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Abstract
In this survey, we discuss the state of the art of robust combinatorial optimization
under uncertain cost functions. We summarize complexity results presented in the
literature for various underlying problems,with the aimof pointing out the connections
between the different results and approaches, and with a special emphasis on the role
of the chosen uncertainty sets. Moreover, we give an overview over exact solution
methods for NP-hard cases. While mostly concentrating on the classical concept of
strict robustness, we also cover more recent two-stage optimization paradigms.

Keywords Robust optimization · Uncertainty · Combinatorial optimization ·
Two-stage robustness · K -Adaptability · Complexity

Mathematics Subject Classification 90C99

1 Introduction

Combinatorial optimization problems arise in many real-world applications, e.g., in
the fields of economy, industry, or transport logistics. For many such problems, theo-
retically (or practically) fast algorithms have been developed under the assumption that
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all problem data is known precisely. However, the situation becomes more complex
when considering uncertainty in the problem parameters. For example, the travel times
for the shortest path problem or the vehicle routing problem can be subject to uncer-
tainty, since we cannot predict the exact traffic situation in the future. One successful
approach to tackle uncertainty in the input data is robust optimization: for a given setU
containing all relevant scenarios, i.e., all sufficiently likely realizations of the uncer-
tain parameters, a solution is sought that is feasible for every scenario inU and that is
worst-case optimal under this constraint. This idea was first introduced by Soyster in
Soyster (1973). The approach received increasing attention in the late 1990s. Kouvelis
and Yu studied finite uncertainty sets U for several combinatorial optimization prob-
lems in Kouvelis and Yu (1996). Almost at the same time, Ben-Tal and Nemirovski
(1998, 1999) studied robust convex problems with conic or ellipsoidal uncertainty
sets. Furthermore, El Ghaoui et al. applied the idea to semi-definite problems and
least squares problems (Ghaoui et al. 1998; Ghaoui and Lebret 1997). Later, Bertsi-
mas and Sim introduced budgeted uncertainty sets to reduce what they call thePrice of
Robustness (Bertsimas and Sim 2004a). A survey over robust optimization approaches
for discrete and interval uncertainty can be found in Aissi et al. (2009). The different
uncertainty sets and their robust counterparts are intensively studied in Li et al. (2011).

Subsequently, new robust optimization paradigmswere presented and studied in the
literature, with the main objective of making the approach better applicable to prac-
tical problems. Besides various two-stage approaches (Ben-Tal et al. 2004; Liebchen
et al. 2009; Adjiashvili et al. 2015), which we will discuss in detail in Sect. 4, several
other paradigms have been investigated, e.g., min–max regret robustness (Averbakh
and Lebedev 2005; Inuiguchi and Sakawa 1995; Chassein and Goerigk 2016; Kou-
velis and Yu 1996; Averbakh and Lebedev 2004; Aissi et al. 2005a, b, c) or the light
robustness approach (Fischetti et al. 2009; Fischetti andMonaci 2009; Schöbel 2014).
Surveys studying several of the different approaches can be found inAissi et al. (2009),
Bertsimas et al. (2011), Gabrel et al. (2014), Kasperski and Zieliński (2016), Ben-Tal
and Nemirovski (2002), Gorissen et al. (2015) and Beyer and Sendhoff (2007); they
also cover distributional robustness, which forms a connection between robust and
stochastic optimization.

In the present survey, we consider general combinatorial optimization problems of
the form

min
x∈X c�x (P)

where X ⊆ {0, 1}n describes the certain set of feasible solutions and where only the
cost vector c ∈ R

n is subject to uncertainty. In particular, we assume that an uncertainty
set U ⊆ R

n is given which contains all possible cost vectors c. The classical robust
counterpart of Problem (P) is then given by Problem

min
x∈X max

c∈U c�x . (RP)

In contrast to other surveys on this topic,we aim at pointing out the differences between
several common classes of uncertainty sets, with a focus on ellipsoidal uncertainty; see
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Sect. 2. In Sect. 3, we will sort and structure the complexity results for Problem (RP)
achieved in the literature for several underlying combinatorial problems, again with
a focus on the role of the chosen class of uncertainty set. Typical complexity results
for Problem (RP) are illustrated for the most elementary case X = {0, 1}n , including
sketches of the main proofs. Furthermore, we will discuss exact methods to solve
Problem (RP) for the NP-hard cases, covering IP-based methods as well as oracle-
based algorithms, which can be applied to every combinatorial problem (P) given
by an optimization oracle. Finally, in Sect. 4, we will give an overview over various
robust two-stage approaches presented in the literature and point out the connections
between them.

2 Common uncertainty sets

The choice of the uncertainty set U is crucial in the design of the robust counter-
part (RP). On the one hand, this choice should reflect the situation given in the appli-
cation and lead to a realisticmodel of the given uncertainty, including the user’s attitude
toward risk. On the other hand, the choice ofU influences the tractability of the result-
ing problem (RP). For this reason, many different types of uncertainty sets have been
investigated in the literature and are still being proposed. Roughly, most of these uncer-
tainty sets can be classified as discrete, polyhedral, or ellipsoidal sets. For a study on the
geometric relationship between the common uncertainty classes see Li et al. (2011).

2.1 Discrete uncertainty

Discrete (or scenario-based) uncertainty sets are finite sets U = {c1, . . . , cm}. They
form the most intuitive case of uncertainty sets. In practice, uncertain problem data is
often given as a finite list of scenarios observed in the past, e.g., the prices of stocks in
portfolio optimization or the shipping volumes in the design of a transport network.

Unfortunately, in spite of their conceptual simplicity, assuming discrete uncertainty
nearly always leads to intractable robust counterparts; see Sect. 3.1.1. In fact, for many
well-studied underlying combinatorial problems, such as the shortest path problem or
the spanning tree problem, the robust counterpart (RP) turns out to be weakly NP-hard
if the number m of scenarios is fixed and strongly NP-hard if m is part of the input.

2.2 Polyhedral uncertainty

Even if it seems natural in practice to define uncertain costs by a finite list of pos-
sible scenarios, in particular when only finitely many observations from the past are
available, there is no reason to exclude convex combinations of these scenarios: if two
scenarios are likely enough to appear, then why should the convex combination of
them not be a likely scenario? This leads to the concept of polyhedral (or polytopal)
uncertainty, as polytopes are exactly the convex hulls of finite sets.

For most models of robust optimization, including the robust counterpart defined
in (RP), it is easy to prove that changing fromU to its convex hull does not change the

123



214 C. Buchheim, J. Kurtz

problem, as the worst case in the inner maximization problem will be attained in an
extreme point anyway. This seems to suggest that discrete and polytopal uncertainty
sets are equivalent. However, this is not true for all robust two-stage optimization
paradigms; see Sect. 4. Moreover, even if the equivalence holds from an abstract point
of view, it does not hold from an algorithmic or complexity-theoretic point of view:
the convex hull of m points can have exponentially many facets in m, and, vice versa,
the number of vertices of a polytope can be exponential in the number of its facets.
In particular, complexity results do not necessarily carry over from the discrete to the
polyhedral case or vice versa.

In fact, the number of vertices is exponential for one of themostwidely used polyhe-
dral uncertainty set, namely interval uncertainty. Here, every objective function coef-
ficient can vary independently in an interval [li , ui ], so that U is an axis-parallel box

U =
n∏

i=1

[li , ui ] = {c ∈ R
n | l ≤ c ≤ u} =: [l, u].

Note that the number of vertices is 2n here, so that a reduction to the discrete case is
not efficient. However, using interval uncertainty, the classical robust counterpart is
as easy to solve as the underlying problem, since we can just replace every uncertain
coefficient by ui .

