EURO J Comput Optim (2018) 6:143-184 @ CrossMark
https://doi.org/10.1007/s13675-017-0091-5

ORIGINAL PAPER

The impact of filtering in a branch-and-cut algorithm
for multicommodity capacitated fixed charge network
design

Mervat Chouman! - Teodor Gabriel Crainic? -

Bernard Gendron3

Received: 25 September 2015 / Accepted: 24 October 2017 / Published online: 13 November 2017
© Springer-Verlag GmbH Germany, part of Springer Nature and EURO - The Association of European
Operational Research Societies 2017

Abstract In this paper, we present a state-of-the-art branch-and-cut (B&C) algorithm
for the multicommodity capacitated fixed charge network design problem (MCND).
This algorithm combines bounding and branching procedures inspired by the latest
developments in mixed-integer programming (MIP) software tools. Several filtering
methods that exploit the structure of the MCND are also developed and embedded
within the B&C algorithm. These filtering methods apply inference techniques to
forbid combinations of values for some variables. This can take the form of adding
cuts, reducing the domains of the variables, or fixing the values of the variables. Our
experiments on a large set of randomly generated instances show that an appropriate
selection of filtering techniques allows the B&C algorithm to perform better than the
variant of the algorithm without filtering. These experiments also show that the B&C
algorithm, with or without filtering, is competitive with a state-of-the-art MIP solver.

B Bernard Gendron
Bernard.Gendron@cirrelt.ca

Mervat Chouman
Mervat.Chouman @cirrelt.ca

Teodor Gabriel Crainic
TeodorGabriel.Crainic @cirrelt.net
College of Business, Effat University, Jeddah, Saudi Arabia

Department of Management and Technology, School of Management Interuniversity Research
Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Université du Québec
a Montréal, Montreal, QC, Canada

Département d’informatique et recherche opérationnelle Interuniversity Research Centre on Enter-
prise Networks, Logistics and Transportation (CIRRELT), Université de Montréal, Montreal, QC,
Canada

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13675-017-0091-5&domain=pdf

144 M. Chouman et al.

Keywords Mixed-integer programming - Multicommodity capacitated fixed charge
network design - Branch-and-cut - Filtering

Mathematics Subject Classification 90B10 - 90C11

1 Introduction

We present a branch-and-cut algorithm (B&C) to solve the multicommodity capaci-
tated fixed charge network design problem (MCND), following the development of
a specialized cutting-plane method described in Chouman et al. (2017). In this last
paper, several valid inequalities, separation routines and modeling alternatives are
presented and analyzed, the cutting-plane procedure being embedded within a state-
of-the-art mixed-integer programming (MIP) solver. In the present paper, our aim is
to develop a B&C method tailored for the problem that includes not only the cuts
and separation routines from Chouman et al. (2017), but also filtering methods that
exploit the structural properties of the problem. In general, such filtering methods
apply inference techniques to forbid combinations of values for some variables, and
proceed by adding cuts, reducing the domains of the variables, or fixing the values of
the variables. Filtering methods are widely used in constraint programming (Hooker
2002), while in MIP, they arise within preprocessing routines (Savelsbergh 1994) and
domain reduction tests based on reduced cost information. As such, filtering methods
are an integral part of state-of-the-art MIP solvers (Atamtiirk and Savelsbergh 2005).

To the best of our knowledge, along with the cutting-plane approach (Chouman
et al. 2017) that constitutes the foundation for this work, the present paper is one of the
few attempts at solving optimally the MCND, following earlier contributions based
on Benders decomposition (Costa et al. 2009, 2012), column generation (Gendron
and Larose 2014) and Lagrangian relaxation approaches (Crainic et al. 1999, 2001,
Gendron and Crainic 1994; Holmberg and Yuan 2000; Kliewer and Timajev 2005;
Sellmann et al. 2002). Heuristic methods have also been proposed for computing
feasible solutions (Crainic et al. 2000, 2004; Crainic and Gendreau 2002; Ghamlouche
et al. 2003, 2004; Hewitt et al. 2010; Katayama et al. 2009; Rodriguez-Martin and
Salazar-Gonzdlez 2010). Typically, instances with few commodities (say, in the order
of 10) can be solved to optimality in reasonable time by state-of-the-art MIP solvers,
while instances with many commodities (more than 100) are very hard to solve to
optimality (in Chouman et al. (2017), an average gap of 1.93% is reported for 57
difficult instances that are still unsolved after 2 hours of computing time). However,
even for these instances, very good (often optimal) upper bounds are obtained by the
cited heuristic methods. In our developments, we will therefore focus on the exact
solution of these difficult large-scale instances, assuming that near-optimal solutions
are readily available.

