
EURO J Comput Optim (2018) 6:239–266
https://doi.org/10.1007/s13675-018-0093-y

ORIGINAL PAPER

Robust balanced optimization

Annette M. C. Ficker1 · Frits C. R. Spieksma2 ·
Gerhard J. Woeginger3

Received: 13 July 2017 / Accepted: 1 February 2018 / Published online: 12 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature and EURO - The Association of European
Operational Research Societies 2018

Abstract An instance of a balanced optimization problem with vector costs consists
of a ground set X , a cost-vector for every element of X , and a system of feasible subsets
over X . The goal is to find a feasible subset that minimizes the so-called imbalance
of values in every coordinate of the underlying vector costs. Balanced optimization
problemswith vector costs are equivalent to the robust optimizationversionof balanced
optimization problems under the min-max criterion. We regard these problems as a
family of optimization problems; one particular member of this family is the known
balanced assignment problem. We investigate the complexity and approximability of
robust balanced optimization problems in a fairly general setting. We identify a large
family of problems that admit a 2-approximation in polynomial time, andwe show that
for many problems in this family this approximation factor 2 is best-possible (unless
P = NP). We pay special attention to the balanced assignment problem with vector
costs and show that this problem is NP-hard even in the highly restricted case of sum
costs. We conclude by performing computational experiments for this problem.

A preliminary version of this work has appeared in the Proceedings of the 14th International Workshop on
Approximation and Online Algorithms (WAOA 2016), 92–102.

B Annette M. C. Ficker
annette.ficker@kuleuven.be

Frits C. R. Spieksma
f.c.r.spieksma@tue.nl

Gerhard J. Woeginger
woeginger@cs.rwth-aachen.de

1 Faculty of Economics and Buisness, KU Leuven, 3000 Leuven, Belgium

2 Department of Mathematics and Computer Science, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands

3 Lehrstuhl für Informatik 1, RWTH Aachen, 52056 Aachen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13675-018-0093-y&domain=pdf

240 A. M. C. Ficker et al.

Keywords Balanced optimization · Assignment problem · Computational
complexity · Approximation

Mathematics Subject Classification 90C27

1 Introduction

We investigate balanced optimization problems with vector costs; alternatively, these
problems can be described as the robust optimization version of balanced optimization
problems. We see this set of problems as a family of optimization problems. We will
give the details of this family later, for now we concentrate on a particular problem in
this family: the balanced assignment problem with vector costs.

In the balanced assignment problem (Martello et al. 1984), we are given an n × n
matrix C with real entries c(i, j) for 1 ≤ i, j ≤ n. An assignment A is a set of n
matrix entries that contains exactly one entry from every row and every column. The
imbalance of assignment A is given by

max
(i, j)∈A

c(i, j) − min
(i, j)∈A

c(i, j),

and the goal is to find an assignment that minimizes the imbalance. In a generaliza-
tion of this problem, the entries c(i, j) are not real scalars but real vectors c(i, j) of
dimension d; that is

c(i, j) = (c1(i, j), c2(i, j), . . . , cd(i, j)), for 1 ≤ i, j ≤ n.

The imbalance in the k-th coordinate of assignment A (with 1 ≤ k ≤ d) is

�k(A) = max
(i, j)∈A

ck(i, j) − min
(i, j)∈A

ck(i, j),

and the imbalance of assignment A is finally given by

�max(A) = max
k

�k(A).

The objective in the balanced assignment problem with vector costs is to find an
assignment A that minimizes the imbalance �max(A). Note that for d = 1 we recover
the traditional balanced assignment problem.

Balanced optimization problems with vector costs are closely connected to robust
optimization (see Sect. 1.1 for a literature review). Robust optimization is a method-
ology to deal with uncertainty in a problem’s coefficients; in the case of discrete
scenario’s, we receive a set of scenario’s S, in which each scenario k ∈ S represents
a possible realization of the coefficients. One popular objective in robust optimiza-
tion is the min-max criterion where we aim to construct a best-possible solution in
a worst-case scenario. Let us argue that, in case of a discrete set of scenario’s and
using the min-max criterion, robust optimization of balanced optimization problems

123

Robust balanced optimization 241

is, in fact, identical to balanced optimization with vector costs. Consider the robust
optimization version of the balanced assignment problem, where cost ck(i, j) is the
cost for assigning i to j in scenario k ∈ S, for 1 ≤ i, j ≤ n. Observe that finding the
best balanced assignment for the worst scenario in S (i.e., using the min-max crite-
rion) is equivalent to solving the balanced assignment problem with vector costs (with
dimension d = |S|). Thus, under the min-max criterion, balanced optimization with
vector costs is identical to robust balanced optimization.

Also, there are practical applications of balanced optimization problemswith vector
costs documented in the literature. For instance, Kamura and Nakamori (2014) sketch
an industrial problem in the manufacturing of glass lenses that gives rise to a (specially
structured) balanced assignment problemwith vector costs; see Sect. 5 formore details
on this.

1.1 Related literature

On the one hand, there is a stream of literature dealing with robust optimization for
traditional (i.e., not balanced) combinatorial optimization problems.On the other hand,
there is a stream of literature dealing with balanced optimization problems with scalar
costs. Let us first, without attempting to survey the field, consider work in robust
optimization for combinatorial optimization problems.

An early contribution is the work byKouvelis andYu (1997) who survey the state of
the art until 1997. Ben-Tal and Nemirovski (1998) show that for convex optimization
problems, the concept of using an ellipsoidal set to model uncertainty, still allows
for efficiently solvable optimization problems. This work is extended in Ben-Tal and
Nemirovski (1999, 2000), and Ben-Tal et al. (2006). Bertsimas and Sim (2003) show
that robust versions ofmany combinatorial optimization problems (includingmatching
and shortest path) can still be efficiently solved. Here, uncertainty is modeled by
specifying an interval for each of the cost-coefficients. Another option is to model
uncertainty by using settings where a discrete number of scenario’s is given (e.g.,
Aissi et al. (2005)); clearly, the resulting problems are no easier than their deterministic
counterparts.

In particular, the robust assignment problem under a fixed number of scenarios is
investigated in Deineko and Woeginger (2006); they show that this problem is equiv-
alent to the exact perfect matching problem (whose complexity is an open problem).
Poss (2014) shows how dynamic programming can be used to solve a general model
for robust combinatorial optimization, where instead of allowing a fixed number of
coefficients to deviate from their nominal values, a budget of uncertainty is introduced.
Wiesemann et al. (2014) take robust optimization further by developing distribution-
ally robust optimization, a setting where the probability distribution generating data
belongs to a so-called ambiguity set. Particular applications of robust optimization are
described in Ben-Tal et al. (2005) (logistics), Koster et al. (2013) and Lee et al. (2012)
(network design).

Summarizing, there is a wealth of work on robust optimization for combinatorial
optimization problems; for an overview of these results, we refer to the surveys and
books by Aissi et al. (2009), Bertsimas et al. (2011), Ben-Tal et al. (2009), Gabrel

123

242 A. M. C. Ficker et al.

et al. (2014) and Gorissen et al. (2015). As far as we are aware, robust versions of
balanced combinatorial optimization problems have not been investigated.
Let us now consider work on balanced optimization problems with scalar costs.
Martello et al. (1984) introduce a framework containing many balanced optimiza-
tion problems with scalar costs and present an algorithm to solve these problems. If
the existence of a feasible solution can be decided in polynomial time, the correspond-
ing algorithm is a polynomial time algorithm.We now discuss some of these problems
in more detail.

In the balanced version of the shortest path problem, we are given a directed graph
G = (V, E), two nodes s and t , and scalar costs on the edges. The goal is to find a
path from s to t that minimizes the difference between the largest and the smallest
edge cost along the path. Turner (2012) generalizes this problem to finding a path that
minimizes the difference between the k1-th largest and the k2-th smallest edge cost and
shows that this problem is solvable in polynomial time. Cappanera and Scutellà (2005)
discuss other balanced path problems. Their goal is to identify p (arc-disjoint or node
disjoint) paths from s to t , such that the difference between the length of longest path
and the length of the shortest path is minimal. These problems are NP-hard, even for
p = 2.

In the balanced version of the minimum cut problem, we are given an undirected
graph G = (V, E), two nodes s and t , and scalar costs on the edges. The goal is
to find a cut that minimizes the difference between the largest and the smallest cost
of edges in the cut. Katoh and Iwano (1994) construct an algorithm for this problem
with running time O (MST (|V |, |E |) + |V | log |V |), where MST (|V |, |E |) denotes
the running time for computing the minimum and maximum spanning trees in a graph
G = (V, E).

In the balanced version of the spanning tree problem, we are given a graph G =
(V, E) and scalar costs on the edges. The goal is to find a spanning tree that minimizes
the difference between the largest and the smallest edge cost in the spanning tree.
Camerini et al. (1986) and Galil and Schieber (1988) construct algorithms for this
problem, with running times O(|E | · |V |) and O(|E | log |V |), respectively.