On the other hand, interval uncertainty leads to very conservative solutions, as it
takes into account the possibility that every cost coefficient attains its worst case value
independently. In an effort to mitigate this effect, the concept of budget uncertainty
(also called Gamma uncertainty) has been introduced (Bertsimas and Sim 2004a).
Building on the interval uncertainty set, the idea is to allow only a fixed number Γ of
coefficients to deviate from their mean values. This leads to the uncertainty set

U =
{
c ∈ R

n | l ≤ c ≤ u, ci = li+ui
2 ∀i /∈ I , I ⊆ {1, . . . , n}, |I | ≤ Γ

}
.

Dealing with a minimization problem and since X ⊆ {0, 1}n , we only need to consider
positive deviations in the coefficients. For the classical robust counterpart (RP), we
can equivalently consider the uncertainty set

U =
{
c0 +

n∑

i=1

δi di ei |
n∑

i=1

δi ≤ Γ , δ ∈ {0, 1}n
}

, (1)

as it was first introduced in Bertsimas and Sim (2004a), where c0 = 1
2 (u + l) is the

center of the box [l, u] and d = 1
2 (u− l) are the maximum deviations from the center,

and ei denotes the i-th unit vector. Note that this set U is not a polytope in general,
but when replacing it by its convex hull

conv (U ) =
{
c0 +

n∑

i=1

δi di ei |
n∑

i=1

δi ≤ Γ , δ ∈ [0, 1]n
}

=
{
c ∈ R

n | c0 ≤ c ≤ c0 + d,

n∑

i=1

1
di

(c − c0)i ≤ Γ

}
,

(2)
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assuming Γ ∈ N, the problem becomes a special case of polyhedral uncertainty. Since
the original set U is finite here, budget uncertainty could also be considered a special
case of discrete uncertainty; see Sect. 2.1 above. However, ifΓ is not fixed, the number
of scenarios is exponential in n, so that this viewpoint may be problematic in terms of
complexity. Note that all three versions of the budgeted uncertainty set are equivalent
for the classical robust counterpart (RP) while in general all sets differ from each other
and can lead to different solutions, e.g., in the case of two-stage robustness; see Sect. 4.

An alternative approach is to bound the absolute deviation of c from the mean c0
byΓ ; see Sect. 4.1. All thesemodels have in common that, on the one hand, they cut off
the extreme scenarios in the interval uncertainty set and thus lead to less conservative
solutions, and on the other hand, they usually yield tractable robust counterparts,
assuming that the underlying problem is tractable; see Sect. 3.2.1.

Several extensions of budgeted and general polyhedral uncertainty sets have been
devised in the literature. In multi-band uncertainty sets, the single deviation band is
partitioned into multiple sub-bands for which the concept of budgeted uncertainty
is applied independently (Büsing and D’Andreagiovanni 2012, 2013; Claßen et al.
2015). The concept of decision-dependent uncertainty sets was studied in Nohadani
and Sharma (2016) and Lappas andGounaris (2018). The authors consider uncertainty
setsU (x) which depend on the decision x . This concept was also applied to budgeted
uncertainty sets, assuming that the parameter Γ is not fixed but a function of the
solution x (Poss 2013; Sim 2004).

In general, for arbitrary polytopes U , the robust counterpart (RP) turns out to be
strongly NP-hard, no matter whetherU is given by an inner or by an outer description;
see Sect. 3.1.2.

2.3 Ellipsoidal uncertainty

Both discrete and polytopal uncertainty sets often depend on a collection of observed
scenarios. These finitely many scenarios are only an approximation of the real distri-
bution of the cost coefficients. In particular, when making the reasonable assumption
that the cost coefficients are normally distributed, the confidence sets turn out to be
ellipsoids of the form

U =
{
c ∈ R

n | (c − c0)
�Σ−1(c − c0) ≤ r2

}
, (3)

where c0 ∈ R
n is the expected value of the uncertain objective vector c and Σ is the

covariance matrix of the entries of c—for sake of simplicity, we assume Σ � 0 here.
The parameter r describes the level of confidence, i.e., the risk the user is willing to
take—a larger r leads to more conservative solutions. Given the set (3), it is easy to
see, e.g., using conic duality, that (RP), can be rewritten as a nonlinear optimization
problem

min
x∈X c�

0 x + r ·
√
x�Σx . (4)
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The existence of a smooth closed form expression of the objective function distin-
guishes ellipsoidal uncertainty from the uncertainty sets discussed above; it forms the
basis of many solution approaches.

Problems of the form (4) are also known as mean-risk optimization problems in
the literature, as their objective function is a weighted sum of the mean c�

0 x and the

risk
√
x�Σx of the chosen solution x . Often, the risk part is modeled as x�Σx , which

may lead to different optimal solutions. Mean-risk optimization is particularly popular
in portfolio optimization, where the concept was introduced already in the 1950s
by Markowitz (1952). For a comprehensive overview over mathematical methods of
portfolio optimization, see Cornuejols and Tütüncü (2006).

Another natural way to derive ellipsoidal uncertainty sets is by considering the
so-called Value-at-Risk model. The objective (in the minimization case) is to find a
feasible solution x ∈ X and a value z ∈ R such that the probability of x having an
objective value worse than z is at most a given ε ∈ (0, 1). Under this condition, the
aim is to minimize z. The resulting problem thus reads

min z

s.t. Pr(c�x ≥ z) ≤ ε

x ∈ X .

Assuming again that the entries of c are normally distributed, i.e., c ∼ N (c0,Σ), one
can show that the constraint Pr(c�x ≥ z) ≤ ε is equivalent to

z ≥ c�
0 x + Φ−1(1 − ε)

√
x�Σx,

where Φ is the cumulative distribution function of the standard normal distribution.
In summary, the above problem can be recast as (4) with r := Φ−1(1 − ε).

Usually, full information about the given distribution of c is not available in practice.
However, one may approximate the mean c0 and the covariance matrix Σ by means
of a finite set of observations. This is often done in portfolio optimization; see, e.g.,
Chang et al. (2000). Arguably, the resulting normal distribution yields a more realistic
model of the inherent uncertainty than the finite set of observations itself.

In general, ellipsoidal uncertainty sets lead to intractable counterparts (RP) again.
However, in the special case of uncorrelated cost coefficients—orwhen correlations are
ignored in the model—the complexity-theoretic situation becomes more interesting.
We then have Σ = Diag(σ ) for some σ ∈ R

n+ and, using binarity, we can rewrite
Problem (4) as

min
x∈X c�

0 x +
√

σ�x . (5)

Surprisingly, up to our knowledge, it is an open problem whether (5) is tractable for
all X for which the underlying problem (P) is tractable. In particular, no tractable
(certain) combinatorial optimization problem is known for which (5) turns out to be
NP-hard. It is known however that an FPTAS exists as soon as the underlying problem
admits an FPTAS (Nikolova 2010a). Furthermore (5) can be solved in polynomial
time if X is a matroid. We further discuss this in Sect. 3.2.2.
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2.4 General norms

Many of the uncertainty sets discussed above can be defined by means of a norm func-
tion ‖.‖: Rn → R. Indeed, it is a natural approach to assume that the cost function c
can vary within a certain radius around the expected scenario c0, with respect to a
given norm. The resulting uncertainty set is thus of the form

U = {
c ∈ R

n | ‖c − c0‖ ≤ r
}
, (6)

where r again models the risk-averseness of the user. Defining ‖c‖ := √
c�Σ−1c, we

obtain ellipsoidal uncertainty as a special case, while the∞-norm, after an appropriate
scaling, gives rise to interval uncertainty. The convex variants of budgeted uncertainty
correspond to a combination of the ∞-norm with the 1-norm; the two latter norms
give rise to polytopal uncertainty sets. In general, a closed form expression for the
robust counterpart (RP) for the set in (6) is

min
x∈X c�

0 x + r‖x‖∗,

where ‖.‖∗ is the dual norm to ‖.‖; see also Bertsimas et al. (2004).
In analogy to ellipsoidal uncertainty sets corresponding to the 2-norm, one can

consider uncertainty sets based on the p-norm. Many results for the ellipsoidal case
can be easily generalized to p-norms with p ∈ (1,∞), e.g., the tractability of the
robust counterpart for uncorrelated costs in the case X = {0, 1}n (Ilyina 2017).

