initial bound of the
linear methods for ising2 and ising3. For some instances of ising3, the LP method
outperforms LP-EIG since the LP method executes more iterations of the CPA and
adds more inequalities.

4.4.3 Performance tables: random instances

Table 5 shows the performance of SDP , LP , and LP-EIG on the random instances
when k = 3. Similarly to the Biq Mac problems, the SDP outperforms the linear
methods, especially for the problems that contain both positive and negative edges
(mixed weights instances) where the initial SDP is better than the final upper bound
of the linear methods. Moreover, for most of the sparse instances, the LP method does
not improve the initial upper bound, and for some large instances (|V | ≥ 300) the com-
binatorial and SDP-based inequalities included in the LP methods could not improve
the initial bound. Therefore, we conclude that for k = 3, the linear formulations are
not competitive with the SDP.

123

140 V. J. Rodrigues de Sousa et al.

Ta
bl
e
3

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
fo
r
B
i
q

M
a
c
in
st
an
ce
s
an
d
k

=
3

N
am

e
D
en
si
ty

|V
|

S
D
P

L
P

L
P
-E
IG

ga
p

(%
)

ga
p

(%
)

ga
p

(%
)

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

b
e

0.
3

15
0

34
.3
0

21
.4
9

36
53

51
.9
4

51
.7
0

27
66

51
.9
4

51
.6
2

55
0

28

0.
8

15
0

32
.9
5

20
.9
7

50
53

46
.9
4

46
.9
4

0
51

46
.9
4

37
.0
7

14
3

14
2

b
qp

0.
1

10
0

32
.2
3

11
.3
5

7
49

65
.0
1

13
.0
9

1
80

6
65

.0
1

11
.3
2

29
38

8

g0
5

0.
5

10
0

3.
73

2.
04

13
33

5.
35

5.
35

0
97

5.
35

3.
35

18
9

25
8

is
in
g2

0.
1

20
0

30
.2
2

3.
30

11
29

17
25

.2
5

17
.2
9

14
3

49
25

.2
5

14
.1
1

15
0

11
5

25
0

32
.3
1

4.
18

13
34

18
27

.7
8

23
.6
6

19
6

50
27

.7
8

18
.5
2

22
0

84

30
0

31
.9
3

4.
10

12
50

16
26

.3
3

23
.4
6

13
4

67
26

.3
3

19
.1
6

34
8

62

is
in
g3

0.
1

20
0

31
.0
8

2.
14

15
29

17
14

.7
8

11
.0
3

10
32

0
14

.7
8

9.
85

17
5

11
5

25
0

33
.4
1

3.
73

14
51

17
18

.0
4

15
.5
2

8
34

9
18

.0
4

13
.0
8

22
3

84

30
0

31
.9
6

2.
53

11
08

16
16

.1
0

13
.9
1

15
31

6
16

.1
0

12
.0
8

31
6

64

p
m
1d

0.
9

10
0

31
.1
5

16
.9
3

10
32

44
.7
2

44
.7
2

0
58

44
.7
2

28
.4
2

10
1

26
5

p
m
1s

0.
1

30
0

31
.1
8

15
.8
1

4
36

58
.1
4

19
.0
4

2
75

5
58

.1
4

16
.0
5

25
43

3

B
ol
d
va
lu
e
re
pr
es
en
ts
fo
r
ea
ch

in
st
an
ce
,t
he

va
lu
e
of

th
e
m
et
ho

d
th
at
ob

ta
in
ed

th
e
be
st
up

pe
r
bo

un
d

123

Improving the linear relaxation of maximum k-cut with… 141

Ta
bl
e
4

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
fo
r
B
i
q

M
a
c
in
st
an
ce
s
an
d
k

=
10

N
am

e
D
en
si
ty

|V
|

S
D
P

L
P

L
P
-E
IG

ga
p

(%
)

ga
p

(%
)

ga
p

(%
)