In the balanced version of the traveling salesman problem, we are given a graph
G = (V, E) and scalar costs on the edges. The goal is to find a Hamiltonion cycle that
minimizes the difference between the largest and the smallest edge cost in the cycle.
This problem is obviously NP-hard, and Larusic and Punnen (2011) discuss several
heuristics for it. Kinable et al. (2017) discuss a related problem, called the equitable
traveling salesman problem, where the goal is to find a Hamiltonian cycle in which
the difference between the cost of its two matchings is minimal.

Another interesting problem in this area is the balanced version of linear program-
ming. Here we are given a system of linear constraints (Ax = b and x ≥ 0) and costs
associated with each real variable xi . The goal is to minimize the difference between
the largest nonzero cost ci xi and the smallest nonzero cost c j x j . Ahuja (1997) presents
a polynomial time algorithm for this problem. Balanced optimization problems with
an additional linear constraint are treated in Punnen and Nair (1999).

Finally, an example of an optimization problem featuring vector costs is described
by Dokka et al. (2014); we stress, however, that the objective in the underlying multi-
index assignment problem is quite different from minimizing imbalance.

123

Robust balanced optimization 243

1.2 Our results

We derive a variety of results on the complexity and approximability of balanced
optimization problems with vector costs:

– First, we describe a framework for balanced optimization problems that takes
vector costs into account, thereby extending the work of Martello et al. (1984);
see Sect. 2.

– Every problem in our framework (i) is solvable in polynomial time if the dimen-
sion d is fixed (see Sect. 3.1), and (ii) allows a polynomial time 2-approximation
algorithm (see Sect. 3.2).

– For several problems in the framework (among which assignment, spanning tree,
s,t-cut, connecting path and Horn-SAT), we prove that the existence of an approx-
imation algorithm with approximation ratio strictly better than 2 implies P = N P
(see Sect. 4). Note that these results pinpoint the strongest achievable approxima-
tion ratio for these problems (under P �= N P).

– For one problem in our framework (2SAT) we prove that it is actually solvable
in polynomial time (see Sect. 4.4). Thus, not all problems in the framework are
N P-hard.

– For a special case of the balanced assignment problem with vector costs, namely
that problem with vector sum costs, we prove that the existence of a polynomial
time approximation algorithmwith approximation ratio below 4

3 implies P = N P;
see Sect. 5.

– We perform extensive computational experiments, investigating the computational
behavior of an integer programming formulation and 2-approximation algorithms
on different classes of instances of the robust balanced assignment problem in
Sect. 6.

2 The framework

Throughout this paper, we consider a family of optimization problems that are built
around a finite ground set X and a system F of feasible subsets over X . (The system
F is usually not listed explicitly, but given implicitly in terms of a combinatorial
description or in terms of an oracle.)Wewill only consider problems in this framework,
for which the following feasibility oracle [as introduced by Martello et al. (1984)] can
be performed in time polynomially bounded in the size of X : “Given a subset Y ⊆ X ,
does Y contain a feasible subset from F? And if yes, returns a feasible subset of Y
from F .” Here are some concrete examples of problems that fit this framework:

q-Uniform Set System For a given ground set X , a subset Y ⊆ X is feasible if it
contains at least q elements of X .

Linear Assignment The ground set X are the elements of an n × n square matrix. A
subset Y ⊆ X is feasible if it contains n elements that cover each row and each
column of the given matrix.

Spanning Tree The ground set X consists of the edges of an undirected graph G =
(V, X). A subset Y ⊆ X is feasible if the subgraph (V,Y) contains a spanning
tree of G.

123

244 A. M. C. Ficker et al.

s, t-Cut The ground set X consists of the edges of an undirected graph G = (V, X)

with s, t ∈ V . A subset Y ⊆ X is feasible if it contains an s, t-cut; in other words,
the subgraph (V, E\Y) contains no path connecting s and t .

ConnectingPathTheground set X consists of the edges of a directedgraphG = (V, X)

with s, t ∈ V . A subset Y ⊆ X is feasible if the subgraph (V,Y) contains a path
connecting s and t .

2SAT, Horn-SAT The ground set X consists of all literals both positive and negated
of an expression in conjunctive normal form, i.e., X = {x1, x̄1, . . . , xn, x̄n}. A
subset Y ⊆ X is feasible if there exists a feasible assignment with the literals in
Y . An assignment is feasible if each literal is set to either TRUE or FALSE (either
x or x̄ is in Y), such that all clauses in the expression are satisfied.

Here is an example of a problem that does NOT fall under this framework (unless
P = NP):

Hamiltonicity. The ground set X consists of the edges of an undirected graph G =
(V, X). A subset Y ⊆ X is feasible if the subgraph (V,Y) contains a Hamiltonian
cycle.

We will study the so-called robust balanced versions of the problems in the frame-
work. For this, we generalize the terminology introduced in Sect. 1 in the following
way. Besides the ground set X and the system F of feasible subsets, we introduce
a cost function c : X → R

d that assigns to every element x ∈ X a correspond-
ing d-dimensional real vector c(x); the d coordinates of vector c(x) will be denoted
c1(x), . . . , cd(x). For a subsetY ⊆ X , its imbalance in the k-th coordinate (1 ≤ k ≤ d)
is defined as:

�k(Y) = max
y∈Y ck(y) − min

y∈Y ck(y).

In other words, this imbalance measures the difference in cost between the largest and
smallest value in the k-th coordinate. The imbalance of subset Y is finally defined as

�max(Y) = max
1≤k≤d

�k(Y). (1)

The goal in a robust balanced optimization problem is to find a feasible set Y that
minimizes the imbalance �max(Y). In the sequel, the term “the robust balanced opti-
mization problem” refers to an arbitrary problem in our framework.

3 Algorithms for robust balanced optimization problems

In this section, we give three algorithms that are applicable to any problem in our
general framework. The first algorithm solves the problem in polynomial time when
the dimension d of the cost-vectors is fixed (Sect. 3.1). The second and third algorithms
both yield a 2-approximation in polynomial time (Sect. 3.2). We remind the reader
that we only consider problems for which the feasibility oracle can be performed in
polynomial time. Throughout this section we use n := |X |.

123

Robust balanced optimization 245

3.1 Fixed dimension

We first explain informally the idea behind Algorithm 1; this algorithm generalizes an
algorithm presented in Martello et al. (1984).

Recall that a solution to a robust balanced optimization problem consists of some
subset of elements of ground set X , each equipped with a cost-vector. Now, suppose
we would know the smallest value in each coordinate of an optimal solution and its
imbalance, without necessarily knowing the elements in the optimal solution. Note that
in each coordinate the highest value of the solution is bounded by the sum of the lowest
value and the imbalance. This allows us to construct a subset Y ⊆ X consisting of
elements whose cost-vectors, in every coordinate, lie between the smallest and highest
values. Next, applying the feasibility oracle to Y gives us an optimum solution.

Of course, we are not given these values. However, one pair of elements of the
ground set allows us to guess the imbalance of an optimal solution. And if the dimen-
sion d of the cost-vectors is fixed, it is sufficient to try all possibilities for the lowest
value of each coordinate in an optimum solution, as is argued in Theorem 1.

Algorithm 1
1: Sol := ∞
2: for each x, y ∈ X let � := �max({x, y}) do
3: for each x1 ∈ X let min1 := c1(x1) do

4:
.
.
.

5: for each xd ∈ X let mind := cd (xd) do
6: Y := X
7: for each z ∈ X do
8: if ∃k such that ck (z) < mink or ck (z) > mink +� then
9: Y := Y\{z}
10: if Y contains a feasible solution then
11: Sol := min{Sol,�}
12: Output Sol.

To explain line 2, observe that �max(·) is defined in (1); further, notice that line 10
is a call to the feasibility oracle.

Theorem 1 Algorithm 1 solves the robust balanced optimization problem in polyno-
mial time, when the dimension d of the cost-vectors is fixed.

Proof Consider an optimal solution with value OPT . This value is determined by two
elements from X , and hence, since Algorithm 1 enumerates over all pairs x, y ∈ X ,
there is a pair x, y with �max({x, y}) = OPT . Next, by trying out all possibilities
for the smallest value in each component k (captured in mink , see lines 3-5), we are
guaranteed to find a solutionwith value�max({x, y}) if one exists. Hence, Algorithm 1
is exact.

Regarding the complexity of Algorithm 1: for each pair of elements, we consider
nd possibilities for the smallest value in component k (k = 1, . . . , d), and we check
for each element in X whether the values of the corresponding cost-vector satisfy the

123

246 A. M. C. Ficker et al.

resulting bounds. For the resulting set of elements, we call the feasibility oracle to
check whether there exists a feasible solution. Since, by definition, the oracle runs in
polynomial time, Algorithm 1 runs in polynomial time (for a fixed d).
�
Observe that Algorithm 1 solves the familiar balanced spanning tree, balanced assign-
ment, balanced path, balanced cut problem which all arise when d = 1.