2.5 Unbounded uncertainty sets

Most uncertainty sets considered in the literature are bounded. Essentially, this can
be assumed without loss of generality. Indeed, if an unbounded direction a of U
exists, it is easy to see that the inner maximization problem yields an implicit linear
constraint a�x ≤ 0, since for all x ∈ R

n violating this constraint the inner maximum
in (RP) is infinite. Adding this constraint explicitly allows to remove the unbounded
direction fromU . In other words, allowing unbounded directions inU means to allow
to impose linear constraints on X . Note that if U is convex and unbounded, there
always exists an unbounded direction. If uncertain constants are taken into account,
as discussed in Sect. 2.6 below, it is even possible to model an affine linear constraint
of the form a�x ≤ b by adding an unbounded direction (a,−b) to U .

2.6 Uncertain constants

For a certain problem of the form (P), adding a constant in the objective function
does not have any affect on the set of optimal solutions, so that constants are usually
not considered explicitly. However, this changes in the uncertain setting, as also the
constant may be uncertain. Nevertheless, this is usually not covered in the literature.
Clearly, the robust counterpart including a constant,

min
x∈X max

(c,c̄)∈U c�x + c̄, (RPC)
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is at least as hard as Problem (RP) for most classes of uncertainty sets, as the case
of a certain constant can be modeled as a special case. It can be shown that also the
reverse is true for most classical combinatorial optimization problems, i.e., including
the uncertain constant does not increase the complexity of the problem (Kurtz 2016).
Besides others, this is true for the shortest path problem, the spanning tree problem,
the knapsack problem, and the unconstrained binary problem where X = {0, 1}n . On
the other hand, allowing an uncertain constant often simplifies NP-hardness proofs,
as we will see in the following section.

3 Strictly robust optimization

We consider the strictly robust counterpart (RP) of the underlying problem (P). We
are mostly interested in the complexity of (RP), which of course depends both on
the feasible set X and the uncertainty set U . We start by reviewing the complexity
results for general discrete, polyhedral, and ellipsoidal uncertainty sets in Sect. 3.1.
In Sect. 3.2, we will focus on uncertainty sets that often lead to tractable robust
counterparts. In Sect. 3.3, we will survey possible solution approaches for NP-hard
cases.

3.1 Complexity for general sets

It turns out that the strictly robust counterpart (RP) is often NP-hard for general dis-
crete, polyhedral, and ellipsoidal uncertainty sets, even in cases where the underlying
problem (P) is tractable. Some of the main hardness results are collected in the follow-
ing subsections, where we distinguish between weakly and strongly NP-hard variants
of (RP) and also cover the question whether polynomial time approximation schemes
exist. For the convenience of the reader, wewill present proofs for themost elementary
case X = {0, 1}n , which is usually not considered in the literature.

3.1.1 Discrete uncertainty

The robust counterpart (RP) of many classical combinatorial optimization problems,
including the shortest path and the spanning tree problem, isNP-hard even ifU contains
only two scenarios (Kouvelis and Yu 1996; Aissi et al. 2005b, c; Baumann et al. 2015).
We now illustrate this by giving a short proof of NP-hardness for the most elementary
case X = {0, 1}n . In particular, this shows that the hardness is not related to any
combinatorial structure of X , but only stems from the integrality constraints.

Theorem 1 The robust counterpart (RP) is NP-hard for X = {0, 1}n if the uncertainty
set U contains exactly two scenarios.

Proof By the discussion in Sect. 2.6, it suffices to show the NP-hardness of Prob-
lem (RPC) for the case of two scenarios, i.e., U = {(c1, c̄1), (c2, c̄2)}. We describe
a polynomial reduction of the (weakly) NP-hard Subset Sum problem to (RPC).
Given integers s1, . . . , sn and S, we have to decide whether there exists a sub-
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set I ⊆ {1, . . . , n}with∑
i∈I si = S. We construct a corresponding instance of (RPC)

by setting (c1, c̄1) = (s,−S) and (c2, c̄2) = (−s, S). We then have

min
x∈{0,1}n max

{
c�
1 x + c̄1, c

�
2 x + c̄2

}
= min

x∈{0,1}n |s�x − S|.

It follows that there exists a set I ⊆ {1, . . . , n} with ∑
i∈I si = S if and only if the

optimal value of the constructed instance of (RPC) is zero. ��
Nevertheless, for several problems, e.g., the shortest path problem, the spanning tree
problem, the knapsack problem and the unconstrained binary problem, pseudopolyno-
mial algorithms have been found under the assumption that the numberm of scenarios
is fixed (Kouvelis and Yu 1996; Aissi et al. 2005d; Baumann et al. 2015). Most of
the latter algorithms are based on dynamic programming. As a simple example, we
observe

Theorem 2 For each fixed m, the robust counterpart (RP) admits a pseudopolynomial
algorithm aswell as a PTAS for X = {0, 1}n if the uncertainty setU contains exactly m
scenarios. It admits an FPTAS if m = 2.

Proof The problem can be reduced to the solution of m multidimensional knapsack
problems withm−1 constraints each (Baumann et al. 2015): givenU = {c1, . . . , cm},
the i-th of these problems reads

min c�
i x

s.t. c�
i x ≥ c�

j x for all j ∈ {1, . . . ,m} \ {i}
x ∈ {0, 1}n .

The latter problems can be solved by pseudopolynomial algorithms and by a PTAS,
if m is fixed, and by an FPTAS if m = 2; see, e.g., Kellerer et al. (2004). ��
Note however that there exists no FPTAS for the bidimensional knapsack problem
unless P = NP, so that the above construction does not directly yield an FPTAS
for m ≥ 3 scenarios. Nevertheless, it has been shown that the min–max versions of
the shortest path problem, the spanning tree problem and the knapsack problem all
admit an FPTAS (Aissi et al. 2005a) for a fixed number of scenarios.

Aissi et al. prove that a pseudopolynomial algorithm for the min–max problem
with a fixed number of scenarios always exists if the underlying search problem can
be solved in polynomial time (Aissi et al. 2005d). Here the underlying search problem
is the problem of finding, for a given objective value and a given cost vector, a solution
which attains the value with respect to the given cost vector, or returns that no such
solution exists.

An interesting problem in its robust version is themin-cut problem.While the robust
min s–t-cut problem is strongly NP-hard even if the number of scenarios is fixed, the
robust min-cut problem can be solved in polynomial time (Armon and Zwick 2006;
Aissi et al. 2005c). To the best of our knowledge, it is still an open question whether
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the robust assignment problem is weakly or strongly NP-hard for a fixed number of
scenarios.

When considering an unbounded number of scenarios, all of the mentioned prob-
lems become strongly NP-hard in their robust min–max versions (Kouvelis and Yu
1996; Aissi et al. 2005b, c). Again, we include a proof for the unconstrained binary
problem, as to the best of our knowledge this result has not been proved in the literature
yet.