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

b
e

0.
3

15
0

73
.8
3

25
.9
4

24
1

24
96

.6
8

92
.6
6

12
16

1
96

.6
8

60
.6
0

63
3

34

0.
8

15
0

73
.7
7

28
.3
1

26
8

22
92

.0
6

91
.4
6

12
6

50
92

.0
6

46
.9
2

11
1

15
3

b
qp

0.
1

10
0

76
.2
7

13
.6
2

16
36

68
.4
7

14
.0
5

1
78

2
68

.4
7

13
.0
5

15
54

4

g0
5

0.
5

10
0

8.
81

4.
51

14
14

2.
23

2.
23

0
32

2.
23

2.
23

0
25

4

is
in
g2

0.
1

20
0

73
.6
5

48
.8
6

10
29

14
23

.7
3

16
.3
2

12
3

60
23

.7
3

15
.4
9

15
6

11
3

25
0

75
.2
3

59
.9
3

94
2

14
25

.3
5

21
.1
7

17
4

61
25

.3
5

17
.7
5

21
7

83

30
0

75
.3
4

66
.3
0

10
38

13
24

.3
6

21
.4
5

12
1

70
24

.3
6

17
.5
1

27
7

63

is
in
g3

0.
1

20
0

74
.7
8

53
.4
7

10
37

14
13

.3
7

8.
48

14
26

8
13

.3
7

10
.2
2

14
8

11
3

25
0

76
.7
6

62
.3
7

97
1

14
15

.8
4

13
.0
5

13
30

8
15

.8
4

12
.7
2

22
4

83

30
0

76
.5
4

67
.6
3

86
2

13
15

.0
6

12
.2
9

22
29

9
15

.0
6

12
.3
1

31
3

61

p
m
1d

0.
9

10
0

68
.7
7

20
.9
2

38
54

86
.2
5

79
.0
1

23
87

86
.2
5

35
.0
6

59
28

5

p
m
1s

0.
1

30
0

71
.8
9

18
.4
9

9
26

76
.5
3

18
.1
5

1
81

1
76

.5
3

16
.8
7

19
60

7

B
ol
d
va
lu
e
re
pr
es
en
ts
fo
r
ea
ch

in
st
an
ce
,t
he

va
lu
e
of

th
e
m
et
ho

d
th
at
ob

ta
in
ed

th
e
be
st
up

pe
r
bo

un
d

123

142 V. J. Rodrigues de Sousa et al.

Ta
bl
e
5

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
fo
r
ra
nd

om
in
st
an
ce
s
an
d
k

=
3

W
ei
gh
ts

D
en
si
ty

|V
|

S
D
P

L
P

L
P
-E
IG

ga
p

(%
)

ga
p

(%
)

ga
p

(%
)