3.2 Approximation algorithms

When the dimension d of the cost-vectors is part of the input, the problem becomes
more difficult. Simply trying all possibilities for the lowest value of each coordinate
now results in an exponential time algorithm. Instead, we consider every pair of ele-
ments of the ground set as a guess for all coordinates at the same time. More in
particular, we will only consider elements from the ground set that, in every coordi-
nate, do not differ more than �max({x1, x2}) in some coordinate from either x1 or x2.
Recall that�max({x1, x2}) refers to the largest difference over the coordinates between
elements x1, x2 ∈ X . Doing so gives us a 2-approximation, even when the dimension
d of the cost-vectors is part of the input.

Algorithm 2
1: for each pair x1, x2 in ground set X do
2: � := �max({x1, x2})
3: Y := X
4: for each x ∈ X do
5: if maxk |ck (x1) − ck (x)| > � or maxk |ck (x2) − ck (x)| > � then
6: Y := Y\{x}
7: if Y contains a feasible solution then
8: Sol(x1, x2) := �max(Y)

9: Sol := minx1,x2 Sol(x1, x2)
10: Output Sol.

Theorem 2 Algorithm 2 is a 2-approximation algorithm for the balanced vector cost
problem.

Proof Let OPT denote the imbalance of an optimal solution. By trying out all pos-
sible element pairs x1 and x2 from the ground set, we will certainly find the two
elements in the optimal solution that determine the objective value; in other words,
�max({x1, x2}) = OPT .

We remove all elements y from the ground set that satisfy �max({y, x1}) > �

or �max({y, x2}) > �; note that these removed elements can never show up in an
optimal solution that contains x1 and x2 and that has imbalance�. Clearly,�max(Y) is
determined by two of its elements, say y1 and y2. In other words, there exist y1, y2,∈ Y
such that

�max(Y) = �max({y1, y2}) ≤ �max({y1, x1}) + �max({y2, x1}) ≤ 2�.

123

Robust balanced optimization 247

Clearly, this procedure runs in polynomial time: checking whether an element x ∈ X
needs to be removed can be done in O(d) time, and we need to perform the feasibility
oracle O(n2) times.
�
Notice that this algorithm also applies to problems for which the feasibility oracle is
not solvable in polynomial time. More precisely, let f (n) denote the running time of
the feasibility oracle. The running time of Algorithm 2 equals O

(
n3 · d + n2 · f (n)

)
.

Algorithm 2 compares each element of the ground set with both x1 and x2. However,
in order to obtain a 2-approximation, it is in fact sufficient to compare only with x1 (or
only with x2). Using that, we sketch an alternative 2-approximation algorithm, where,
for each element x ∈ X , we create a set Sx containing at most n possible imbalance
values. We then use binary search to find the smallest imbalance for which there still
exists a feasible solution, among elements that are not too far from x . It is not difficult
to see that the resulting algorithm is also a 2-approximation algorithm.

Algorithm 3
1: Sol := ∞
2: for each x ∈ X do
3: set Sx := ∅
4: for each y ∈ X do
5: Sx = Sx ∪ {�max({x, y})}
6: Sort Sx in nondecreasing order
7: while Binary Search on Sx do
8: select � ∈ Sx
9: Y := X
10: for each y ∈ X do
11: if �max({x, y}) > � then
12: Y := Y\{y}
13: if Y contains a feasible solution then
14: if � < Sol then
15: Sol := �

16: select �′ ∈ Sx with �′ < � according to the Binary Search
17: else select �′ ∈ Sx with �′ > � according to the Binary Search

18: Output Sol.

Notice that this algorithm, compared to Algorithm 2, requires less running time,
namely O

(
n2 · d + n log n · f (n)

)
, where f (n) denotes the running time of the fea-

sibility oracle.

4 The complexity of robust balanced optimization problems

Many balanced optimization problems with scalar costs are known to be solvable in
polynomial time (see the discussion in Sect. 1.1): q-uniform set systems, the linear
assignment problem, the spanning tree problem, the s, t-Cut problem, the connecting
path problem, Horn-SAT and 2SAT. In this section, we discuss the complexity of each
of these problems in the case when vector costs are given. We claim that each of these
problems, except robust balanced 2SAT, becomes NP-hard and that the existence

123

248 A. M. C. Ficker et al.

of a polynomial time (2 − ε)-approximation algorithm for each of the mentioned
problems, except robust balanced 2SAT, implies P = NP. We give explicit proofs
for the robust balanced q-uniform set system problem (Sect. 4.1) and for the robust
balanced assignment problem (Sect. 4.2). For the other problems, we state the results
in Sect. 4.3 and we refer to Ficker et al. (2018) for the proofs. We also show that
robust balanced 2SAT is in fact solvable in polynomial time, which shows that not all
interesting problems in the framework are NP-hard (Sect. 4.4).

We use the following problem, well known to be NP-complete, in the reductions
present in this paper.

Problem: INDEPENDENT SET (IS)
Instance: A graph G = (V, E) with vertex set V = {v1, . . . , vn} and edge set
E = {e1, . . . , em}; an integer z.
Question: Does there exist a subset I ⊆ V with |I | = z, such that the vertices
in I do not span any edges in G?

4.1 Robust balanced q-uniform set systems

Let us first consider the robust balanced q-Uniform Set System problem. Given a
ground set X and an integer q, the robust balanced q-uniform set system problem asks
for q elements from set X with minimal imbalance.

Theorem 3 The robust balanced q-uniform set system problem is NP-hard.

Proof Given an instance of IS represented by a given graphG = (V, E) and an integer
z, we construct an instance of robust balanced q-uniform set system as follows. The
ground set X coincides with the vertex set V of the graph G. A subset Y ⊆ X is
feasible if and only if it contains q := z elements. For the definition of the vector
costs of X , we turn G into a directed graph by first choosing some ordering of the
vertices in V , and next orienting every edge from the incident vertex with smaller
index (source) to the incident vertex with larger index (target). The dimension of the
vectors is d := |E | = m, and every coordinate k corresponds to a unique edge ek in
E , 1 ≤ k ≤ m. Let us now define cost-vector c(v j) = (c1(v j), c2(v j), . . . , cd(v j))

corresponding to each vertex v j ∈ V . For each v j ∈ V and k ∈ {1, . . . ,m}:

ck(v j) :=
⎧
⎨

⎩

1 if vertex v j is the source of the oriented edge ek;
−1 if vertex v j is the target of the oriented edge ek;
0 otherwise.

This specifies the corresponding instance of the robust balanced q-uniform set
system, see Fig. 1 for an illustration. We claim that there exists a feasible subset
Y ⊆ X with |Y | = z and �max(Y) ≤ 1 if and only if the considered instance of IS
has answer YES.

Assume that there exists a feasible subset Y ⊆ X with |Y | = z and �max(Y) ≤ 1.
Suppose for the sake of contradiction that the vertex set corresponding to Y would span
some edge ek ∈ E . Then, in the k-th coordinate, the cost-vector of the source vertex

123

Robust balanced optimization 249

Instance of IS

v1 v2

v3 v4

e1

e2
e3

e4

Corresponding instance q-Uniform Set System

c(v1) = (1, 1, 0, 0)

c(v2) = (−1, 0, 1, 0)

c(v3) = (0, 0, 0, 1)

c(v4) = (0,−1,−1,−1)

Fig. 1 Illustration of the construction of an instance of the robust balanced q-uniform set system

of ek is −1, and the cost-vector of the target vertex of ek is +1. Hence �max(Y) ≥ 2.
This contradiction shows that Y is a z-element independent set in G.

Next assume that the IS instance has answer YES and let I be the corresponding
certificate. Thus |I | = z and in none of the coordinates, the vectors c(y) with y ∈ I
take the value +1 and −1. This yields the desired �max(I) ≤ 1.
�

Corollary 1 The robust balanced q-uniform set system problem does not allow a
polynomial time approximation algorithm with worst-case guarantee strictly better
than 2 (unless P = NP).

Proof This is implied by the proof of Theorem 3. Indeed, a polynomial time approxi-
mation algorithm with a worst-case guarantee strictly better than 2 would allow us to
distinguish the instances with imbalance at most 1 from the instances with imbalance
at least 2.
�

4.2 Robust balanced linear assignment

Given a square matrix C , where each entry is a d-dimensional vector, the robust
balanced assignment problem asks for an assignment in C minimizing the imbalance.

Theorem 4 The robust balanced assignment problem is NP-hard.

Proof Given an instance of IS represented by a given graphG = (V, E) and an integer
z, we construct an instance of the robust balanced assignment problem as follows. Each
vertex vi ∈ V will correspond to a row a := i in the matrixC (1 ≤ i ≤ n). The ground
set X coincides with the elements of an n × n matrix C . A subset Y ⊆ X is feasible
if it contains n elements that cover each row and each column of matrix C .

For the definition of the cost-vectors of X , we turn G into a directed graph by
orienting every edge from the incident vertexwith smaller index (source) to the incident
vertex with larger index (target).