While a B&C algorithm is often the method of choice for the exact solution of
network design problems similar to the MCND (Aardal 1998; Aardal et al. 1995;
Atamtiirk 2002; Atamtiirk and Rajan 2002; Barahona 1996; Bienstock et al. 1998;
Bienstock and Giinliik 1996; Gabrel et al. 1999; Giinliik 1999; Leung and Magnanti
1989; Magnanti et al. 1993, 1995; Ortega and Wolsey 2003; Raack et al. 2011), there

@ Springer



The impact of filtering in a branch-and-cut algorithm... 145

are no systematic studies regarding the behavior and performance of filtering methods
in B&C algorithms for network design problems. Our main goal is to address this issue.
We proceed by first presenting the basic features of the B&C algorithm we propose
for the MCND, i.e., bounding and branching procedures inspired by Chouman et al.
(2017) and by the latest developments in MIP software tools (Achterberg et al. 2005;
Atamtiirk and Savelsbergh 2005). We then develop a number of filtering methods that
exploit the structure of the MCND and analyze their performance using the proposed
B&C algorithm.
Our contributions are threefold:

e We develop a tailored B&C algorithm for the MCND. The implementation of this
algorithm combines the cutting-plane method from Chouman et al. (2017) with an
adaptation of the reliability branching rule introduced in Achterberg et al. (2005).

e We develop several filtering methods that are embedded within the B&C algorithm.
These filtering methods are based either on duality arguments or on the detection
of infeasible solutions. With the exception of the classical LP-based reduced cost
fixing technique, they all exploit the structure of the MCND. Hence, to the best of
our knowledge, state-of-the-art MIP solvers do not perform these filtering methods.

e By performing experiments on a set of 196 randomly generated instances used in
other studies on the MCND, we show the efficiency and the effectiveness of both the
B&C algorithm and the filtering methods. Specifically, our computational results
illustrate that an appropriate selection of filtering techniques and their associated
parameters provides notable improvements over the B&C algorithm without filter-
ing. Furthermore, we also show that the B&C algorithm, with or without filtering,
is competitive with a state-of-the-art MIP solver.

The paper is organized as follows. Section 2 presents the main features of the B&C
algorithm, namely the valid inequalities and their separation routines, the cutting-plane
procedure and the branching rule. Section 3 describes the filtering methods, while
Sect. 4 summarizes the overall B&C algorithm. In Sect. 5, we present the results of
extensive computational experiments on a large set of instances. Section 6 summarizes
our findings and discusses avenues for future research.

2 Main features of the branch-and-cut algorithm

We describe the MCND and the formulation used within the B&C algorithm in
Sect. 2.1. In Sect. 2.2, we present the valid inequalities and the separation routines
performed at every node of the B&C tree by the cutting-plane procedure. The latter
is summarized in Sect. 2.3, while the branching rule used in the B&C algorithm is
described in Sect. 2.4.

2.1 Problem formulation
Given a directed network G = (V, A), with V the set of nodes and A the set of arcs,

we let K be the set of commodities, each commodity k having one origin, O (k), and
one destination, D(k), with a demand d* > 0 between the two nodes. We associate

@ Springer



146 M. Chouman et al.

with each arc (7, j) the per unit routing cost ¢;; > 0, the fixed cost f;; > 0, and the
capacity u;; > 0. We assume that capacities and demands take integer values. Two
types of variables are used to formulate the MCND: the continuous flow variable xll‘j ,
which represents the flow of commodity k on arc (i, j), and the binary design variable
¥ij» which equals 1 when arc (7, j) is used, and 0, otherwise. Given these definitions,
the MCND can be formulated as follows:

Z=minz Z c,-jxfj—i- Z fijyij (1)

keK (i,j)eA G, j)eA
dk, ifi = 0(k),
Soxk— S xk =1 —ak ifti=Dw), ieV,kek, )
jevit jevy” 0, otherwise,
Zx,k, < uijyij, (G, j) €A, 3)
keK
Ofxfjsbf-‘j, (i,j) € Ak €K, 4)
vij € 10,1}, (G, )) €A, 5)

where bfj = min{u;;, d*}, V" = {j € V|(i, j) € Ayand V" = {j € VI|(j,i) € A}.
Constraints (2) represent the flow conservation equations for each node and each
commodity. Relations (3) ensure that the flow on each arc does not exceed its capacity;
they also play the role of forcing constraints, since they ensure that no flow is allowed
on an arc unless the fixed cost on the arc is incurred. Constraints (4) and (5) define
the domains of the flow and design variables, respectively. Note that bf.‘j can be any
valid upper bound on the amount of flow of commodity k on arc (i, j). The model can
thus integrate commodity-dependent capacities, although we only assume a capacity
u;;j on each arc (i, j) that binds the flow of all commodities on the arc. Similarly, we
assume that the routing costs do not depend on the commodities, although it would be
easy to handle commodity-dependent costs in our model.