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

[−
10

0,
10

0]
0.
2

10
0

30
.8
7

14
.4
5

11
56

54
.7
8

34
.8
4

1
79

7
54

.7
8

19
.0
8

85
14

5

20
0

36
.3
3

24
.4
7

11
2

47
55

.6
7

55
.6
7

4
35

55
.6
7

44
.3
9

16
7

10
1

30
0

39
.6
3

31
.0
2

34
0

35
54

.6
2

54
.6
2

10
35

54
.6
2

54
.3
2

19
8

55

50
0

45
.2
8

39
.3
6

53
1

23
58

.0
0

58
.0
0

9
44

58
.0
0

58
.0
0

9
8

0.
8

10
0

30
.9
3

15
.5
9

16
62

48
.6
4

48
.5
9

2
11

1
48

.6
4

28
.6
3

11
4

26
3

20
0

35
.6
5

25
.0
5

10
6

58
48

.5
1

48
.5
1

1
36

48
.5
1

41
.9
6

19
0

10
0

30
0

37
.4
4

29
.3
2

25
6

46
49

.1
5

49
.1
5

6
35

49
.1
5

48
.9
7

85
53

50
0

42
.9
8

37
.6
7

42
0

25
53

.1
8

53
.1
8

19
9

41
53

.1
8

53
.1
8

10
25

[1
,1
00

]
0.
2

10
0

8.
85

4.
66

8
56

14
.0
7

6.
75

1
76

3
14

.0
7

5.
82

65
18

1

20
0

7.
17

5.
12

88
53

10
.3
9

10
.3
9

1
39

10
.3
9

8.
89

17
2

10
2

30
0

6.
30

4.
93

35
3

33
8.
44

8.
44

2
37

8.
44

8.
40

20
1

58

50
0

5.
45

4.
78

51
5

23
6.
84

6.
84

10
42

6.
84

6.
84

10
8

0.
8

10
0

2.
60

1.
37

17
53

3.
90

3.
90

0
16

3.
90

3.
10

59
34

7

20
0

2.
13

1.
51

10
9

51
2.
86

2.
86

1
28

2.
86

2.
63

18
9

93

30
0

1.
74

1.
36

22
7

44
2.
27

2.
27

2
31

2.
27

2.
25

39
6

56

50
0

1.
61

1.
40

49
5

25
1.
99

1.
99

10
32

1.
99

1.
99

10
28

B
ol
d
va
lu
e
re
pr
es
en
ts
fo
r
ea
ch

in
st
an
ce
,t
he

va
lu
e
of

th
e
m
et
ho

d
th
at
ob

ta
in
ed

th
e
be
st
up

pe
r
bo

un
d

123

Improving the linear relaxation of maximum k-cut with… 143

Table 6 presents the results for k = 10. For mixed-weight instances, the SDP has
stronger bounds, but their computation is expensive. For positive weights, LP-EIG
usually gives the smallest gap and a competitive iteration time. Table 6 shows that for
sparse and positive instances the LP and LP-EIG methods have the smallest initial
gaps but were unable to improve them.

4.4.4 Data profiles

This section shows data profiles for SDP and LP-EIG for a specified gap. We plot
the results for k ∈ {3, 4, 6, 7, 10, 0.1|V |} for each method. In Sects. 4.4.2 and 4.4.3,
we saw that LP does not usually improve the initial gap, even after one hour of CPA.
Therefore, we have excluded these results.

In Fig. 4, we present the data profiles for instances with positive weights, i.e., all
80 problems of the family pRnd and 10 from g05. Figure 5 displays the results for
instances with mixed weights, i.e., 80 instances from nRnd, 20 from be, and 10 from
bqp, pm1s, and pm1d.

Positive weightsFigure 4 presents the data profiles for gap = 3%and positiveweights.
LP-EIG outperforms SDP when k ≥ 7, especially for iterations that take less than
10s. For example, for k = 10 and i time =10s LP-EIG solves approximately 80% of
the problems while SDP does not solve any.

For k ∈ {4, 6}, LP-EIG can solve more problems in the first five seconds, but
for more expensive iterations SDP can solve more problems. For k = 3, SDP
consistently outperforms LP-EIG.

Mixed weights Figure 5 presents data profiles for gap = 30% and mixed weights.
For k ≥ 4, LP-EIG has a slight advantage over SDP for iterations that take less than
5s. However, neither method is satisfactory: They solve only 40% of the instances in
100s. For k = 3, SDP is better than LP-EIG; it solves more than 50% of the instances
within 10s.

4.4.5 Performance profiles

This section shows the performance profiles of SDP and LP-EIG. We again exclude
the LP method.

Positive weights Figure 6 shows the performance profiles for positive weights and a
time of 10s (we consider only iterations that take less than 10s). For k ≤ 6, SDP
outperforms LP-EIG, especially for gap ≤ 3.5%. However, for k ≥ 7 this is reversed.
In particular, for k = 10 LP-EIG solves all the instances with a gap below 2.5%,
whereas SDP solves only 10% of the instances.

Mixed weights Figure 7 shows the performance profiles for a time of 20s and mixed
weights. Here, the gap goes from 0% (optimality) to 50% rather than 0% to 5% (see
Fig. 6), because no method could solve the instances with lower gaps, even when
we allowed a higher value for i time. In Fig. 7, we observe that for k = 3 SDP
outperforms LP-EIG, but the latter is more efficient for k ∈ {4, . . . , 7}. For k ≥ 10
the two methods have similar performance.