Let us now define the cost-vectors c(a, b), 1 ≤ a, b ≤ n; the dimension of each
cost-vector equals the number of edges in E , that is d := m. We distinguish between
entries in the first z columns of C and entries in the last n − z entries of C as follows:

123

250 A. M. C. Ficker et al.

– For each b ≤ z, we set for each k = 1, . . . ,m, a = 1, . . . , n:

ck(a, b) :=
⎧
⎨

⎩

1 if vertex va is the source of edge ek;
−1 if vertex va is the target of edge ek;
0 otherwise.

⎫
⎬

⎭

– For each b ≥ z + 1, we set: c(a, b) := 0, for each a = 1, . . . , n.

This describes the instance of the robust balanced assignment problem. We now
argue equivalence between the existence of an independent set in G of size z and an
assignment in the matrix C with imbalance at most 1.

Suppose the matrix C admits an assignment with imbalance at most 1. Consider
the selected entries in the first z columns of C , and consider the corresponding set of
rows. Since each row corresponds to a vertex in V , this gives us a set of vertices. We
claim that this set of vertices is an independent set, since there can be no coordinate
in the cost-vectors that corresponds to the selected entries where both a +1 and a −1
figures (since the imbalance is at most 1). Thus, there is no arc that goes from one
vertex in the set to another vertex in the set, or in other words, we have an independent
set of size z.

Now, assume there is an independent set I of size z in the graph G. We propose
the following assignment: consider a vertex in I : choose as entry, the corresponding
row, and a column with index b ≤ z. The remaining entries are chosen arbitrarily to
complete the assignment. Since we have an independent set, the imbalance can be at
most 1.
�
Corollary 2 The robust balanced assignment problem does not allow a polynomial
time approximation algorithm with worst-ase guarantee strictly better than 2 (unless
P = NP).

4.3 Other robust balanced optimization problems

We now state our results for the remaining problems.
Recall that the robust balanced spanning tree can be described as follows: given a
graph with a cost-vector for each edge, find a spanning tree in this graph minimizing
the imbalance.

Theorem 5 The robust balanced spanning tree problem is NP-hard and does not
allow a polynomial time approximation algorithm with worst-ase guarantee strictly
better than 2 (unless P = NP).

Proof See Ficker et al. (2018).
�
Another problem in our framework is the robust balanced s, t-cut problem. Given

a graph with a cost-vector for each edge, and two nodes s and t , the problem is to find
a cut in this graph, separating s and t , which minimizes the imbalance.

Theorem 6 The robust balanced s, t-cut problem is NP-hard and does not allow a
polynomial time approximation algorithm with worst-ase guarantee strictly better
than 2 (unless P = NP).

123

Robust balanced optimization 251

Proof See Ficker et al. (2018).
�
In the robust balanced connecting path problem, a graph is given with a cost-vector

for each edge, and two nodes s and t . The problem is to find a path connecting s and
t which minimizes the imbalance.

Theorem 7 The robust balanced connecting path problem is NP-hard and does not
allow a polynomial time approximation algorithm with worst-ase guarantee strictly
better than 2 (unless P = NP).

Proof See Ficker et al. (2018).
�
The last problem we consider in this section is the robust balanced Horn-SAT

problem. In this problem, we are given a set of literals X with vector costs and a set
of clauses over these literals, where each clause contains at most 1 positive literal; the
problem is to find a satisfying truth assignment which minimizes the imbalance.

Theorem 8 The robust balanced Horn-SAT problem is NP-hard, and does not allow
a polynomial time approximation algorithm with worst-case guarantee strictly better
than 2 (unless P = NP).

Proof See Ficker et al. (2018).
�

4.4 Robust balanced 2SAT

Recall that an instance of the robust balanced 2SAT problem consists of

(i) an expression C in conjunctive normal form, where each clause consists of at
most two literals, and

(ii) a cost-vector for each positive literal and each negative literal.

The objective is to find a satisfying truth assignment with minimal imbalance. We
show that this problem, unlike the previous problems, is easy.

Theorem 9 The robust balanced 2SAT problem is solvable in polynomial time.

Proof First, we prove that we can decide in polynomial time whether a solution with
imbalance � exists. Consider the cost-vectors of each pair of elements x1, x2 ∈ X . If
there is a coordinate in which these two vectors differ more than �, then these two
elements cannot occur together in a solution with imbalance �. Thus, for each such
pair x1, x2 ∈ X we add to the current expression C the clause (x̄1 ∨ x̄2). (Notice that
the negation of a negated literal results in a positive literal, i.e., x̄ = x .)

Observe that this procedure ensures that the resulting instance is also a 2SAT
instance, with a size polynomial in the input, and that each feasible solution to this
new instance is a feasible solution to the original problem with imbalance at most �.

We know that the imbalance � of any feasible solution is defined by two elements
of the ground set X . That gives us at most O(n2) distinct possible values for� (one for
each pair of elements). The lowest value of� for which there exists a truth assignment
is the value of an optimal solution.
�

123

252 A. M. C. Ficker et al.

5 A special case of the robust balanced assignment problem: sum costs

Kamura and Nakamori (2014) consider a highly structured special case of the robust
balanced assignment problem: the cost-vector for every matrix entry c(a, b) is the
sum of two d-dimensional cost-vectors c(a) and c(b). We call this setting the robust
balanced assignment problemwith sum costs. The resulting problem remainsNP-hard,
as witnessed by the following result.

Theorem 10 The robust balanced assignment problem with sum costs is NP-hard.

Proof Wemodify the hardness construction used in the proof of Theorem 4 as follows.
Given an instance of IS represented by a given graph G = (V, E) and integer z, we
construct an instance of the robust balanced assignment problem with sum costs as
follows. There is an (n + z) × (n + z) matrix C , the entries of which are the elements
of the ground set X . Each vertex vi ∈ V will correspond to a row a := i and column
b := i in the matrix C (1 ≤ i ≤ n). The other z rows a := n + j and z columns
b := n + j in the matrix C (1 ≤ j ≤ z) are referred to as dummy rows, columns,
respectively.

We need to specify a d-dimensional cost-vector c(a), for each row a of C , as well
as a d-dimensional cost-vector c(b) for each column b of C . The dimension of each
cost-vector equals the number of edges in G plus 1, i.e., d := m + 1.

For the definition of the vector costs, we turn G into a directed graph by orienting
every edge from the incident vertex with smaller index (source) to the incident vertex
with larger index (target). Let us first define the cost-vectors c(a) for each row a,
1 ≤ a ≤ n + z. There are two cases:

– For each a ≤ n, we set for each k = 1, . . . ,m + 1:

ck(a) :=

⎧
⎪⎨

⎪⎩

1 if vertex va is the source of edge ek;
−1 if vertex va is the target of edge ek;
0 otherwise.

– For n + 1 ≤ a ≤ n + z, we set for each k = 1, . . . ,m + 1:

ck(a) :=
{
0 if k ≤ m;
1 otherwise.

Let us now define the cost-vectors c(b) for each column b, 1 ≤ b ≤ n + z. There
are two cases:

– For each b ≤ n, we set for each k = 1, . . . ,m + 1:

ck(b) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1/2 if vertex vb is the source of edge ek;
1/2 if vertex vb is the target of edge ek;
−1 if k = m + 1;
0 otherwise.

123

Robust balanced optimization 253

– For each n + 1 ≤ b ≤ n + z, we set c(b) := 0.

The resulting matrix C can be represented as follows:

C =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 . . . n n + 1 . . . n + z

1
... C1 C2
n
n + 1
... C3 C4
n + z

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

.

We now show that the existence of an IS with size z implies the existence of a solution
with imbalance at most 3

2 , whereas the nonexistence of a size z independent set leads
to assignments with imbalance at least 2.

Let us first assume that there is an independent set with size z. We construct the
following assignment. Consider a vertex in V . There are two possibilities.
If this vertex is in the independent set, choose as entry in C , the corresponding row a
(a ≤ n), and any column b ≥ n + 1 (notice that the resulting entry is in block C2).
Using the definition of the cost-vectors given in the construction, we find that:

ck(a, b) :=

⎧
⎪⎨

⎪⎩

1 if vertex va is the source of edge ek;
−1 if vertex va is the target of edge ek;
0 otherwise.

If this vertex is not in the independent set, then choose as entry the corresponding row
a (a ≤ n), and the same column, i.e., b = a (notice that the resulting entry is in block
C1). We find that:

ck(a, a) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/2 if vertex va is the source of edge ek;
−1/2 if vertex va is the target of edge ek;
−1 k = m + 1

0 otherwise.

We also choose the following entries for each of the dummy rows: the z columns (each
representing a vertex) that have not yet been used (the resulting entries are in block
C3). Then, we have:

ck(a, b) :=

⎧
⎪⎨

⎪⎩

−1/2 if vertex vb is the source of edge ek;
1/2 if vertex vb is the target of edge ek;
0 otherwise.