Theorem 3 The robust counterpart (RP) is strongly NP-hard for X = {0, 1}n if the
uncertainty set U is finite but unbounded.

Proof Again, it suffices to show NP-hardness of Problem (RPC) containing an uncer-
tain constant, for a finite set U = {(c1, c̄1), . . . , (cm, c̄m)}. For the reduction, we
use the strongly NP-hard Set Cover problem: for k ∈ N, a given set of ele-
ments I = {1, . . . ,m}, and a set of subsets J ⊆ 2I , the problem is to decide if
there exists a set of at most k subsets contained in J , such that each i ∈ I is contained
in at least one of the subsets. We define an instance of the robust unconstrained binary
problem (with uncertain constant) as follows: we set X = {0, 1}|J | and define for each
i ∈ I a scenario (ci , 0) ∈ R

|J |+1 where (ci ) j = 1 if element i is contained in the j-th
subset of J and 0 otherwise. Furthermore, we add another scenario (−M1, Mk + 1),
where 1 is the all-one vector and M is big enough. If U is defined as the set of all
constructed scenarios, there exists a solution for the set cover problem if and only if
problem

max
x∈{0,1}|J |

min
(c,c̄)∈U c�x + c̄

has an optimal value greater or equal to 1. ��
An overview over the complexity of min–max problems under discrete uncertainty
sets can be found in Aissi et al. (2009).

3.1.2 Polyhedral uncertainty

For general polyhedral uncertainty, Problem (RP) is NP-hard for most of the classical
combinatorial problems, since we can easily reduce the two-scenario case by choosing
U as the convex hull of the two scenarios. Note however that this does not settle the
question whether the problem is weakly or strongly NP-hard. Even if the case of
discrete uncertainty with unbounded number m of scenarios is strongly NP-hard, this
does not imply strong NP-hardness for the general polyhedral uncertainty case, since
the number of facets of the convex hull of the given m scenarios might be exponential
inm. In other words, we cannot construct an outer description ofU in an efficient way.
Furthermore, considering polyhedraU with a fixed number of facets is not reasonable
in general, since this implies unboundedness ofU for n ≥ m; see Sect. 2.5. However,
for an unbounded number of facets, the problem turns out to be strongly NP-hard
for X = {0, 1}n . To the best of our knowledge, this result has not been proved in the
literature yet.
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Theorem 4 The robust counterpart (RP) is strongly NP-hard for X = {0, 1}n and a
polytope U (given by an outer description).

Proof For the reduction, we use the strongly NP-hard Bin Packing problem. Given
positive integers a1, . . . , at and C , the problem can be formulated as

min
t∑

j=1

z j

s.t.
t∑

i=1

ai xi j ≤ z j · C for all j = 1, . . . , t

t∑

j=1

xi j ≥ 1 for all i = 1, . . . , t

xi j ∈ {0, 1} for all i, j = 1, . . . , t

z j ∈ {0, 1} for all j = 1, . . . , t .

In short, this problem can be written as

min d�y

s.t. Ay ≥ b (7)

y ∈ {0, 1}n,

where n := t2 + t , d ∈ {0, 1}n , A ∈ Z
m×n , and b ∈ Z

m with m := 2t . Now consider
the polytope

U := {(d, 0)} + (n + 1) conv ({0} ∪ {(−ai , bi ) | i = 1, . . .m}) ,

where ai denotes the i-th row of A. One can easily verify that the vectors (−ai , bi )
are linearly independent. This implies that an outer description ofU can be computed
efficiently. Moreover, for each fixed y ∈ {0, 1}n , we have

max
(c,c̄)∈U c�y + c̄

{
= d�y ≤ n if Ay ≥ b

≥ n + 1 otherwise.

In summary, Problem (7) reduces to

min
y∈{0,1}n max

(c,c̄)∈U c�y + c̄,

which is of the form (RPC). Finally, the uncertain constant can again be eliminated,
as discussed in Sect. 2.6. ��
In this case, the hardness essentially comes from the fact thatwe can use the polytopeU
to model linear constraints on X ; see also the discussion in Sect. 2.5. However, the
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crucial step is to move from an inner to an outer description of U , which in general
is not efficient. Note that the set U constructed in the latter proof together with the
reduction from the Bin Packing problem could also be used to prove the result of
Theorem 3.

On the other hand, if U is originally given by an inner description, i.e., U is the
convex hull of a set of vectorsU = conv ({c1, . . . , cm}), then we can easily reduce the
robust min–max problem with unbounded number of scenarios, again by choosing U
as the convex hull of the scenarios. Therefore, also in this case Problem (RP) is strongly
NP-hard for most of the classical problems.

3.1.3 Ellipsoidal uncertainty

For general ellipsoidal uncertainty, Problem (RP) is NP-hard as well for most of the
classical problems. This can again be proved by reducing the two-scenario problem, by
choosingU as the convex hull of the two scenarios (Sim 2004). Note that the resulting
ellipsoid is only one-dimensional, but also a reduction from the two-scenario problem
to the min–max problem with full-dimensional ellipsoidal uncertainty, as defined in
Sect. 2.3, is possible (Ilyina 2017). In Baumann et al. (2015), it has been proved that
the unconstrained binary min–max problem with ellipsoidal uncertainty is strongly
NP-hard. For convenience of the reader, we sketch the proof here.

Theorem 5 The robust counterpart (RP) is strongly NP-hard for X = {0, 1}n and an
ellipsoid U (given by the covariance matrix Σ and the mean vector c0).

Proof We describe a polynomial reduction from Binary Quadratic Programming,
which is a strongly NP-hard problem (equivalent to the Maximum-Cut Problem).
We are thus given a problem of the form

min
x∈{0,1}n

1

2
x�Qx + L�x, (8)

where Q ∈ Z
n×n is any symmetric matrix and L ∈ Z

n . Using the binary of x , we may
assume that Q is positive definite, so that also

A :=
(

Q L
L� c

)

is positive definite for c := L�L + 1 ∈ Z. Now (8) can be reduced to

min
√
y�Ay

s.t. yn+1 = 1

y ∈ {0, 1}n+1 .
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For M := ∑
i j |Ai j | + 1 ∈ Z, we can in turn rewrite this as

M + min (−M)yn+1 + √
y�Ay

s.t. y ∈ {0, 1}n+1.

The latter problem is of the form (4). ��

3.2 Tractable uncertainty sets

As discussed in the previous sections, Problem (RP) is NP-hard for most classical
combinatorial optimization problems even if U only contains two scenarios or is
a general polytope or ellipsoid. Therefore, in order to obtain positive complexity
results, it is generally necessary to restrict oneself to more specific uncertainty sets.
In particular, one may expect tractable robust counterparts in the case of interval or
budgeted uncertainty, see Sect. 3.2.1, or for uncorrelated ellipsoidal uncertainty, see
Sect. 3.2.2.