To characterize the status of the binary design variables at each node of the B&C
tree, A1 and Ag denote the sets of open and closed arcs, respectively, i.e., the arcs fixed
to 1 and to 0 by branching and variable fixing; Ag; = A\ (A1 U Ag) denotes the set of
free arcs. The restricted problem considered at each node then consists of model (1)—
(5) to which we add the constraints y;; = 0, (i, j) € Ag, and y;; = 1, (i, j) € Aj.
The cutting-plane procedure strengthens the linear programming (LP) relaxation of
this restricted problem by adding inequalities that are valid for model (1)—(5), but
violated by the solution of the current LP relaxation. These inequalities are presented
next.

2.2 Valid inequalities and separation

Our cutting-plane procedure exploits the valid inequalities that are shown to be the most
useful in Chouman et al. (2017). We use two classes of valid inequalities, the strong and
knapsack inequalities, which are described in the next subsections, along with their
respective separation algorithms. Chouman et al. (2017) also use flow cover/pack

@ Springer



The impact of filtering in a branch-and-cut algorithm... 147

inequalities (Atamtiirk 2001; Gu et al. 1999b; Louveaux and Wolsey 2007; Padberg
etal. 1985; Roy and Wolsey 1987). Although these inequalities are effective in improv-
ing the lower bounds, they provide similar bound improvements, on most instances,
than the combination of strong and knapsack inequalities. Since their separation is
significantly more expensive computationally, we have decided not to use them in our
cutting-plane procedure.

2.2.1 Strong inequalities

The following inequalities, in a similar way as constraints (3), play the role of forcing
constraints, since they also forbid any flow to circulate on an arc that is not part of the
selected design:

xf < byij, (. J) € AkeKk. (6)

Adding these so-called strong inequalities to the model significantly improves the
quality of the LP relaxation lower bound (Chouman et al. 2017; Crainic et al. 1999;
Gendron and Crainic 1994). Adding a priori all these inequalities to the LP relaxation
yields very large models that frequently exhibit degeneracy. We add them in a dynamic
way, identifying only those that are violated by the solution of the current LP relaxation.
Their separation is trivial, as it suffices to scan each arc and each commodity to identify
all violated inequalities.

2.2.2 Knapsack inequalities

Assuming S C V is a non-empty subset of V and § = V\S is its complement, we
note the corresponding cutset (S, S)={(i,j) € A|ieS, je S} andits associated
commodity subset K(S,S) = {k € K | Ok) € S, D(k) € S}. We then have
the following valid inequality, which is obtained by combining the flow conservation
equations (2) with the capacity constraints (3):

Z Ujjyij = d(S,S')’ (7N
(i.))€(5.5)

where dg 5 = D ke K(S.5) d¥. This inequality simply states that there should be

enough capacity on the arcs of the cutset (S, S) to satisfy the total demand that must
flow from S to S. By complementing the y variables, i.e., replacing y; j by 1 —y;j, the
cutset inequality reduces to a 0-1 knapsack structure.

The well-known cover inequalities for the 0-1 knapsack structure (Balas 1975;
Hammer et al. 1975; Wolsey 1975) are based on the following definition: C C (S, S)
is a cover if the total capacity of the arcs in (S, §)\C does not cover the demand,
e, X ¢ hes.dncUij < ds s For every cover C < (S, S), the following cover
inequality is valid for the MCND:

> izl ®)

(i, j)eC

@ Springer



148 M. Chouman et al.

In addition to the cover inequalities, we use the so-called minimum cardinality
inequalities Martello and Toth (1997). To define these inequalities, we assume the
capacities of the arcs in (S, S) are sorted in non-increasing order: uq ) > Ug(r+1)
where a(t) € (S,8), 1t =1, ..., (S, 9)| (Ua(i+1) = Uqa(r)). This allows us to compute
the least number of arcs in (S, S) that must be opened in any feasible solution: / 5.5 =
max {h | Y,y jUaw) < d )+ 1. We then derive the minimum cardinality

inequality:
Z Yij = l(sjy )
(i./)€(S.S)

The generation of knapsack inequalities is based on single-node cutsets, i.e., for
each cutset (S, S‘), S is an origin or S is a destination for at least one commodity.
Methods to generate cutsets (S, S) with |S| > 1 are developed and tested in Chouman
et al. (2017), where it is observed that, for most instances, the single-node cutsets are
responsible for most of the lower bound improvement.