123

254 A. M. C. Ficker et al.

This specifies the assignment.Observe that for these selected entries it is true that the
corresponding cost-vectors have, in no coordinate, a +1 and a -1; hence, the imbalance
is at most 3

2 .
Suppose no size z-independent set exists. We claim that any assignment has imbal-

ance ≥ 2. First suppose that the assignment uses an entry in block C4 of matrix C .
Since (w.l.o.g.) z < n, any assignment also uses entries in block C1. But then the last
coordinate of the selected vectors leads to an imbalance ≥ 2. Now, suppose no entries
from block C4 are chosen. Then, since one entry in each of the last z columns must be
chosen, z entries are chosen from block C2. Consider the z vertices that correspond
to the rows of these entries. Since the set of vertices is not an independent set, there
exists an edge ek between two of these vertices. Hence, the imbalance ≥ 2.
�
Notice that this construction does not completely close the gap between the factor
of 2 achieved by the approximation algorithms, and what might be achieved by any
polynomial time algorithm. We can only state:

Corollary 3 The robust balanced assignment problem with sum costs does not allow
a polynomial time approximation algorithm with worst-case guarantee strictly better
than 4

3 (unless P = NP).

Remark 1 Corollary 3 leaves open the possibility that Algorithm 2 and/or Algorithm 3
have a better approximation ratio for the robust balanced assignment problem with
sum costs. For Algorithm 3, however, this is not the case, as is shown by the following
instance.

Suppose we have n = 3, and we have row costs a1 = (−1,−2), a2 = (−1,−1)
and a3 = (0,−1) and column costs b1 = (1, 1), b2 = (2, 2), and b3 = (0, 0). The
resulting cost matrix C is as follows.

⎡

⎣C =
⎛

⎝
(0,– 1) (1, 0) (– 1,– 2)
(0, 0) (1, 1) (– 1,– 1)
(1, 0) (2, 1) (0,– 1)

⎞

⎠

⎤

⎦

Since it is not difficult to see that a solution with value 0 does not exist, it fol-
lows that the solution consisting of the elements {(1, 2), (2, 1), (3, 3)} with respective
cost-vectors {(1, 0), (0, 0), (0,−1)} (which has value (or imbalance) 1) is an optimal
solution.

Let us now run Algorithm 3 on this instance. We show that for any x ∈ X , with an
imbalance of 1, the algorithm can return a feasible solution with value equal to 2. First,
notice that for c(x) ∈ {(−1,−2), (−1,−1), (1, 1), (2, 1)} no feasible solution exists
when the elements that differmore than 1 from c(x) in a component are removed.Next,
for c(x) = (0,−1) the algorithm can select c(1, 2) = (1, 0), c(2, 3) = (−1,−1) and
c(3, 1) = (1, 0), resulting in a solution with value 2. Finally, for c(x) ∈ {(0, 0), (1, 0)}
the algorithm can select c(1, 1) = (0,−1), c(2, 2) = (1, 1) and c(3, 3) = (0,−1),
again leading to a solution with value 2.

123

Robust balanced optimization 255

Hence, Algorithm 3 can return a solution with imbalance 2, which is twice the
optimum.

Remark 2 Given the application described inKamura andNakamori (2014), one could
be interested in the robust balanced 3-dimensional assignment problem. In this prob-
lem, we are given three sets of vectors, say a set A, B and C . Then, the ground set X
consists of triples, each consisting of a vector from A, a vector from B, and a vector
from C , and the cost-vector corresponding to an element from X is nothing else but
the sum of the three vectors. Although this problem does not fall in our framework (the
feasibility question is NP-hard), one might wonder about the approximability of this
robust balanced 3-dimensional assignment problem. We point out, however, that no
constant-factor approximation algorithm can exist (unless P = NP), even when d = 1.

Theorem 11 The robust balanced 3-dimensional assignment problem does not allow
a polynomial time constant-factor approximation algorithm (unless P = NP), even
when d = 1.

There is a straightforward reduction from Numerical 3-Dimensional Matching, we
refer to Ficker et al. (2018) for the proof.

6 Computational experiments for the robust balanced assignment
problem

In this section, we describe a computational experiment for the robust balanced assign-
ment problem. Recall that in this problem, we are given a square matrix C , in which
each entry is a d-dimensional vector, and we are interested in finding an optimum
robust balanced assignment, i.e., in finding an assignment in C minimizing the imbal-
ance (see Sect. 1).

6.1 MIP formulation

The following formulation is given by Kamura and Nakamori (2014), and uses param-
eters ck(i, j), each of which refers to the k-th coordinate of vector c(i, j) in matrix
C . Further, binary variables x(i, j) indicate whether or not the solution contains entry
(i, j), 1 ≤ i, j ≤ n, real variables uk and �k denote the, respectively, largest and
smallest value in dimension k of a selected entry (1 ≤ k ≤ d), and the real variable t
captures the objective function value.

minimize t (2a)

subject to
n∑

i=1

xi, j = 1 j = 1, . . . , n,

(2b)
n∑

j=1

xi, j = 1 i = 1, . . . , n,

(2c)

123

256 A. M. C. Ficker et al.

ck(i, j) · xi, j ≤ uk i, j = 1, . . . , n; k = 1, . . . , d,

(2d)

�k ≤ ck(i, j) · xi, j + M(1 − xi, j) i, j = 1, . . . , n; k = 1, . . . , d,

(2e)

uk − �k ≤ t k = 1, . . . , d, (2f)

xi, j ∈ {0, 1} i, j = 1, . . . , n, (2g)

uk, �k, t ≥ 0 k = 1, . . . , d. (2h)

Constraints (2b) and (2c) ensure that an assignment in matrix C is found. Further,
constraints (2d) and (2e) imply that the variables uk and �k receive their intended
values, and constraint (2f) together with the objective function (2a) ensure that t
equals the minimum imbalance.

6.2 Construction of datasets

We have created three classes of instances of the robust balanced assignment problem.
In Class 1, we construct instances by drawing each individual cost-coefficient from
a particular probability distribution; instances of Classes 2 and 3 feature scenario’s,
where the k-th component of each cost-vector corresponds to scenario k, k = 1, . . . , d.
Let us now describe the three classes in more detail.

Class 1
To generate instances of Class 1, we vary the following three parameters:

– n, the number of rows (or columns) of matrix C . We use n ∈ {10, 20}.
– d, the length of each cost-vector. We use d ∈ {2, 100, 300}.
– g, the probability distribution from which the cost-coefficients are generated. We
use g ∈ {U (0, 100),U (0, 1000), N (50; 1), N (50; 10), N (500; 1), N (500; 10)}.

(HereU (a, b) stands for a discrete uniformdistribution betweena andb, while N (a; b)
stands for a normal distribution with mean a and standard deviation b). This gives
2 × 3 × 6 = 36 types of instances of Class 1. For each of these types, we have
generated 10 instances, leading to a total of 360 instances of Class 1. Solving instances
of Class 1 allows us to assess how difficult in practice these instances are, depending
upon the various parameters. We study the performance of the MIP-formulation, and
Algorithms 2 and 3, both in terms of solution quality and running times.

Class 2
Instances of Class 2 are based on the instances of Class 1 as follows. For each

instance of Class 1, we construct an instance of Class 2 by rearranging the cost-
coefficients of each cost-vector in the following way. Given a cost-vector, we sort
the cost-coefficients by their distance to the mean (of the probability distribution we
generate from) in an increasing way. Thus, after this rearrangement it holds that the
larger the difference with the mean, the greater the index of the resulting component.
The idea behind this construction is to investigate a set of scenario’s, where the first
scenario can be seen as the most “average” scenario, and the last scenario is the most

123

Robust balanced optimization 257

“extreme” scenario; in between, the scenario’s becomemore variable with their index.
Clearly, we have 360 instances of Class 2.

Solving instances of Class 2 allows us to see whether this concept of scenario’s
ranging from average to extreme has an impact on the relative solution times of our
methods. It is also interesting to see how the optima, as well as the computation times,
compare to those found for Class 1.

Class 3
As in Class 2 instances, we use the idea of scenario’s to generate instances of Class

3. Now however, we generate the cost-coefficients of a cost-vector from distinct dis-
tributions whose variance increases with the component of the vector. More concrete,
we vary the following parameters

– n, the number of rows (or columns) of matrix C . We use n ∈ {10, 20}.
– d, the length of each cost-vector. We use d ∈ {2, 100, 300}.
– gk,d , the probability distribution from which cost-coefficient k, for vector-length
d, is generated from (k = 1, . . . , d). For each d ∈ {2, 100, 300}, we use the
following four collections of probability distributions.

– U
(⌈

50 − 50k
d

⌉
,
⌊
50 + 50k

d

⌋)
,

– U
(⌈

500 − 500k
d

⌉
,
⌊
500 + 500k

d

⌋)
,

– N (50; 50k
3d), and

– N (500; 500k
3d).

Observe that, for each of these collections, the standard deviation increases with
the component index k. For instance, in case of the second collection of probability
distributions, with d = 300, the first component is drawn fromU (499, 501), while
the last component is drawn from U (0, 1000), and the components in between
come from a uniform distribution whose standard deviation stepwise increases.

Solving instances of Class 3 allows us to see whether the idea of different scenario’s
coming from different distributions leads to other instances in terms of solvability.

We have used R 3.1.1 to generate the data.