3.2.1 Interval and budgeted uncertainty

As already mentioned before, using interval uncertainty leads to robust counter-
parts as easy as the underlying problem: it can be easily verified that Problem (RP)
with U = [l, u] is equivalent to Problem (P) with objective vector u. This approach
often leads to very conservative solutions, since all uncertain parameters are allowed
to attain their worst case values at the same time. To tackle this problem, Bertsimas and
Sim introduced budgeted uncertainty sets (Bertsimas and Sim 2004a). They propose
to add a budget constraint to the interval uncertainty set, which limits the number of
variables whichmay differ from their mean value at the same time; see (1). They prove
that the corresponding robust counterpart (RP) can be reduced to solving n + 1 deter-
ministic problems (Bertsimas and Sim 2003). Therefore, the problem can be solved in
polynomial time as soon as the underlying problem can be solved in polynomial time.
In a similar way, one can prove that (RP) can be reduced to the solution of only two
deterministic problems when considering

U =
{
c0 +

n∑

i=1

δi ei |
n∑

i=1

δi ≤ Γ , δi ∈ [0, di ]
}

(9)

i.e., the variant where the absolute deviation is bounded by Γ . Furthermore, Bertsi-
mas and Sim prove that, if an (1 + ε)-approximation algorithm for the deterministic
problem exists, then we can approximate the robust min–max version with budgeted
uncertainty set with the same accuracy by solving n+1 deterministic problems by the
approximation algorithm (Bertsimas and Sim 2003). The results in Bertsimas and Sim
(2003) were later improved in Álvarez-Miranda et al. (2013) and Park and Lee (2007).
In Lee (2014), the authors prove that it is sufficient to solve � n−Γ

2 � + 1 deterministic
problems to calculate an optimal solution of (RP) with budgeted uncertainty.
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Similar results as in Bertsimas and Sim (2003) hold for variable budgeted uncer-
tainty, introduced in Poss (2013) and Sim (2004). Here, instead of a fixed parameter
Γ , we are given a function γ : X → N and define the uncertainty set as

U (x) =
{
c0 +

n∑

i=1

δi di ei |
n∑

i=1

δi ≤ γ (x), δi ∈ [0, 1]
}

,

which requires to extend the definition of the robust counterpart (RP) due to the depen-
dence of U from x . In Poss (2013), the author proves that the resulting problem can
be solved by solving at most n(n + 1) deterministic problems if we assume that γ is
an affine function in x . Furthermore, given a dynamic programming algorithm for a
combinatorial problem that satisfies certain assumptions, the author derives a dynamic
programming algorithm for Problem (RP) with budgeted and variable budgeted uncer-
tainty. Besides other problems, the latter construction is applicable for the shortest path
problem, the traveling salesman problem, and the scheduling problem under budgeted
uncertainty sets.

An extension to uncertainty sets modeled by multiple knapsack constraints was
studied in Poss (2017). Here the author extends the results in Bertsimas and Sim (2003)
to derive exact and approximation algorithms for the robust counterpart. Furthermore,
besides other results the NP-hardness of the robust counterpart is proved for the case
that the number of knapsack constraints is part of the input.

3.2.2 Uncorrelated ellipsoidal uncertainty

Another subclass which may lead to tractable robust counterparts is the class of uncor-
related ellipsoidal uncertainty sets, i.e., we have thatU is an axis-parallel ellipsoid. In
this case, the correlation matrix Σ in (3) is a diagonal matrix and the corresponding
robust counterpart is given by Problem (5). It has been shown that the latter problem
can be solved in polynomial time if X is a matroid (Nikolova 2010a, b). In particular,
it can be solved efficiently if X = {0, 1}n or if X models the feasible set of the span-
ning tree problem. This essentially follows from the submodularity of the objective
function in (5).

The latter result can also be derived by interpreting Problem (5) as a bicriteria prob-
lem with objective functions (c�

0 x, σ
�x). Nikolova (2010a) proved that any optimal

solution of Problem (5) is an extreme efficient solution of the bicriteria problem, i.e.,
it is an extreme point of the pareto frontier. Therefore, all optimal solutions can be
obtained by solving the linear problem

min
x∈X (1 − λ)c�

0 x + λσ�x

for appropriate λ ∈ [0, 1]. For matroids, an optimal solution of the latter problem
depends only on the ordering of the coefficients in the objective function, so that we
only have to consider the values of λ for which the ordering changes. However, for a
given pair of variables the order can change at most once, which shows that the robust
problem can be solved by reduction to at most

(n
2

)
certain problems.
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For most classical combinatorial optimization problems, it is not known whether
Problem (5) is tractable or NP-hard. However, again by considering extreme points
of the Pareto frontier, Nikolova proves that if the underlying problem admits an
FPTAS—which applies in particular if it can be solved in polynomial time—then
also Problem (5) admits an FPTAS.

A further oracle-based result is proved by Bertsimas and Sim (2004b). By replacing
the concave square-root function by its subgradients and solving the corresponding
linear deterministic problem over x for each value in {σ�x | x ∈ {0, 1}n}, they obtain
an exact algorithm for (5).

In Mokarami and Hashemi (2015), the authors show that the constrained shortest
path problem under uncorrelated ellipsoidal uncertainty can be solved in pseudopoly-
nomial time.

3.3 Solution approaches for NP-hard cases

As discussed in Sect. 3.1, the robust counterpart (RP) is NP-hard for many uncertainty
setsU even if the underlying problem (P) is tractable. This implies that, unless P=NP,
there is no efficient way of reducing (RP) to (P) in general, i.e., no algorithm for
solving (RP) by solving a polynomial number of problems of type (P)—as it was the
case for interval or budgeted uncertainty; see Sect. 3.2.1. However, in spite of the
NP-hardness, an exact solution of such problems is desirable. Though most of the
literature in robust combinatorial optimization concentrates on theoretical complexity
issues or the design of new robust optimization paradigms, some papers also discuss
exact methods for NP-hard cases. In this section, we describe some approaches that
are applicable to general problems of type (RP). These can be divided into two main
groups: algorithms relying on an optimization oracle for the underlying problem (RP)
and those using integer programming (IP) formulations.

3.3.1 IP-based approaches

Assuming that a compact integer formulation X = {x ∈ {0, 1}n | Ax ≤ b} is given,
we obtain a natural relaxation

min
Ax≤b

max
c∈U c�x (10)

of Problem (RP). A basic, but important observation is that (10) is a convex optimiza-
tion problem. In fact, the objective function

max
c∈U c�x (11)

is convex, whatever uncertainty set U is considered. This observation gives rise to
a straightforward exact solution approach to solve Problem (RP): the solution of the
relaxation (10) yields a lower bound for (RP), which can be embedded into a branch-
and-bound approach for solving Problem (RP) to optimality.

123



226 C. Buchheim, J. Kurtz

Even if the convexity of Problem (10) does not depend on the structure ofU , differ-
ent classes of uncertainty sets lead to (practically) more or less efficient algorithms for
computing the lower bounds. In case of a discrete setU = {c1, . . . , cm}, Problem (10)
simply reduces to the linear program (LP)

min z

s.t. Ax ≤ b

c�
i x ≤ z ∀i = 1, . . . ,m. (12)

For polyhedral U (given by an outer description), we can dualize the linear pro-
gram (11) and again obtain a compact LP formulation for (10). Finally, the ellipsoidal
case leads to a second-order cone problem (SOCP) of the form

min
Ax≤b

c�
0 x +

√
x�Σ−1x . (13)

BothLPs and SOCPs can be solved efficiently in theory, e.g., by interior pointmethods.
Moreover, modern IP solvers such as CPLEX (Corporation 2015) or Gurobi (Gurobi
Optimization 2016) can often handle SOCP constraints, so that Problem (RP) can be
directly addressed for all mentioned classes of uncertainty sets. These solvers often
also allow to include separation algorithms, for cases in which a compact formulation
of (P) does not exist, e.g., for the spanning tree problem.