For each single-node cutset, we try to generate one violated cover inequality and
one violated minimum cardinality inequality. Initially, some y variables are fixed to
either O or 1, using the LP relaxation solution. Two different variable fixing strategies
are used, depending on the type of inequality we try to generate, cover or minimum
cardinality (details can be found in Chouman et al. (2017)). Thus, we obtain in this way
two restricted cutsets, one that is used to derive a cover inequality, the other to generate
a minimum cardinality inequality. The cover inequality is obtained by the separation
routine described in Chouman et al. (2017); Gu et al. (1998, 1999a). To generate
the minimum cardinality inequality, we simply sort the arcs in the corresponding
restricted cutset and then derive the minimum number of arcs to be opened. For each
of the two inequalities thus obtained, a sequential lifting procedure is applied to obtain
an inequality that is valid for the original cutset, and therefore also for the MCND. The
same lifting procedure is used for the two inequalities, cover and minimum cardinality.
If any of the resulting valid inequalities is violated by the solution of the current LP
relaxation solution, it is added to the LP relaxation.

2.3 Cutting-plane procedure

As explained above, the cutting-plane procedure is a simpler variant of the method
described in Chouman et al. (2017), since it generates strong and knapsack inequalities,
but no flow cover/pack inequalities. At each node of the B&C tree, it starts by solving
the LP relaxation of the current formulation, defined by the current status of the arcs,
open, closed or free, and by the cuts added so far. Subsequently, it alternates between
the generation of cuts and the solution of the current LP relaxation.

The cutting-plane procedure performs the following steps, where Z* is the objective
value of the best known feasible solution and § is a parameter that measures the min-
imum bound improvement between two consecutive LPs that is required to continue

the procedure (we use § = 0.1 as in Chouman et al. (2017)):
1.zl , <o
2. Solve the LP relaxation; let Z! be the LP optimal value (Z' = 4 oo if the LP is

infeasible), and y the LP design solution.

@ Springer



The impact of filtering in a branch-and-cut algorithm... 149

3. If y is integral or Z! > Z* or Z! — Z;ast
4. Try to generate cuts.

5. If some cuts are found, then le ast

< 4, then stop.

« Z'and go to 2.

The B&C algorithm manages two types of cuts: global cuts, which are valid at
any node of the B&C tree, and local cuts, which are valid only at the current node
and at all its descendants. When a node is handled immediately after its parent, the
LP relaxation is simply reoptimized after taking into account the additions made by
branching and filtering. When a node is obtained from backtracking in the B&C tree,
the LP relaxation is built by considering the LP solution from its parent and by adding
global and local cuts violated by this solution.

The strong inequalities are generated at all nodes and managed as global cuts. The
knapsack inequalities are generated only at the root node and are therefore managed
as global cuts. Other global and local cuts are generated by the filtering methods
described in Sect. 3.

2.4 Branching rule

When branching is performed, the set of free arcs with fractional y values, denoted
Ao, is non-empty, i.e., Aol = {G, j) € Ap110 < yij < 1} # . In a classical way, the
branching rule selects one arc from this set, say a* € Ao, and generates the 0-child
and the 1-child defined by removing a* from A and by adding it to Ag and to Ay,
respectively. To select a*, we use a variant of reliability branching (Achterberg et al.
2005), a rule that combines the strengths of two other branching rules, pseudo-cost
branching and strong branching.

To define these different branching rules, we use the following notation. When
branching on an arc a, we define the increase in the LP bounds from the parent
node to the 0-child and the 1-child as A and A!, respectively. We also define the
corresponding per unit increase in the LP bounds from the parent to its children as

follows: pa = =, h =0,]1, where gu = y, and ga 1 — y,. Assume that, after

branching on arc a the increase in the LP bounds from the parent node to the 0-child
and the 1-child have been computed 1° o and nl , times; we can then define the average
per unit increase in the LP bounds from the parent node to its children as ,5a ,h=0,1
(i.e., the average value of p over the n times arc a has been selected for branching
and the increase in the LP bound from the parent to its 2-child has been computed).

Pseudo-cost branching (Benichou et al. 1971) is based on computing and storing
the values ,52’, h = 0, 1, for each arc a. This branching rule selects the free arc a* such
that

a* = arg max {mln(g(a)ﬁga g;ﬁal)}
acAol

In this formula, g” 5, h = 0, 1, represent estimates of the increase in the LP bounds
from the current node to the children that would be obtained by selecting arc a for
branching. Initially, no values of LP bound increases, i.e., AZ, h =0, 1, are available;

@ Springer



150 M. Chouman et al.

hence, we simply set ﬁ(’} =1, h = 0, 1, for each arc a. The selected arc is then the
one with the most fractional value y,, i.e., with y, closest to 0.5.