6.3 Details of implementation

The MIP and both approximation algorithms are implemented using (free) program-
ming language Julia 0.5.1, together with notebook environment Jupyter (IJulia). We
also use package JuMP for Mathematical Optimization [for more information see
Dunning et al. (2017)] together with CPLEX 12.7.0 as the solver. Implementing both
the MIP and the approximation algorithms in Julia enables us to use a consistent con-
cept of running time to compare. Experiments are run on a laptop with Intel Core
i7-4800MQ CPU @2.70GHz and 16GB RAM.

All instances and the Julia Notebooks are available online at https://github.com/
AFicker/RobustBalancedAssignment.

For implementing the MIP formulation, we have to choose an M that is sufficiently
large (see constraints (2e)). If the data from an instance is from a uniform distribution

123

https://github.com/AFicker/RobustBalancedAssignment
https://github.com/AFicker/RobustBalancedAssignment

258 A. M. C. Ficker et al.

U (0, x), we set M = x + 1, which is greater than the largest possible value. If the
data from an instance is from a normal distribution, we do not know what the largest
possible value can be. Hence we look for the highest number h occurring in the dataset
and set M = h + 1.

For both approximation algorithms, we have to implement the feasibility oracle. For
the robust balanced assignment problem, this means solving a max-weight assignment
restricted to the entries of C that have remained in the set Y (see Sect. 3.2). We do
this by creating a n × n matrix O , setting the entry o(i, j) in O equal to 1 if element
(i, j) ∈ Y , and 0 if otherwise. We then solve the max-weight assignment problem as
an IP using a call to CPLEX from Julia to solve this instance. If the optimal solution
has value n, then Y contains a feasible assignment, otherwise Y does not. Moreover,
in case Y allows a feasible assignment, instead of setting Sol(x1, x2) := �max(Y),
we set Sol(x1, x2) equal to the value of the assignment found by the feasibility oracle
(since we have an actual solution at our disposal).
Recall that both approximation algorithms are valid for any robust balanced optimiza-
tion problem; we now describe a modification that we employ in order to tailor both
algorithms for the robust balanced assignment problem.

Consider Line 1 in Algorithm 2: selecting a pair of elements to compute a
bound/guess on the solution value, and consider Line 3 in Algorithm 3: selecting
a second element to compute a bound on the solution value. Since we only need to
check those pairs of entries that can actually occur together in a feasible assignment,
we do not select pairs of elements from the ground set that either occur in the same
row or in the same column.

6.4 Results

Hereunder we present five tables to present our computational results. Tables 1 and 2
contain the results of instances belonging to Class 1, Tables 3 and 4 show the results of
instances belonging to class 2, and Table 5 shows the results of instances belonging to
Class 3. Each table consists of several multicolumns. One multicolumn corresponds
to the instances generated from one probability distribution and contains the results
for the MIP, Algorithms 2 and 3 . For each of these we show: the computing time
in seconds (time), the solution value that was found (Sol), the coordinate in which
this solution value is attained (argk), and for Algorithms 2 and 3 we show the gap
compared to the solution found by the MIP.

Recall that each entry is the average over 10 instances. Also note that we interrupted
Cplex after one hour of computing time, in that case we report the number of instances
(out of 10) thatwere solvedwithin 3600 s and the data of the best found solution.Hence
it is possible that there are instances for which the MIP did not find the best-possible
solution. There is exactly one instance out of 960 for which Algorithm 2 found a better
solution than MIP (Algorithm 3 never did), namely for Class 1, U(0,1000), n = 20,
d = 300 the sixth instance.

Let us first consider the MIP. All instances with n = 10 are solved fast; there is,
however, a clear dependence on d. Instances with n = 10 and d = 300 take on average
60 s to solve. For n = 20, instances with d = 100 are often not solved to optimality

123

Robust balanced optimization 259

Table 1 Results Class 1, distributions with mean 50

U(0,100) N(50,1) N(50,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3

n10 d2

Time 0.08 0.56 0.59 0.10 0.40 0.56 0.09 0.45 0.54

Sol 38.40 38.70 39.40 1.03 1.04 1.10 11.03 11.05 11.61

argk 1.65 1.55 1.45 1.60 1.40 1.70 1.70 1.70 1.60

Gap (%) 0.78 2.60 0.26 6.48 0.12 5.22

n10 d100

Time 6.58 11.12 1.03 8.98 9.66 1.30 8.97 11.15 1.31

Sol 94.10 95.30 96.70 3.93 4.05 4.32 39.69 41.61 43.28

argk 41.43 57.67 46.15 48.60 60.40 55.30 39.00 51.10 54.00

Gap (%) 1.28 2.76 3.09 9.87 4.83 9.03

n10 d300

Time 49.12 24.19 1.93 73.34 26.72 2.65 59.81 24.77 2.66

Sol 97.40 98.00 98.80 4.48 4.68 4.90 44.90 46.33 48.42

argk 212.98 157.12 148.72 173.40 102.80 89.60 183.50 172.40 151.70

Gap (%) 0.62 1.44 4.38 9.31 3.18 7.82

n20 d2

Time 0.34 16.69 10.74 0.46 15.02 2.69 0.49 15.02 4.87

Sol 31.40 32.10 33.70 0.94 0.96 1.01 9.03 9.22 9.77

argk 1.30 1.35 1.45 1.30 1.50 1.70 1.70 1.70 1.40

Gap (%) 2.23 7.32 2.09 7.64 2.12 8.29

n20 d100

Time (9)* 793.39 13.21 (2)* 876.10 21.44 (8)* 873.56 21.95

Sol 95.00 98.00 98.70 4.00 4.43 4.70 40.38 44.59 47.04

argk 52.36 46.11 52.07 51.90 61.70 62.10 27.50 52.70 48.20

Gap (%) 3.16 3.89 10.61 17.36 10.44 16.49

n20 d300

Time (0)* 1623.0 26.53 (0)* 2088.4 50.85 (0)* 2091.7 51.49

Sol 98.30 99.00 99.80 4.67 5.05 5.17 46.80 50.17 51.62

argk 142.55 143.78 153.02 180.10 174.10 178.10 147.60 129.90 158.70

Gap (%) 0.71 1.53 8.20 10.73 7.20 10.31

* Number of solved instances within 3600 s

by the MIP, and, except for instances of Class 2, instances with n = 20 and d = 300
cannot be solved within 3600 s.

Of course, the approximation algorithms fare better than the MIP in terms of com-
putation times: each of them always finds a solution within 3600 s. It is also clear
that (except for the smallest instances), Algorithm 3 is an order of magnitude faster
than Algorithm 2. This speedup becomes more pronounced as the instance becomes
larger. For the largest instances, Algorithm 3 still finds a feasible solution within,
approximately, 80 s, while Algorithm 2 may need more than 2000 s.

123

260 A. M. C. Ficker et al.

Table 2 Results Class 1, distributions with mean 500

U(0,1000) N(500,1) N(500,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3

n10 d2

Time 0.07 0.53 0.59 0.11 0.46 0.65 0.10 0.52 0.66

Sol 393.70 395.20 409.90 1.06 1.07 1.10 11.35 11.42 11.83

argk 1.40 1.30 1.40 1.40 1.50 1.40 1.90 1.70 1.40

Gap (%) 0.38 4.11 1.04 3.97 0.59 4.16

n10 d100

Time 12.01 11.07 1.39 8.70 11.09 1.63 8.32 11.38 1.85

Sol 936.20 947.60 959.30 3.96 4.13 4.32 39.69 41.42 43.50

argk 66.15 52.23 61.70 60.00 57.30 40.10 51.60 58.30 43.30

Gap (%) 1.22 2.47 4.31 9.08 4.36 9.60

n10 d300

Time 66.50 24.61 2.80 69.12 25.57 3.03 69.27 26.11 3.59

Sol 964.60 972.40 979.20 4.47 4.65 4.84 45.25 47.06 48.44

argk 153.41 191.95 156.43 149.00 149.40 112.20 134.30 196.90 186.40

Gap (%) 0.81 1.51 3.98 8.16 4.00 7.05

n20 d2

Time 0.40 11.81 7.73 0.51 11.25 3.09 0.46 10.23 5.16

Sol 312.30 315.10 343.30 0.91 0.93 0.99 8.72 8.84 9.20

argk 1.45 1.55 1.50 1.50 1.40 1.40 1.40 1.40 1.30

Gap (%) 0.90 9.93 2.80 9.63 1.33 5.46

n20 d100

Time (2)* 847.48 21.74 (8)* 881.41 29.10 (9)* 884.40 29.71

Sol 942.00 967.90 977.40 4.02 4.47 4.71 40.10 44.68 46.74

argk 46.03 56.60 42.80 69.20 35.90 58.70 46.80 47.00 56.10

Gap (%) 2.75 3.76 11.22 17.40 11.41 16.56

n20 d300

Time (0)* 1885.3 48.09 (0)* 2079.4 73.12 (0)* 2062.7 77.28

Sol 978.10 984.30 988.90 4.69 5.02 5.26 46.86 50.44 52.14

argk 160.88 164.45 175.72 124.60 163.70 153.60 181.60 97.50 142.40

Gap (%) 0.63 1.10 7.06 12.00 7.64 11.28

* Number of solved instances within 3600 s

Whenwe turn to the quality of the solutions found by the approximation algorithms,
it is clear that these solutions are much better than the worst-case bound may suggest.
Algorithm 2 produces, on average, better solutions than Algorithm 3: for the instances
generated by a uniform distribution, Algorithm 2 (Algorithm 3) finds solution within
7% (12%) of the optimumvalue,whileAlgorithm2 (Algorithm3) finds solutionwithin
14% (21%) of the optimum value for instances generated by the normal distribution.
Here, it is also clear that, for both algorithms, performance degrades mildly with n,