123

144 V. J. Rodrigues de Sousa et al.

Ta
bl
e
6

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
fo
r
ra
nd

om
in
st
an
ce
s
an
d
k

=
10

W
ei
gh
ts

D
en
si
ty

|V
|

S
D
P

L
P

L
P
-E
IG

ga
p

(%
)

ga
p

(%
)

ga
p

(%
)

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

St
ar
t

St
op

t L
as
t

i
te

[−
10

0,
10

0]
0.
2

10
0

70
.2
2

16
.1
4

31
43

10
0.
41

40
.0
0

1
90

5
10

0.
41

17
.4
6

70
17

8

20
0

78
.9
3

31
.9
8

74
9

14
10

4.
32

10
4.
32

1
39

10
4.
32

56
.0
0

16
1

10
4

30
0

83
.1
9

55
.6
3

84
6

14
10

2.
85

10
2.
85

2
41

10
2.
85

70
.4
1

25
5

57

50
0

88
.0
9

74
.7
7

86
0

13
10

4.
56

10
4.
56

9
45

10
4.
56

95
.9
7

47
9

23

0.
8

10
0

71
.2
4

20
.0
9

56
59

94
.4
3

67
.6
8

17
17

6
94

.4
3

34
.8
9

62
29

0

20
0

76
.3
7

37
.6
1

78
0

16
93

.2
2

93
.2
2

1
39

93
.2
2

54
.5
2

17
9

99

30
0

77
.9
0

52
.8
0

66
2

16
92

.8
2

92
.8
2

2
43

92
.8
2

63
.7
7

27
5

59

50
0

85
.6
8

73
.0
2

78
3

14
98

.9
2

98
.9
2

9
42

98
.9
2

90
.9
0

53
9

24

[1
,1
00

]
0.
2

10
0

27
.1
9

0.
12

18
11

0.
12

0.
12

0
18

0.
12

0.
12

0
17

20
0

17
.6
4

7.
29

90
5

15
0.
48

0.
48

1
34

0.
48

0.
48

1
18

30
0

14
.1
7

10
.0
6

94
3

15
1.
43

1.
43

2
38

1.
43

1.
43

2
10

50
0

10
.8
4

9.
52

87
6

13
2.
94

2.
94

10
62

2.
94

2.
94

10
6

0.
8

10
0

5.
99

2.
11

33
17

4.
27

3.
24

9
66

2
4.
27

1 .
60

31
43

7

20
0

4.
30

2.
79

17
0

17
5.
05

5.
04

4
49

5.
05

2.
24

12
1

11
6

30
0

3.
37

2.
66

22
7

16
3.
91

3.
91

2
30

3.
91

2.
56

22
3

57

50
0

2.
93

2.
55

79
4

14
3.
31

3.
31

10
35

3.
31

3.
31

10
23

B
ol
d
va
lu
e
re
pr
es
en
ts
fo
r
ea
ch

in
st
an
ce
,t
he

va
lu
e
of

th
e
m
et
ho

d
th
at
ob

ta
in
ed

th
e
be
st
up

pe
r
bo

un
d

123

Improving the linear relaxation of maximum k-cut with… 145

10
0

10
1

10
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

10
0

10
1

10
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Fi
g.
4

D
at
a
pr
ofi

le
s
fo
r
in
st
an
ce
s
w
ith

po
si
tiv

e
w
ei
gh
ts
fo
r
va
ri
ou
s
va
lu
es

of
pa
rt
iti
on

si
ze

k

123

146 V. J. Rodrigues de Sousa et al.

10
0

10
1

10
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

10
0

10
1

10
2

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Fi
g.
5

D
at
a
pr
ofi

le
s
fo
r
in
st
an
ce
s
w
ith

m
ix
ed

w
ei
gh
ts
fo
r
va
ri
ou
s
va
lu
es

of
pa
rt
iti
on

si
ze

k

123

Improving the linear relaxation of maximum k-cut with… 147

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Fi
g.
6

Pe
rf
or
m
an
ce

pr
ofi

le
s
fo
r
in
st
an
ce
s
w
ith

po
si
tiv

e
w
ei
gh
ts
fo
r
va
ri
ou
s
va
lu
es

of
pa
rt
iti
on

si
ze

k

123

148 V. J. Rodrigues de Sousa et al.

0
5

10
15

20
25

30
35

40
45

50
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

0
5

10
15

20
25

30
35

40
45

50
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Fi
g.
7

Pe
rf
or
m
an
ce

pr
ofi

le
s
fo
r
in
st
an
ce
s
w
ith

m
ix
ed

w
ei
gh
ts
fo
r
va
ri
ou
s
va
lu
es

of
pa
rt
iti
on

si
ze

k

123

Improving the linear relaxation of maximum k-cut with… 149

Table 7 Best methods for each
type of problem

Type of instance Partition size

Weight Density k ≤ 6 k ≥ 7