An alternative is strong branching (Applegate et al. 1995), which is based on com-
puting estimates of the LP bound increases AZ, h = 0, 1, prior to branching. This rule
amounts to look at the effect of selecting arc a by adding to the current LP relaxation
the constraints y, = 0 and y, = 1 in order to evaluate A2 and AL, respectively.
This is performed by reoptimizing the current LP relaxation with the added constraint
through a few iterations of the dual simplex method. The strong branching rule then
selects the free arc a* such that

a* = arg max {min(Ag, Acll)}.
acAor

The idea behind reliability branching (Achterberg et al. 2005) is to perform strong
branching at the beginning of the exploration to obtain reliable LP bound increase
estimates and then to switch to pseudo-cost branching for the rest of the exploration.
More precisely, assuming a free arc a* is selected by the pseudo-cost branching rule, if
min(ng*, n i*) < n, where n > 0 is a parameter, then the pseudo-costs associated with
arc a* are considered unreliable, and the pseudo-cost estimates are replaced by the
strong branching estimates of LP bound increases. When 1 = 0, reliability branching
reduces to pseudo-cost branching, while if n = + oo, reliability branching reduces to
strong branching.

Our implementation of reliability branching works as follows. We first select the
free arc a* € Ao according to the pseudo-cost branching rule. If a* is not reliable,
i.e., min(ng*, n Cll*) < 1, then the arcs a € Ag1 with unreliable pseudo-costs are sorted
in non-increasing order of min(g25%, g1 51). Using that particular order, we keep as a
candidate for branching the arc a* that achieves so far the maximum of min(Ag, A ;),
where Ag, h = 0,1, are computed with the dual simplex method (limited to 100
iterations). If that candidate is not updated for A successive attempts, we select a* for
branching. The branching procedure thus performs the following steps (we use n = 8
and A = 4 as in Achterberg et al. (2005)):

l. a* <« argmax, 5, {min(g%p, glpl)}.
2. If min(ng*, n;*) > n, then stop.
3. Let m < 0, s* < 0 and sort the arcs of (A4g; N {a € Almin(ng, ni) < n}) in
non-increasing order of min(g%p?, gl 5l).
4. Foralla € (Ag; N{a € A| min(n(a), n}z) < n}) (sorted):
(@) m <~ m+ 1.
(b) Compute AY and update n and 50 (unless the LP is infeasible); if Z! + A0 >
Z*, then fix arc a to value 1, i.e., transfer a from Ag; to Aj.
(c) If arc a has not been fixed to value 1 in the previous step, then compute Aé
and update n}l and /3;; it Z! + A}l > 7Z* then fix arc a to value 0, i.e., transfer
a from Ag; to Ag.
(d) If arc a has not been fixed to value O or 1 in the previous steps and if
min(Ag, A}l) > s*, then a* < a, s* < min(Ag, A}l) and m < 0.
(e) If m > A, then stop.

@ Springer



The impact of filtering in a branch-and-cut algorithm... 151

Note that a filtering method is already embedded into the strong branching loop in
steps (4b) and (4c¢). In both steps, we use the fact that zZl+ AZ is a lower bound on
the restriction of the MCND defined by y, = h, h = 0, 1. Therefore, if this lower
bound exceeds the best known upper Z* on the optimal value of the MCND, we can
fix variable y, to the value 1 — h. We see other examples of similar filtering methods
in the next section.

3 Filtering methods

Filtering methods are applied at every node of the B&C tree. The general idea is to
exclude solutions that cannot be optimal, given the current status of the design vari-
ables, i.e., the partition of the set of arcs into Ag, A1 and Ag;. The solutions are excluded
through the addition of cuts that are generally local (i.e., valid only for the node and its
descendants), but that can be global in some cases. Special types of cuts are worth not-
ing: bound reduction consists in decreasing (increasing) the upper (lower) bound on a
single variable, while variable fixing, a special case of bound reduction, assigns a value
to a single variable (such cuts are heavily used in the field of constraint programming).

A common approach in filtering methods is to deduce from the addition of a con-
straint C the impossibility of finding an optimal solution that satisfies simultaneously
C and the constraints that define the current B&C node. Hence, constraint —C, the
complement of C, can be added to cut all solutions that satisfy C. To infer that the
addition of C cannot lead to an optimal solution, we generally compute a lower bound
Z!(C) on the optimal value of the restricted problem derived from the addition of C. If
7! (C) = Z*, where Z* is the value of the best known feasible solution, we can con-
clude that no optimal solution can be found when constraint C is added. A particular
case of this test arises when we can deduce that no feasible solution can be obtained
when C is added, since this case can be reduced to Z'(C) = + oo.

Thus, to perform efficient and effective filtering methods, we: (1) derive lower
bounds that are quickly computed based on duality arguments; (2) investigate sources
of infeasibility to try to detect them as early as possible when exploring the B&C tree.
The next three sections are dedicated to duality-based filtering techniques: the LP-
based reduced cost fixing, the Lagrangian-based reduced cost fixing and the reduced
costbound reduction, which are presented in Sects. 3.1, 3.2, and 3.3, respectively. Then,
we describe three feasibility-based filtering techniques: the generation of combinato-
rial Benders cuts, the connectivity-based filtering procedure, and the capacity-based
filtering methods, which are presented in Sects. 3.4, 3.5, and 3.6, respectively.