123

Robust balanced optimization 261

Table 3 Results Class 2, distributions with mean 50

U(0,100) N(50,1) N(50,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MI P Alg2 Alg3

n10 d2

Time 0.09 0.36 0.59 0.10 0.34 0.55 0.12 0.44 0.57

Sol 29.90 30.20 30.40 0.94 0.94 0.97 9.63 9.74 10.00

argk 1.40 1.30 1.40 1.60 1.60 1.40 1.20 1.50 1.40

Gap (%) 1.00 1.67 0.05 3.12 1.12 3.82

n10 d100

Time 2.39 5.29 0.95 5.89 2.82 1.34 6.63 2.77 1.31

Sol 98.50 98.50 98.50 4.60 4.60 4.65 46.24 46.25 46.62

argk 97.75 98.25 98.43 98.90 98.80 98.90 98.50 98.60 98.50

Gap (%) 0.00 0.00 0.00 1.24 0.02 0.81

n10 d300

Time 10.31 39.39 1.17 49.03 7.71 2.70 44.37 8.45 2.73

Sol 100.00 100.00 100.00 5.40 5.41 5.43 54.35 54.39 54.70

argk 296.13 296.61 296.61 298.50 298.70 298.80 298.80 298.80 298.70

Gap (%) 0.00 0.00 0.08 0.61 0.06 0.64

n20 d2

Time 0.29 12.67 7.39 0.44 9.38 7.13 0.41 7.90 7.03

Sol 22.80 23.00 24.10 0.71 0.72 0.76 7.10 7.18 7.77

argk 1.45 1.55 1.75 1.30 1.30 1.50 1.70 1.60 1.60

Gap (%) 0.88 5.70 0.95 7.78 1.05 9.41

n20 d100

Time 90.36 147.11 12.63 146.10 108.74 22.56 145.66 106.51 22.34

Sol 98.00 98.00 98.00 4.39 4.39 4.52 44.15 44.21 45.23

argk 97.82 97.51 97.48 98.30 98.40 98.30 98.40 98.40 98.00

Gap (%) 0.00 0.00 0.14 3.04 0.14 2.45

n20 d300

Time 84.71 2176.28 17.02 880.78 325.49 53.04 660.09 320.78 53.00

Sol 100.00 100.00 100.00 5.22 5.22 5.33 51.98 52.02 53.12

argk 295.94 295.99 295.99 298.30 298.30 298.50 298.20 298.10 298.30

Gap (%) 0.00 0.00 0.09 2.10 0.09 2.19

and, perhaps surprisingly, performance for instances with either d = 2 or d = 300 is
better than for instances with d = 100.

One interesting observation concerns instances of Class 2 (Tables 3, 4): these are
much easier than the instances of the other classes. Not only are the running times
small, even the instanceswith n = 20 and d = 300 are solvedwithin 1000 s by theMIP
(an exception is the running time ofAlgorithm 2 forU (0, 100), n = 20, d = 300), also
the quality of the solutions of the approximation algorithms is remarkably good: in
particular, Algorithm 2 finds for the instances with mean 50 (Table 3) solutions within

123

262 A. M. C. Ficker et al.

Table 4 Results Class 2, distributions with mean 500

U(0,1000) N(500,1) N(500,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3

n10 d2

Time 0.07 0.30 0.61 0.10 0.36 0.58 0.12 0.39 0.54

Sol 274.20 275.10 279.20 0.86 0.89 0.91 9.49 9.52 9.81

argk 1.50 1.60 1.40 1.80 1.60 1.50 1.40 1.40 1.30

Gap (%) 0.33 1.82 2.78 5.72 0.29 3.35

n10 d100

Time 4.57 2.15 1.32 4.54 2.48 1.35 6.45 2.94 1.30

Sol 977.10 977.10 978.20 4.55 4.55 4.58 46.68 46.77 47.38

argk 99.05 98.75 98.75 98.50 98.50 98.40 98.80 98.80 98.80

Gap (%) 0.00 0.11 0.00 0.78 0.20 1.51

n10 d300

Time 34.46 6.49 2.39 39.62 7.78 2.77 46.00 8.99 2.69

Sol 993.00 993.00 993.10 5.37 5.37 5.40 55.07 55.11 55.54

argk 298.55 298.50 298.50 298.50 298.60 298.40 298.90 298.90 298.90

Gap (%) 0.00 0.01 0.01 0.48 0.07 0.84

n20 d2

Time 0.40 10.06 7.67 0.45 9.41 6.93 0.47 8.82 7.09

Sol 233.60 236.60 253.90 0.71 0.74 0.76 6.95 7.09 7.27

argk 1.40 1.30 1.50 1.40 1.40 1.50 1.50 1.70 1.40

Gap (%) 1.28 8.69 3.82 6.86 2.05 4.73

n20 d100

Time 181.51 94.59 19.21 153.03 105.61 21.98 116.54 100.81 22.30

Sol 972.40 972.40 973.50 4.39 4.40 4.53 43.78 43.79 45.04

argk 98.25 98.30 97.95 98.20 98.20 97.80 98.50 98.50 98.20

Gap (%) 0.00 0.11 0.02 3.04 0.02 2.87

n20 d300

Time 855.57 289.24 37.43 731.45 309.28 52.92 630.81 331.84 52.69

Sol 990.90 991.00 991.40 5.19 5.20 5.31 52.29 52.32 53.13

argk 297.83 298.15 297.80 298.30 298.30 297.90 298.40 298.40 298.10

gap (%) 0.01 0.05 0.03 2.20 0.06 1.60

1%of the optimum; for instances withmean 500 (see Table 4) this percentage becomes
5%. A possible explanation for this phenomenon can be found in the component for
which the maximum imbalance is attained (argk): due to the way these instances
were generated, it is not surprising to see that this value approaches d. The same
phenomenon, to a lesser extent, is present in the instances of Class 3 (Table 5).

We summarize our findings as follows:

– Solving large instances (n > 20, d > 100) of the robust balanced assignment
problem exactly, using a mixed integer programming formulation is a challenge.

123

Robust balanced optimization 263

Ta
bl
e
5

R
es
ul
ts
C
la
ss

3

U
(0
,1
00

)
U
(0
,1
00

0)
N
(5
0,
.)

N
(5
00

,.)

M
IP

A
lg
2

A
lg
3

M
IP

A
lg
2

A
lg
3

M
I
P

A
lg
2

A
lg
3

M
IP

A
lg
2

A
lg
3

n1
0
d2

T
im

e
0.
09

0.
48

0.
60

0.
09

0.
52

0.
60

0.
11

0.
41

0.
66

0.
10

0.
48

0.
70

So
l

27
.3
0

27
.3
0

28
.6
0

27
8.
30

27
9.
80

28
9.
20

12
.7
2

12
.8
7

13
.6
2

13
8.
40

14
2.
49

14
4.
90

ar
g k

1.
50

1.
65

1.
60

1.
70

1.
70

1.
50

1.
30

1.
30

1.
30

1.
60

1.
60

1.
70

G
ap

(%
)

0.
0

4.
76

0.
54

3.
92

1.
17

7.
09

2.
96

4.
69

n1
0
d1

00

T
im

e
5.
76

7.
99

1.
08

6.
61

7.
37

1.
35

6.
95

8.
48

1.
98

6.
54

8.
70

1.
90

So
l

76
.2
0

78
.5
0

80
.4
0

76
1.
80

77
4.
20

80
3.
20

47
.8
4

49
.2
0

52
.9
3

47
7.
34

49
6.
99

51
8.
87

ar
g k

86
.6
8

91
.9
5

92
.6
2

87
.8
0

88
.6
0

94
.2
0

86
.6
0

91
.9
0

79
.2
0

83
.8
0

83
.9
0

82
.3
0

G
ap

(%
)

3.
02

5.
51

1.
63

5.
43

2.
84

10
.6
3

4.
12

8.
70

n1
0
d3

00

T
im

e
40

.1
8

17
.0
4

1.
94

52
.1
7

17
.9
3

2.
61

56
.7
0

23
.2
9

4.
41

62
.7
7

21
.7
7

3.
72

So
l

83
.4
0

85
.0
0

87
.9
0

83
7.
60

84
8.
80

87
2.
40

57
.3
9

59
.6
9

63
.2
6

56
5.
64

58
5.
05

61
6.
51

ar
g k

28
2.
71

28
1.
28

28
6.
37

27
8.
95

28
1.
80

28
7.
80

27
1.
50

28
2.
70

26
5.
50

26
4.
50

26
6.
00

27
0.
60

G
ap

(%
)

1.
92

5.
40

1.
34

4.
15

4.
00

10
.2
2

3.
43

8.
99

n2
0
d2

T
im

e
0.
35

16
.4
8

7.
11

0.
40

12
.2
0

7.
46

0.
43

10
.9
6

9.
50

0.
47

9.
52

9.
25

So
l

22
.2
0

22
.3
0

24
.0
0

22
2.
00

22
3.
70

23
2.
80

10
.8
8

11
.0
1

11
.9
7

10
4.
06

10
5.
67

11
0.
60

ar
g k

1.
60

1.
55

1.
55

1.
50

1.
55

1.
55

1.
60

1.
60

1.
70

1.
80

1.
40

1.
50

G
ap

(%
)

0.
48

8.
11

0.
77

4.
86

1.
13

10
.0
0

1.
55

6.
28

123

264 A. M. C. Ficker et al.

Ta
bl
e
5

co
nt
in
ue
d

U
(0
,1
00

)
U
(0
,1
00

0)
N
(5
0,
.)