Mixed Sparse SDP or LP-EIG SDP or LP-EIG

Dense SDP or LP-EIG SDP or LP-EIG

Positive Sparse SDP LP-EIG

Dense SDP LP-EIG

4.5 Summary of computational tests

The tables of Sects. 4.4.2 and 4.4.3 show that for k = 3 the SDP formulation consis-
tently obtains the best results. However, for k = 10 LP-EIG outperforms SDP for
some sparse mixed-weight instances and for positive-weight instances.

The data and performance profiles in Sects. 4.4.4 and 4.4.5 indicate that LP-EIG is
more efficient than SDP for positive weights with k ≥ 7 and for mixed weights with
k ∈ {4, . . . , 10}. For k = 3, the SDP consistently outperforms the linear formulations.

Table 7 presents a summary of our computational results, indicating the bestmethod
for each type of problem.

5 Discussion

We have proposed a family of SDP-based constraints (10) to strengthen the LP relax-
ation of the max-k-cut problem. The constraint matrix has an infinite number of rows.
Therefore, we use an exact method based on eigenvalues to separate the linear solu-
tions.

To investigate the strength of the proposed constraint, we use a CPA that relies on
the early termination of an IPM, and we study the performance of the SDP and LP
relaxations for various values of k andproblem types.Both relaxations are strengthened
by combinatorial facet-defining inequalities.

To guarantee a fair comparison, we use three benchmarks: performance tables, data
profiles, and performance profiles. Our results are summarized in Table 7.

We conclude that the early termination of the IPM is effective for both the SDP
and LP relaxations in the CPA. Moreover, the SDP-based constraint strengthens the
LP relaxation, especially for dense instances. LP-EIG outperforms SDP for prob-
lems with positive weights and k ≥ 7. Additionally, the new linear formulation is
competitive for sparse instances with mixed weights.

Future research involves the implementation of a branch-and-cut algorithm to find
the optimal solution of max-k-cut using SDP-based inequalities and to study ways
of strengthening the SDP-based inequalities, for example, by using combinatorial
arguments such as the ones in Avis and Umemoto (2003), Chopra and Rao (1995),
Galli et al. (2011), Helmberg and Rendl (1998), and Laurent and Poljak (1996).

Acknowledgements The authors thank the associate editor and two anonymous referees for their helpful
comments on an earlier version of this article.

123

150 V. J. Rodrigues de Sousa et al.

References

Ales Z, Knippel A (2016) An extended edge-representative formulation for the k-partitioning problem.
Electron Notes Discrete Math 52(Supplement C):333–342 INOC 2015—7th international network
optimization conference

Anjos M F, Ghaddar B, Hupp L, Liers F, Wiegele A (2013) Solving k-way graph partitioning problems to
optimality: the impact of semidefinite relaxations and the bundle method. In: Jünger Michael, Reinelt
Gerhard (eds) Facets of combinatorial optimization. Springer, Berlin, pp 355–386

Avis D, Umemoto J (2003) Stronger linear programming relaxations of max-cut. Math Program 97(3):451–
469

Barahona F, Grötschel M, Jünger M, Reinelt G (1988) An application of combinatorial optimization to
statistical physics and circuit layout design. Oper Res 36(3):493–513