3.1 LP-based reduced cost fixing

The reduced costs f; ; derived from the LP relaxation can be used to perform variable
fixing. Indeed, for each non-basic variable y;; at value y;; € {0, 1} and such that

(i, j) € Aoi, we have f;; < 0if y;; = 1, and f;; > 0if y;; = 0. If we add the
constraint y;; = (1 —;;), then 7zl + |f; ;| is a lower bound on the optimal value of
the resulting problem, using standard LP duality theory. Therefore, if Z' + | f; il =

@ Springer



152 M. Chouman et al.

Z*, then we can fix y;; to value y; ;- These tests are carried out immediately after
performing the cutting-plane procedure by scanning all non-basic design variables.
This filtering technique is common to all general purpose LP-based B&C algorithms
and is performed by state-of-the-art MIP solvers. The next filtering method, however,
exploits the particular structure of the MCND.

3.2 Lagrangian-based reduced cost fixing

At any node of the B&C tree, characterized by the sets Ag, A1 and Ag, we consider
the Lagrangian relaxation of the flow conservation equations, known as the knapsack
relaxation (Gendron and Crainic 1994). Our objective is to use reduced costs derived
from this Lagrangian relaxation to perform variable fixing, with the potential of deliv-
ering results that are different than those obtained when performing LP-based reduced
cost fixing. More precisely, we consider the Lagrangian relaxation with respect to the
formulation restricted by Ag, A1, Ag1, and defined by (1)—(5), plus the strong inequali-
ties (6). Denoting 7 = (nl.]‘)f?ee‘l,( the vector of Lagrange multipliers associated with the
flow conservation equations, we then obtain the following Lagrangian subproblem:

I k k k
Zig = Z(”D(k) — o)
keK

+min > > (ij+nf —n}‘)xfj+fijyij}

(i,j)eAp1UA| LkeK

A

D Oxf < wijyij. (. j) € Aot U Ay,
kekK
0 <uxjj <bfjyij. (.))€AoUALkEK,
yij =1, (,J) € A,
vij € {0,1}, @, J) € Aor.

This problem can be solved by first considering, for each arc (i, j) € Ag1 U Aq, the
following continuous knapsack problem:

e — s ~k _k k k k
v;j = min Zcijxij| injfu,j, Ofxijfbij, keKy¢,
keK keK

where Ell.‘j =¢j+ Jrik - n;.‘, k € K. Indeed, it is easy to show that the Lagrangian
subproblem can be reformulated as follows:

Zig = Z(”lf)(k) - ﬂg(k))dk + Z fij + Z min{ f;; yij | yij € {0, 1}},

kek (i.))eA (i,))eAol

where fij =v;; + fij, (i, j) € Ap1 U Ay. An optimal solution to the subproblem for
each arc (i, j) € Ao is given by y;; = 1,if ﬁj < 0, and y;; = 0, otherwise.

@ Springer



The impact of filtering in a branch-and-cut algorithm... 153

Clearly, Z L g is alower bound on the optimal value at the current node. Therefore,
if ZIL R=>Z *, the current node can be fathomed. Furthermore, it is easy to derive
variable fixing rules by using the quantity fl j» which can be interpreted as a Lagrangian
reduced cost associated with y;;. Indeed, for each (i, j) € Ay, it is immediate to see
that Zi g T fi i1 is a lower bound on the restricted problem obtained by adding the
constraint y;; = 1 — ¥;;. Consequently, if ZILR + |f,~j| > Z*, then we can fix y;; to
value y;;.

The Lagrangian subproblem is solved after performing LP-based reduced cost fix-
ing. The Lagrange multipliers are fixed to the values of the dual variables associated
with the flow conservation equations that are obtained after performing the cutting-
plane procedure. Note that the knapsack relaxation has been used to compute lower
bounds in branch-and-bound algorithms for the MCND (Holmberg and Yuan 2000;
Kliewer and Timajev 2005; Sellmann et al. 2002), where non-differentiable opti-
mization, i.e., subgradient and bundle, methods were used to compute near-optimal
Lagrange multipliers. The difference here is that we use the knapsack relaxation only
to improve filtering at each node of the B&C tree and thus as a complement to the
cutting-plane procedure, rather than as the main lower bounding method.