Several authors propose methods to improve the performance of IP-based
approaches, either by presenting cutting planes to enforce the model and the result-
ing dual bounds or by developing alternative formulations. Atamtürk (2006) presents
extended formulations for mixed-integer 0–1 programs under generalized budgeted
uncertainty. Cutting planes exploiting submodularity in the case of uncorrelated ellip-
soidal uncertainty are devised in Atamtürk and Narayanan (2008). The authors in
Monaci et al. (2013) develop a dynamic programming algorithm for the robust knap-
sack problem under budgeted uncertainty and compare it besides others to a compact
formulation and the branch-and-cut algorithm developed in Fischetti and Monaci
(2012).

A different approach for convex uncertainty sets is based on scenario generation;
see, e.g., Mutapcic and Boyd (2009) for the general setting and a convergence anal-
ysis. The basic idea is to produce scenarios c1, . . . , cm iteratively and to solve the
LP relaxation (12) in every iteration, yielding an optimal solution (x∗, z∗). Next, a
worst case scenario cm+1 for x∗ is computed, which in our situation can be done by
maximizing the linear function (x∗)�c over c ∈ U . Now if c�

m+1x
∗ ≤ z∗, then x∗

is an optimal solution for the relaxation (10), otherwise cm+1 is added to the set
of scenarios and Problem (12) is solved again. This approach is compared experi-
mentally to the standard reformulation approach in Fischetti and Monaci (2012) for
budgeted uncertainty and in Bertsimas and Lubin (2016) for budgeted and ellipsoidal
uncertainty. The authors of the latter paper discuss many variants and implementation
details and conclude that none of the two approaches dominates the other. In Pes-
soa and Poss (2015), telecommunication network design problems under two sources
of uncertainty with quadratic dependencies are considered. Besides other results, a
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scenario generation approach is developed and tested for polyhedral and ellipsoidal
uncertainty.

Finally, various approaches based on Benders decomposition have been devised
for robust mixed-integer programming; see, e.g., Saito and Murota (2007) for the
ellipsoidal uncertainty case or Naoum-Sawaya and Buchheim (2016) for a problem-
specific approach that however allows to address very general uncertainty sets.

3.3.2 Oracle-based approaches

In many situations, it is preferable to have an algorithm for Problem (RP) that is purely
based on an optimization oracle for the underlying problem (P). This may be the case
because the underlying problem is well-studied, so that fast solution algorithms exist,
or because the underlying problem is so complex that it is not desirable to re-investigate
it from a robust optimization point of view. Moreover, there may not be any compact
IP formulation at hand.

In the case of interval or budgeted uncertainty, the robust counterpart can be reduced
to the solution of at most linearly many instances of the underlying problem, as dis-
cussed in Sect. 3.2.1. For uncorrelated ellipsoidal uncertainty sets, the basic idea of
the FPTAS mentioned in Sect. 3.2.2 can be extended to obtain an exact oracle-based
algorithm for (RP); see Nikolova (2010a, b). The number of oracle calls in the latter
approach is exponential in general; however, it is linear in the number of breakpoints of
the bicriteria optimization problemminx∈X (c�

0 x, σ
�x) derived from the reformulated

problem (5).
Few approaches have been presented in the literature that can be applied, in prin-

ciple, to general sets U . An algorithm based on Lagrangian decomposition has been
presented in Baumann et al. (2014) for the case of uncorrelated ellipsoidal uncertainty.
The approach decouples the nonlinear objective function from the underlying linear
problem; it requires optimization oracles for both the underlying linear problem (P)
and for the unconstrained nonlinear problem

min
x∈{0,1}n max

c∈U c�x . (14)

The Lagrangian bound can be computed by a subgradient method and then be
integrated into a branch-and-bound-scheme. In the uncorrelated ellipsoidal uncer-
tainty case, Problem (14) can be solved in O(n log n) time (Baumann et al. 2014).
However, for most other types of uncertainty, Problem (14) remains NP-hard; see
Theorems 1, 3, 4, and 5. Nevertheless, it can be solved in pseudopolynomial time
for a fixed finite number of scenarios; see Theorem 2. Moreover, within a branch-
and-bound-scheme, it is enough to compute lower bounds for (14). Such bounds can
be obtained by relaxing {0, 1}n to [0, 1]n , leading to a convex problem again, or by
considering underestimators in the ellipsoidal case (Ilyina 2017).

Lower bounds in a branch-and-bound-scheme can also be obtained by solving the
relaxed problem

min
x∈conv(X)

max
c∈U c�x . (15)
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In case no compact description of conv (X) as in (10) is given, several approaches
have been studied which make use of a linear optimization oracle for X . One general
approach to solve Problem (15), originally proposed to solve min–max–min-robust
counterparts (see Sect. 4.4), uses column generation to produce newworst case scenar-
ios iteratively. It can be considered a dual approach to the iterative scenario generation
method described above, based on the problem

max
c∈U min

x∈conv(X)
c�x

which is equivalent to (15). More precisely, the algorithm starts with a set of feasible
solutions X0 ⊆ X and then alternates between computing a worst-case scenario c∗ for
Problem (15) over conv (X0) and computing an optimal solution for (P) with objective
c∗, to be added to X0. The algorithm stops when no feasible solution exists that can
improve the worst-case solution. In the former step, the problem reduces to a linear
optimization problem over U , with additional linear constraints. In the discrete and
polyhedral case, one again obtains an LP, while the ellipsoidal case leads to a quadratic
problem. In both cases, the subproblem can thus be solved efficiently. In the latter step,
one can use the optimization oracle to check whether a new feasible solution has to
be added to X0. For details see Buchheim and Kurtz (2017).

A related approach to Problem (15) using a Frank–Wolfe-type strategy has been
devised inBuchheim et al. (2015), where it is applied to general ellipsoidal uncertainty.
The algorithm is again of an iterative nature. In each iteration, a set X ′ of feasible
solutions is considered, as well as a point x ′ in their convex hull. Then the gradient
of the objective function (11) in x ′ is computed and minimized over the set X , using
the linear optimization oracle. An exact line search is performed between x ′ and the
resulting linear minimizer, and the set X ′ is updated. A Frank–Wolfe-approach for the
case of uncorrelated ellipsoidal uncertainty has been presented in Bertsimas and Sim
(2004b).

4 Robust two-stage problems

A general robust two-stage problem can be formulated as

min
x∈X max

ξ∈U min
y∈Y

(x,y)∈Zξ

fξ (x, y) (2SRP)

where x ∈ X are the first-stage decisions which have to be taken before the scenario
is known. After the scenario ξ ∈ U materializes, we choose the best possible second-
stage decisions y ∈ Y , such that the pair (x, y) is feasible for the actual scenario,
i.e., (x, y) ∈ Zξ . As common in robust optimization, we optimize the worst case
objective value of fξ (x, y) over all scenarios ξ ∈ U . As before, we will concentrate on
combinatorial optimization under cost uncertainty and thus assume in the following
that X ⊆ {0, 1}n1 and fξ (x, y) = ξ�(x, y). For the second-stage, we assume the
general case Y ⊆ R

n2 and Zξ ⊆ R
n1+n2 and study the cases of real and integer

123



Robust combinatorial optimization under convex and discrete… 229

recourse separately in the following sections.Moreover, we focus on the casewhere Zξ

does not depend on ξ .
The two-stage approach is tailored for problems for which a subset of the decisions

can be implemented after the scenario is known. Applications occur, e.g., in the field
of network design problems where in the first stage a capacity on an edge must be
bought such that, after the real costs on each edge are known, a minimum cost flow is
sent from a source to a sink (Bertsimas and Goyal 2013). Further applications can be
problem formulations involving slack variables or, more generally, auxiliary variables
depending on the real decision variables and the realized scenario. In a strictly robust
setting, such variables must be determined independently of the scenario, which is not
possible in general (and not necessary in practice).