Chopra S, Rao MR (1993) The partition problem. Math Program 59(1):87–115
Chopra S, Rao MR (1995) Facets of the k-partition polytope. Discrete Appl Math 61(1):27–48
de Klerk E, Pasechnik DV, Warners JP (2004) On approximate graph colouring and max-k-cut algorithms

based on the θ -function. J Comb Optim 8(3):267–294
Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program

91(2):201–213
Eisenblätter A (2002) The semidefinite relaxation of the k-partition polytope is strong. In: CookWJ, Schulz

AS (eds) Integer programming and combinatorial optimization. Lecture notes in computer science,
vol 237. Springer, Berlin, pp 273–290

Fairbrother J, LetchfordAN (2017) Projection results for the k-partition problem.DiscreteOptim 26:97–111
Fairbrother J, Letchford AN, Briggs K (2018) A two-level graph partitioning problem arising in mobile

wireless communications. Comput Optim Appl 69(3):653–676
Frieze A, JerrumM (1997) Improved approximation algorithms for maxk-cut and max bisection. Algorith-

mica 18(1):67–81
Galli L,KaparisK,LetchfordAN(2011)Gap inequalities for non-convexmixed-integer quadratic programs.

Oper Res Lett 39(5):297–300
Ghaddar B, Anjos MF, Liers F (2011) A branch-and-cut algorithm based on semidefinite programming for

the minimum k-partition problem. Ann Oper Res 188(1):155–174
Goemans MX, Williamson DP (1995) Improved approximation algorithms for maximum cut and satisfia-

bility problems using semidefinite programming. J ACM 42(6):1115–1145
Gondzio J (2012) Interior point methods 25 years later. Eur J Oper Res 218:587–601
Gondzio J, González-Brevis P, Munari P (2016) Large-scale optimization with the primal-dual column

generation method. Math Program Comput 8(1):47–82
Guennebaud G, Jacob B, et al (2010) Eigen. http://eigen.tuxfamily.org. Accessed Feb 2018
Heggernes P (2006) Minimal triangulations of graphs: a survey. Discrete Math 306(3):297–317
Helmberg C (2000) Semidefinite programming for combinatorial optimization, 1st edn. Konrad-Zuse-

Zentrum für Informationstechnik, Berlin
Helmberg C, Rendl F (1998) Solving quadratic (0,1)-problems by semidefinite programs and cutting planes.

Math Program 82(3):291–315. https://doi.org/10.1007/BF01580072
Hettich R, Kortanek KO (1993) Semi-infinite programming: theory, methods, and applications. SIAM Rev

35(3):380–429
Hopcroft J, Tarjan R (1973) Algorithm 447: efficient algorithms for graph manipulation. Commun ACM

16(6):372–378
Karger D, Motwani R, Sudan M (1998) Approximate graph coloring by semidefinite programming. J ACM

45(2):246–265
Krishnan K,Mitchell JE (2001) Semi-infinite linear programming approaches to semidefinite programming

problems. Technical Report 37, Fields Institute Communications Series
Krishnan K, Mitchell JE (2006) A semidefinite programming based polyhedral cut and price approach for

the maxcut problem. Comput Optim Appl 33(1):51–71
Krislock N, Malick J, Roupin F (2012) Improved semidefinite bounding procedure for solving max-cut

problems to optimality. Math Program 143(1):61–86
Laurent M, Poljak S (1996) Gap inequalities for the cut polytope. Eur J Comb 17(2):233–254
Liers F, Jünger M, Reinelt G, Rinaldi G (2005) Computing exact ground states of hard Ising spin glass

problems by branch-and-cut. In: New optimization algorithms in physics. Wiley-VCH Verlag GmbH
& Co. KGaA, pp 47–69

123

http://eigen.tuxfamily.org
https://doi.org/10.1007/BF01580072

Improving the linear relaxation of maximum k-cut with… 151

Lisser A, Rendl F (2003) Graph partitioning using linear and semidefinite programming. Math Program
95(1):91–101

Ma F, Hao J-K (2017) A multiple search operator heuristic for the max-k-cut problem. Ann Oper Res
248(1):365–403

Mitchell JE (2000) Computational experience with an interior point cutting plane algorithm. SIAM J Optim
10(4):1212–1227