3.3 Flow upper bound reduction

We can use the LP-based reduced costs of the flow variables xl 0 Ci j, to perform bound
reduction on these variables. The basic idea is the following: assume we add the

constraint x > a . to the LP relaxation and that the resulting lower bound exceeds

Z*. We can then conclude that the constraint xi ) < al{‘j

al{‘j , we use the following result.

is valid. In order to compute

Proposition 1 Let )_cf‘j be the value of variable x{‘j in the optimal solution to the LP
relaxation. Iffg =0, Efj > 0and 7' + ?,-j(l - yij) + Ef?jbf.‘j > Z*, we have
k k

k
X Sa;; < bl.j, where

ARV AEN IO
ij —k :
¢l

Proof We consider two cases. First, let us assume that 0 < y;; < 1, which implies

7ij(1—yl]) = 0. We note that, if 0 < x < bu,thenc = 0 and, in this case, the LP

relaxation lower bound remains the same when we increase xi y further. Therefore, for
the LP relaxation lower bound to inerease and exceed Z* when we add the constraint

xk] > akj we must have X x = 0 c > 0and Z' + Ek bk > Z*. Since any optimal
solution must satisfy zZh 4 cl. ; ] < Z* we conclude that xl 7= a < bf‘], where
7+~ 7!
k
a:. =
ij ok

@ Springer



154 M. Chouman et al.

Next, we consider the case where y;; = 0. Then, we necessarlly have X' x = 0 and

7,~ > (. This means that, if we add the constraint x > al r the LP relaxation lower

bound will exceed Z* only if Z! + f; i+ ¢ jbf‘j > Z” Since any optimal solution

must satisfy Z'/ +?,-j + E{-‘jxf‘j < Z* and assuming El.. > 0, we have xkj < a < bf],
where
w27 T
ij = Ek
ij
O

Similarly, we can use the solution to the knapsack relaxation to reduce the upper
bounds on the flow variables, as shown in the following Proposition, the proof of which
is omitted, as it is similar to that of Proposition 1.

Proposition 2 Let )?lkj be the value of variable xk in the optimal solution to the

Lagrangian subproblem Ifik =0, Ei > 0 and ZLR + ﬁ,(l = Yij) +¢ bk > 7%

kj < al < bk where

we have x i

2t =275 — fid — i)

1] Ef{]

We use these results as follows After performing LP-based reduced cost fixing,
we look for flow variables x . that verify the condition for reducing their upper bound

bk to a i . We do the same after carrying out Lagrangian-based reduced cost fixing.
New upper bounds are then used at the current node and all its descendants. The upper
bounds are stored at each node, in order to initialize them for the child node that
is activated when backtracking is performed. In this way, when looking for Violated
strong inequalities in the cutting-plane procedure, we use the local cuts xl. < al Vi

instead of xl. bk Vij-

In the next sectlon we derive another type of cuts, this time by investigating the
structure of feasible solutions. Contrary to the cuts obtained by flow upper bound
reduction, these cuts are global, i.e., they apply at every node of the B&C tree.

3.4 Combinatorial Benders cuts

At every node of the B&C tree, feasible solutions must satisfy the following multi-
commodity flow system, noted M F':

d*, ifi = o),

thkj_ foi= —d*, ifi=D(k), ieV,keKk, (10)
jevit jevy” 0, otherwise,
ZX?} <uij, (i,)) € AoptUAj, (11)
keK

@ Springer



The impact of filtering in a branch-and-cut algorithm... 155

D oxf =0, @))€ Ao, (12)

keK

x{‘j >0, (,j)eA kek. (13)

In particular, any feasible solution generated by the cutting-plane procedure at the
current node satisfies this system. We exploit the structure of M F' in two ways.

First, we note that when M F is infeasible, we can derive a cut that prevents this
infeasible design configuration, i.e., subset Ao, to be generated again; this cut is gen-
erated whenever the cutting-plane procedure returns an infeasible LP relaxation (it is
also generated in capacity-based filtering, see Sect. 3.6).

Proposition 3 If M F is infeasible, then the following inequality is valid for the

MCND:
PRETER (14)
(i, j)€A

Inequality (14) is a combinatorial Benders cut (Codato and Fischetti 2006), which
has the general form Z(l-’j)eAl (I—yij)+ Z(i’j)er vij = 1thatcan be strengthened to
(14), since only closed arcs can induce an infeasible subproblem. A different inequality
can be derived from LP duality arguments, giving rise to classical Benders cuts, which
have been studied for the MCND Costa et al. (2009, 2012). In our B&C algorithm,
combinatorial Benders cuts are stored as global cuts. Their violation is verified after the
cutting-plane procedure has been completed. In case violated combinatorial Benders
cuts are found, the cutting-plane procedure is restarted.