N
(5
00

,.)

M
IP

A
lg
2

A
lg
3

M
IP

A
lg
2

A
lg
3

M
I
P

A
lg
2

A
lg
3

M
IP

A
lg
2

A
lg
3

n2
0
d1

00

T
im

e
11

55
.9

57
1.
98

14
.0
1

90
6.
52

59
9.
53

21
.4
6

74
1.
16

73
1.
24

30
.9
7

82
4.
02

73
7.
70

29
.9
7

So
l

76
.1
0

80
.9
0

85
.0
0

75
8.
30

80
1.
30

83
5.
30

47
.5
0

53
.3
0

57
.2
7

47
5.
08

53
6.
97

57
0.
32

ar
g k

90
.3
7

89
.6
3

94
.1
7

87
.4
5

90
.6
0

92
.0
0

82
.8
0

79
.6
0

90
.1
0

88
.1
0

87
.4
0

89
.5
0

G
ap

(%
)

6.
31

11
.7
0

5.
67

10
.1
5

12
.2
1

20
.5
8

13
.0
3

20
.0
5

n2
0
d3

00

T
im

e
(0
)*

13
47

.4
29

.5
7

(0
)*

15
21

.4
48

.5
5

(1
)∗

18
95

.6
70

.9
9

(0
)*

17
66

.8
71

.3
2

So
l

85
.4
0

88
.2
0

90
.6
0

85
0.
50

88
1.
00

90
3.
80

58
.3
7

64
.0
9

67
.4
6

58
8.
40

64
1.
77

68
3.
70

ar
g k

28
2.
12

28
7.
64

28
9.
94

27
9.
48

28
5.
05

28
7.
35

27
5.
20

26
7.
50

26
7.
40

27
6.
10

26
9.
90

27
2.
40

G
ap

(%
)

3.
28

6.
09

3.
59

6.
27

9.
81

15
.9
9

9.
07

16
.2

*
N
um

be
r
of

so
lv
ed

in
st
an
ce
s
w
ith

in
36

00
s

123

Robust balanced optimization 265

– The approximation algorithms offer a trade-off in terms of quality of solution
found, and running time needed; in particular, Algorithm 3 finds quickly solutions
of reasonable quality.

– Structure present in the instances helps, both in terms of quality and running time,
as witnessed by the instances of Class 2.

7 Conclusion

We introduce the notion of balanced optimization problemswith vector costs and show
its equivalence to robust balanced optimization problems. We propose a framework
that generalizes the one introduced byMartello et al. (1984). We provide a polynomial
time algorithm when the dimension d is fixed, and we describe two 2-approximation
algorithms for each problem in our framework. Further, we give results for a number of
problems in the framework: we settle their complexity, and for many of them the exis-
tence of a polynomial time (2 − ε)-approximation algorithm implies P = NP. Finally,
we provide computational evidence for the quality of the approximation algorithms
applied to the robust balanced assignment problem.

Acknowledgements We thank Marc Goerigk for interesting discussions on the relation between balanced
optimization problems with vector costs and robust optimization. We are also indebted to the reviewers
whose remarks led to a significant speedup of some of the algorithms in this work. This research has been
supported by the Netherlands Organisation for Scientific Research (NWO) under Grant 639.033.403, by
BSIK Grant 03018 (BRICKS: Basic Research in Informatics for Creating the Knowledge Society), and by
the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.

References

Ahuja R (1997) The balanced linear programming problem. Eur J Oper Res 101(1):29–38
Aissi H, Bazgan C, Vanderpooten D (2005) Complexity of the min-max and min-max regret assignment

problems. Oper Res Lett 33(6):634–640
Aissi H, Bazgan C, Vanderpooten D (2009) Min-max and min-max regret versions of combinatorial opti-

mization problems: a survey. Eur J Oper Res 197(2):427–438
Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805
Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25(1):1–13
Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with

uncertain data. Math Program 88(3):411–424
Ben-Tal A, Golany B, Nemirovski A, Vial J-P (2005) Retailer-supplier flexible commitments contracts: a

robust optimization approach. Manuf Serv Oper Manag 7(3):248–271
Ben-Tal A, Boyd S, Nemirovski A (2006) Extending scope of robust optimization: comprehensive robust

counterparts of uncertain problems. Math Program 107(1–2):63–89
Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98(1):49–71
Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev

53(3):464–501
Camerini P, Maffioli F, Martello S, Toth P (1986) Most and least uniform spanning trees. Discrete Appl

Math 15(2–3):181–197
Cappanera P, Scutellà M (2005) Balanced paths in acyclic networks: tractable cases and related approaches.

Networks 45(2):104–111
Deineko V, Woeginger G (2006) On the robust assignment problem under a fixed number of cost scenarios.

Oper Res Lett 34:175–179

123

266 A. M. C. Ficker et al.

Dokka T, Crama Y, Spieksma F (2014) Multi-dimensional vector assignment problems. Discrete Optim
14:111–125

Dunning I, Huchette J, Lubin M (2017) Jump: a modeling language for mathematical optimization. SIAM
Rev 59(2):295–320

Ficker AMC, Spieksma FCR, Woeginger GJ (2018) Robust balanced optimization, KU Leuven, FEB
Research report KBI_1802

Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res
235(3):471–483

Galil Z, Schieber B (1988) On finding most uniform spanning trees. Discrete Appl Math 20(2):173–175
Gorissen BL, Yanıkoğlu İ, den Hertog D (2015) A practical guide to robust optimization. OMEGA 53:124–

137
Kamura Y, Nakamori M (2014)Modified balanced assignment problem in vector case: System construction

problem, In: 2014 international conference on computational science and computational intelligence
(CSCI), vol 2. IEEE, pp 52–56

Katoh N, Iwano K (1994) Efficient algorithms for minimum range cut problems. Networks 24(7):395–407
Kinable J, Smeulders B,Delcour E, SpieksmaF (2017) Exact algorithms for the equitable traveling salesman

problem. Eur J Oper Res 261(2):475–485
Koster AM, Kutschka M, Raack C (2013) Robust network design: formulations, valid inequalities, and

computations. Networks 61(2):128–149
Kouvelis P, Yu G (1997) Robust discrete optimization and its applications. Kluwer Academic Publishers,

Norwell
Larusic J, Punnen A (2011) The balanced traveling salesman problem. Comput Oper Res 38(5):868–875
Lee C, Lee K, Park K, Park S (2012) Branch-and-price-and-cut approach to the robust network design

problem without flow bifurcations. Oper Res 60(3):604–610
Martello S, Pulleyblank W, Toth P, De Werra D (1984) Balanced optimization problems. Oper Res Lett

3(5):275–278
Poss M (2014) Robust combinatorial optimization with variable cost uncertainty. Eur J Oper Res 237:836–

845
Punnen A, Nair K (1999) Constrained balanced optimization problems. Comput Math Appl 37(9):157–163
Turner L (2012) Variants of shortest path problems. Algorithmic Oper Res 6(2):91–104
Wiesemann W, Kuhn D, Sim M (2014) Distributionally robust convex optimization. Oper Res 62(6):1358–

1376

123

	Robust balanced optimization
	Abstract
	1 Introduction
	1.1 Related literature
	1.2 Our results

	2 The framework
	3 Algorithms for robust balanced optimization problems
	3.1 Fixed dimension
	3.2 Approximation algorithms

	4 The complexity of robust balanced optimization problems
	4.1 Robust balanced q-uniform set systems
	4.2 Robust balanced linear assignment
	4.3 Other robust balanced optimization problems
	4.4 Robust balanced 2SAT

	5 A special case of the robust balanced assignment problem: sum costs
	6 Computational experiments for the robust balanced assignment problem
	6.1 MIP formulation
	6.2 Construction of datasets
	6.3 Details of implementation
	6.4 Results

	7 Conclusion
	Acknowledgements
	References