Mitchell JE (2003) Realignment in the National Football League: did they do it right? Naval Res Logist
50(7):683–701

Mitchell JE, Pardalos PM, Resende MGC (1999) Interior point methods for combinatorial optimization.
In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization, vol 1–3. Springer, Boston,
pp 189–297

Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100
Moré JJ,Wild SM (2009)Benchmarking derivative-free optimization algorithms. SIAMJOptim 20(1):172–

191
Mosek ApS (2015) MOSEK http://www.mosek.com. Accessed Feb 2018
Munari P, Gondzio J (2013) Using the primal-dual interior point algorithm within the branch-price-and-cut

method. Comput Oper Res 40(8):2026–2036
Niu C, Li Y, Qingyang Hu R, Ye F (2017) Femtocell-enhanced multi-target spectrum allocation strategy in

LTE-A HetNets. IET Commun 11(6):887–896
Palagi L, Piccialli V, Rendl F, Rinaldi G, Wiegele A (2011) Computational approaches to max-cut. In:

Anjos MF, Lasserre JB (eds) Handbook of semidefinite, conic and polynomial optimization: theory,
algorithms, software and applications. International series in operations research and management
science. Springer, New York, pp 821–847

Papadimitriou CH, Yannakakis M (1991) Optimization, approximation, and complexity classes. J Comput
Syst Sci 43(3):425–440

Rendl F (2012) Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR
10(4):321–346

Rendl F, Rinaldi G, Wiegele A (2010) Solving max-cut to optimality by intersecting semidefinite and
polyhedral relaxations. Math Program 121(2):307–335

RinaldiG (2018)Rudy, a graph generator. https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html.
Accessed Feb 2018

Rodrigues de Sousa VJ, Anjos MF, Le Digabel S (2018) Computational study of valid inequalities for the
maximum k-cut problem. Ann Oper Res 265(1):5–27. https://doi.org/10.1007/s10479-017-2448-9

Seidman SB (1983) Network structure and minimum degree. Soc Netw 5(3):269–287
Sherali HD, Fraticelli BMP (2002) Enhancing RLT relaxations via a new class of semidefinite cuts. J Glob

Optim 22(1–4):233–261
Shor N Z (1998) Semidefinite programming bounds for extremal graph problems. Springer, Boston, pp

265–298
Wang G, Hijazi H (2017) Exploiting sparsity for the min k-partition problem. arXiv e-prints.

arXiv:1709.00485
Wiegele A (2015) Biq mac library—binary quadratic and max cut library. http://biqmac.uni-klu.ac.at/

biqmaclib.html. Accessed Feb 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.mosek.com
https://www-user.tu-chemnitz.de/~helmberg/sdp_software.html
https://doi.org/10.1007/s10479-017-2448-9
http://arxiv.org/abs/1709.00485
http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html

	Improving the linear relaxation of maximum k-cut with semidefinite-based constraints
	Abstract
	1 Introduction
	1.1 Formulations
	1.1.1 Semidefinite programming formulation
	1.1.2 Linear formulation
	1.1.3 SDP versus LP

	2 SDP-based inequality
	2.1 Semi-infinite formulation of SDP
	2.2 Variable transformations
	2.3 SDP-based inequality formulation

	3 Cutting-plane algorithm
	3.1 Separation routines
	3.1.1 Separation of combinatorial inequalities
	3.1.2 Separation of bound inequalities
	3.1.3 Separation of SDP-based inequalities
	3.1.4 Maximum number of inequalities in CPA

	3.2 Dropping inequalities
	3.3 Solving the relaxations

	4 Computational tests
	4.1 Terminology
	4.2 Instances
	4.3 Comparison methodology
	4.3.1 Separation routine tables
	4.3.2 Performance tables
	4.3.3 Data profiles
	4.3.4 Performance profiles

	4.4 Computational results
	4.4.1 Separation routine tables
	4.4.2 Performance tables: Biq Mac instances
	4.4.3 Performance tables: random instances
	4.4.4 Data profiles
	4.4.5 Performance profiles

	4.5 Summary of computational tests

	5 Discussion
	Acknowledgements
	References