Clearly, one can generalize this approach to more than two stages. A multi-stage
approach is applicable when the decisions are made in several steps, assuming that
the uncertainty vanishes gradually.

4.1 Adjustable robustness

Adjustable robustness was first introduced in Ben-Tal et al. (2004) and can be seen as
the beginning of two-stagemodels in robust optimization. In fact, this approach is often
just called Two-StageRobustness.While the adjustable robust approachwas originally
introduced for general linear formulations with uncertainty in the constraints, later the
approachwas applied to combinatorial problems.Considering combinatorial problems
with uncertainty only occurring in the cost function, the general linear adjustable robust
counterpart is of the form

min
x∈X max

(c,d)∈U min
y∈Y

(x,y)∈Z
c�x + d�y (ARP)

for feasible sets X ⊆ {0, 1}n1 , Y ⊆ R
n2 , and Z ⊆ R

n1+n2 . A recent survey on this
topic can be found in Yanıkoğlu et al. (2017).

Formally, by setting n2 = 0, the classical robust min–max problem is a special case
of (ARP) and therefore all NP-hardness results from Sect. 3 carry over to Problem
(ARP). Furthermore for interval uncertainty U = [l, u], as for the classical min–max
problem, it can be easily verified that Problem (ARP) is equivalent to the deterministic
problem with objective vector u if Y ⊆ R

n2+ . However, for a closer investigation of
complexity and solution approaches, an important question is whether we assume Y
(or Z ) to be a discrete set or not, i.e., whether we consider real or integer recourse.

4.1.1 Real recourse

Wefirst discuss the case where no additional integrality constraints occur in the second
stage, which has been investigated intensively in the literature.

The adjustable robust counterpart was originally introduced for problems with
uncertain constraints and certain objective. In our setting, we can use a straightforward
level set transformation to shift the uncertainty from the objective function into the
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constraints and hence also apply methods designed for problems with uncertain con-
straints. Even if the feasible sets Y and Z are given by linear uncertain constraints, the
adjustable robust counterpart is NP-hard (Minoux 2011). Ben-Tal et al. (2004) propose
to approximate the problem by assuming that the optimal values of the wait and see
variables y are affine functions of the uncertainty parameters ξ , i.e., y = y0 + Wξ

for a vector y0 and a matrix W of appropriate size. The second-stage decisions y
are then replaced by the choice of y0 and W . The authors in Ben-Tal et al. (2004)
prove that in the case of fixed recourse, i.e., if the constraint parameters of the second-
stage decisions are not uncertain, the problem is equivalent to a classical min–max
problem with uncertainty in the constraints and therefore computationally tractable
if we have a separation oracle for U . Note that in the case of these so-called affine
recourse decisions U can be replaced by its convex hull if Y and Z can be described
by inequalities given by quasiconvex functions in ξ . Affine recourse decisions and
related and extended ideas have been studied intensively in the literature (Atamtürk
and Zhang 2007; Ben-Tal et al. 2005; Calafiore 2008; Georghiou et al. 2015; Bert-
simas and Georghiou 2015; Chen and Zhang 2009; Bertsimas and Georghiou 2014;
Iancu 2010; Kuhn et al. 2011; Shapiro 2011; Vayanos et al. 2012). Moreover, it has
been proved that under certain assumptions affine decision rules are optimal for the
adjustable robust counterpart (Bertsimas et al. 2010; Iancu et al. 2013).

However, if we consider the general Problem (ARP) with real recourse for the
combinatorial version with cost uncertainty, we obtain a classical robust min–max
problem if U and the feasible sets Y and Z are convex. Indeed, applying a classical
minimax theorem to the inner problem

max
(c,d)∈U min

y∈Y
(x,y)∈Z

c�x + d�y,

we can swap the maximum and the minimum. Therefore in this case (ARP) is equiv-
alent to the classical min–max problem

min max
(c,d)∈U c�x + d�y

s.t. x ∈ X , y ∈ Y , (x, y) ∈ Z .

Note that the latter result even holds without assuming affine decision rules.
For the case of real but not necessarily affine recourse, decomposition methods

have been proposed for budget (Billionnet et al. 2014) and polyhedral (Ayoub and
Poss 2016) uncertainty.

4.1.2 Integer recourse

We now focus on the case of integer recourse i.e. Y ⊆ Z
n2 , which so far has been

investigated much less intensively in the literature. Kasperski and Zieliński (2017)
consider combinatorial problems, where a subset of the variables of the solution are
determined in the second stage. They prove that Problem (ARP) is NP-hard for the
shortest path problem, the minimum s–t-cut problem and the minimum assignment
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problem, even if U contains only two scenarios and n1, n2 ≥ 1. They prove for
the same underlying problems that the adjustable counterpart is even strongly NP-
hard if the number of scenarios is unbounded. Furthermore it has been proved that
Problem (ARP) is NP-hard for the selection problem even if U only contains two
scenarios and that it is strongly NP-hard for the spanning tree problem and the selec-
tion problem with unbounded number of scenarios (Kasperski and Zieliński 2011,
2015).

However, the positive complexity results of the min–max problem for budgeted
uncertainty are not transferable to the adjustable robust counterpart: considering bud-
geted uncertainty for adjustable robustness, note that in general the variants of Problem
(ARP) with budgeted uncertainty sets (1) and (2) are not equivalent, different from
the classical min–max problem.

InKasperski and Zieliński (2017), the authors prove that Problem (ARP) isNP-hard
for the shortest path problem and the spanning tree problemwith budgeted uncertainty
defined as in (1) if the budget parameter Γ is part of the input. It is an open question
whether the problem remains NP-hard for a constant parameter Γ . In Chassein et al.
(2017), besides other problems, the adjustable robust counterpart of the selection
problem is studied under budgeted uncertainty. The authors derive a mixed-integer
formulation for the budgeted uncertainty sets (1) and (9) and prove that the problem
can be solved in polynomial time for the latter variant.

Approximation algorithms have been developed for the two-stage variant of uncer-
tain network problems and general LP formulations for an exponential number of
scenarios (Feige et al. 2007; Khandekar et al. 2008). Furthermore, an exact column-
and-constraint generation algorithm has been devised in Zeng and Zhao (2013).

More recently, general approaches for solving Problem (ARP) in the case of integer
recourse, at least approximately, have been developed. They use nonlinear decision
rules (Bertsimas and Georghiou 2014, 2015) or partitionings of the uncertainty sets
(Bertsimas and Dunning 2016; Postek and Hertog 2016; Subramanyam et al. 2017;
Hanasusanto et al. 2015).

4.2 Recoverable robustness

Recoverable robust optimization problems have been introduced in Liebchen et al.
(2009). Themain idea is to calculate a solutionwhichworkswell in an average scenario
and then, after the upcoming scenario is known, can be turned into a feasible solution
which is optimal for the given costs in the scenario. As an application example, the
approach has been studied for timetabling problems in Liebchen et al. (2009). Here,
we aim at computing a good timetable for the case where no disturbances occur. If
a disturbance occurs, we want to slightly change the pre-calculated solution to make
it feasible and tractable for the actual situation. Formally, the main idea behind this
approach is that a setA of recovery algorithms is given such that each of them can be
applied to a solution x and a scenario ξ to construct a feasible solution for the scenario.

When applied to problems with uncertainty only in the costs, the recoverable robust
approach can be interpreted as follows: we aim at computing a solution x , such that
the best feasible solution we can compute from x by one of our algorithms is worst-
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case optimal. A special case of this variant is the so-called robust optimization with
incremental recourse, introduced in Nasrabadi and Orlin (2013). Here, instead of
arbitrary algorithms in the second stage, we allow to change the solution x up to a
certain distance. In the combinatorial setting, this leads to the problem

min
x∈X c�x + max

d∈U min
y∈X

δ(x,y)≤k

d�y (IRRP)

where δ is the given distance measure and k ∈ N. Typical distance measures investi-
gated in the literature are δ1(x, y) = |y \ x | or δ2(x, y) = |x \ y| or the symmetric
difference.

In the following, we list results for the distance measure δ1. An overview about
further results for different measures can be found in Kasperski and Zieliński (2016).
For discrete uncertainty sets it has been proven that Problem (IRRP) is NP-hard for the
minimum spanning tree problem and the selection problem even if U only contains
two scenarios and that both problems are strongly NP-hard if the number of scenarios
is unbounded (Kasperski and Zieliński 2015; Kasperski et al. 2014). The recoverable
robust counterpart is strongly NP-hard for the shortest path problem even for two
scenarios. The recoverable knapsack problem is weakly NP-hard for a fixed number
of scenarios and stronglyNP-hard for an unbounded number of scenarios (Büsing et al.
2011b). For interval uncertainty, the selection problem and the spanning tree problem
are solvable in polynomial time (Kasperski and Zieliński 2015; Hradovich et al. 2016).
The shortest path problem is stronglyNP-hard in this case (Büsing 2012). For budgeted
uncertainty, in Büsing et al. (2011a) a linear integer formulation of quadratic size is
derived for the recoverable knapsack problem. For the budgeted uncertainty variants
(1) and (9) the recoverable shortest path problem is strongly NP-hard (Nasrabadi and
Orlin 2013). Further results on recoverable robustness for combinatorial problems can
be found in Büsing (2011).

4.3 Bulk robustness

The concept of Bulk Robustness was presented in Adjiashvili et al. (2015) and studied
for the shortest path problem and the minimum matroid basis problem. In contrast to
the previous models, this approach considers a set of failure scenarios, where each
failure scenario is a set of edges which can break down simultaneously. The aim is
to calculate a set of edges such that, if we remove the edges of any failure scenario
from this set, it still contains the edge set of a feasible solution of the combinatorial
problem. In particular, a solution of a bulk-robust counterpart is a superset of a feasible
solution, but not a feasible solution itself in general.

As an application, consider a railway system for which a shortest path has to be
calculated. Because of possible constructions or accidents it can happen that a section
of the railway system is not passable anymore. In this case, we can use the bulk-robust
idea to calculate a set of sections which always contain a feasible path no matter which
of the failure scenarios occurs.
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The bulk-robust approach is studied for several combinatorial optimization prob-
lems in Adjiashvili et al. (2015, 2016, 2017). An extension, which is at the same time
related to the recoverable robust idea, was presented in Adjiashvili and Zenklusen
(2011) for the shortest path problem: in a second stage, after the failure scenario is
known, it is allowed to add r edges to the pre-calculated edge set to connect the given
nodes s and t . Note that both approaches consider only constraint uncertainty given
by the failure scenarios.

A natural way to adapt the bulk-robust concept to problems with only cost uncer-
tainty is to ask for a set of edges such that the best solution contained in the set is
worst-case optimal. However, this approach is only reasonable if the vector x is either
restricted or penalized by the objective function, as otherwise the optimal solution is
always 1. We thus obtain the two problem variants

min
x∈{0,1}n max

c∈U min
y≤x
y∈X

c�x + d�y

and

min
x∈{0,1}n
|x |≤k

max
c∈U min

y≤x
y∈X

d�y.

Ageneralization of the formermodelwasmentioned inKasperski andZieliński (2017),
but to the best of our knowledge, no complexity results have been devised for this
problem. Note however that both variants are at least as hard as the original bulk-
robust problem: the failure scenarios can be modeled by large enough costs in the
corresponding scenarios. This implies that both variants are NP-hard for the shortest
path problem and the assignment problem (Adjiashvili et al. 2015, 2016).

4.4 K-adaptability

Asmentioned in Sect. 4.1, Problem (2SRP) in general is NP-hard. Besides using affine
decision rules, another way to approximate Problem (2SRP) is to limit the number
of second-stage solutions by a given parameter K and calculate these solutions in
the first stage. This idea, called K -adaptability, has been introduced in Bertsimas and
Caramanis (2010) and has been applied to robust two-stage problems in Hanasusanto
et al. (2015). For the case that only the objective function is uncertain, the authors of
Hanasusanto et al. (2015) show that this problem is equivalent to the exact problem
(2SRP) for large enough K . Furthermore, by dualizing the innermax–min problem, the
authors provide a mixed-integer linear programming formulation of polynomial size,
which they evaluated for the shortest path problem, besides others. For the general
case of constraint uncertainty, the authors prove that even evaluating the objective
function is NP-hard.
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As a special case of K -adaptability in two-stage robust optimization, in Buchheim
and Kurtz (2017) the authors study problems of the form

min
x (1),...,x (k)∈X

max
c∈U min

i=1,...,k
c�x (i), (KAP)

where again X ⊆ {0, 1}n andU ⊆ R
n . Problem (KAP) is an extension of the classical

min–max problem (RP) and yields better solutions in general if k > 1. The idea is to
calculate k solutions by solving problem (KAP) once and to quickly choose the best
of them after the scenario is known.

It is shown in Buchheim and Kurtz (2017) that Problem (KAP) with an additional
uncertain constant is NP-hard for X = {0, 1}n and any fixed k even if U is a polyhe-
dron given by an inner description. Furthermore, it is shown that Problem (KAP) is
equivalent to

min
x∈conv(X)

max
c∈U c�x

for k ≥ n + 1, which is a continuous convex problem. By using results on the equiv-
alence of optimization and separation for convex problems proved in Grötschel et al.
(1993), the authors show that for general bounded convex uncertainty sets over which
a linear function can be optimized efficiently, Problem (KAP) for k ≥ n + 1 can be
solved in polynomial time as soon as the underlying deterministic problem can be
solved in polynomial time. Furthermore, the authors provide an exact oracle-based
algorithm to solve the problem for k ≥ n + 1, see Sect. 3.3.2, as well as a heuristic
approach for k ≤ n. For discrete uncertainty sets, the problem is analyzed in Buchheim
and Kurtz (2016). The authors show that the complexity of Problem (KAP) coincides
with the complexity of the corresponding min–max problem (RP) for many classical
combinatorial optimization problems.

5 Conclusion

Considering all classical types of uncertainty sets discussed above, the main dividing
line between hard and easy cases seems to be the inclusion of correlations: in the
case of interval uncertainty, where all cost coefficients can vary independently, the
robust counterpart inherits the complexity of the underlying problem. In the case of
uncorrelated ellipsoidal uncertainty, it is not known yet whether the same is true, but
positive general results exist. On the other hand, uncertainty sets allowing to model
correlations, i.e., general discrete, polyhedral, and ellipsoidal sets, usually lead to
NP-hard counterparts. The budgeted uncertainty case is on the borderline, as it takes
correlations into account in a rudimentary way, without increasing the complexity.

Apart from many interesting open complexity-theoretic questions, we think that
there is a lot of potential for improving exact methods for general classes of uncer-
tainty sets. By a more extensive use of techniques from mathematical programming
and nonlinear (robust) optimization, we believe that such methods can become more
powerful even in the combinatorial optimization setting. In particular, such nonlinear
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methods are relevant when dealing with non-finite and non-polyhedral uncertainty
sets. Such sets often yield a more realistic description of the given uncertainty, while
at the same time not necessarily leading to harder robust counterparts.
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