At each node of the B&C tree, combinatorial Benders cuts are also used in simple
operations that attempt to detect infeasibility just before calling the cutting-plane
procedure. These node-based preprocessing operations work as follows. Assuming the
current design configuration is given by A, A} and A{,, we define the design vector
y'asy! ;= 0,if (i, j) € A, and y! = 1, otherwise. We scan the set of combinatorial
Benders cuts generated so far and for each of them, associated with a set Ag, we
verify: (1) if 32 1yea, yl.’j < 1, which is equivalent to the condition Ag S Ay, in
which case the node can be fathomed; (2) if Z(l-’ edo y£ i = 1, which is equivalent to
the condition |Ag N A61 | < 1, in which case if all the arcs in Ag are fixed to 0, except
one, then that arc must be fixed to 1. Similar node-based preprocessing operations can
be applied to lifted knapsack inequalities generated by the cutting-plane procedure
and stored in the global cut pool (the details are obvious and therefore omitted).

A second approach to exploiting the structure of M F' consists in developing filtering
methods aiming to detect as early as possible any infeasibility that might occur as a
result of closing too many arcs. Two sources of infeasibility can be identified: first, for
some commodity k, there is no longer any path connecting O (k) to D(k), which gives
rise to connectivity-based filtering; second, the overall capacity is not sufficient to
satisfy the demand for at least one commodity, which yields capacity-based filtering.

@ Springer



156 M. Chouman et al.

3.5 Connectivity-based filtering

As mentioned above, the current node can be fathomed when we can identify at least
one commodity k such that there is no path between O (k) and D (k). In addition to
detecting this type of infeasibility prior to the call to the cutting-plane procedure, we
also fix flow and design variables based on simple connectivity tests. Indeed, when, for
some commodity k, an arc (i, j) does not belong to any path between O (k) and D(k),
the upper bound bffj associated with variable xfj can be fixed to 0. Similarly, when,
for some commodity &, an arc (i, j) belongs to all paths between O (k) and D (k), the
lower bound associated with variable xf. can be fixed to d* (unless bf?j < d*, in which
case the current node can be fathomed; this case can happen as a result of flow upper
bound reduction that can decrease the upper bound bffj, see Sect. 3.3). In addition, an
arc (i, j) can be closed when it does not belong to any path between O (k) and D (k)
for all commodities k. Conversely, an arc (i, j) can be opened when it belongs to all
paths between O (k) and D (k) for at least one commodity k. This last test prevents the
occurrence of infeasible subproblems due to a lack of connectivity.

These tests can be easily performed using graph-traversal algorithms. Indeed, to
everynodei € V,weassociate the commodity subsets K i+ ={keK|i=O0(k)}and
K; ={k € K |i = D(k)}. Starting from every node i, we perform complete forward
and backward traversals of the graph. Each arc a € Ag; U A1 has two sets of labels
p’(j and m];, for each commodity k; each label is initialized with value 0. Whenever
we encounter an arc a during the forward traversal from node i, we set the label pX
of each commodity & in Kl"' to value 1. Likewise, when performing the backward
traversal starting at node i, the label m¥ of each arc a for commodity k € K, is set
to value 1. After completing forward and backward traversals (each being performed
in linear time) for all nodes, a final pass through all arcs is performed. For each arc
a € Ap1 U A; and commodity k € K, two cases can happen: (1) p’a‘ = m’a‘ = 1,in
which case arc a belongs to some path between O (k) and D (k); (2) pﬁ =0or m’; =0,
which implies that arc a does not belong to any path between O (k) and D (k). This
information suffices to perform the fathoming and filtering tests outlined above. In
particular, to determine that an arc a = (i, j) belongs to all paths between O (k) and
D (k) for commodity k, (i, j) must satisfy case (1), while any other outgoing arc from
i must verify case (2).

Connectivity-based filtering is called only when some arcs have been closed since
the last time it was performed. It is also performed at the root node of the B&C tree
in order to simplify the problem instance.

3.6 Capacity-based filtering

This filtering method solves the following linear program, denoted M C and obtained
from system MF:

Z§\4C= Z fij—i-minz Z (Cij+.fl.j/uij)xl{(j+ Z Cil'xlkj (15)

(i, j)€A] keK | (i,j))€Aol (i,))eA;

@ Springer



The impact of filtering in a branch-and-cut algorithm... 157

subject to constraints (10) to (13). This linear multicommodity flow problem is a
relaxation of any LP generated during the cutting-plane procedure. Indeed, it is equiv-
alent to the LP relaxation of the MCND without any strong or knapsack inequality
added, the so-called weak relaxation (Gendron and Crainic 1994). To see why, sim-
ply note that each design variable y;; appears in only one capacity constraint in the
weak relaxation. As a consequence, since f;; > 0, there must be an optimal solution
such that y;; = > ;g xfj/uij for each arc (i, j) € Ag1. By substituting y;; using
this equation, we obtain the above linear multicommodity flow problem. Hence, M C
provides a lower bound Zivlc on the optimal value at the current node, which is often
significantly weaker than the cutting-plane lower bound Z’, except when the current
node is located deep in the B&C tree.

Capacity-based filtering starts by solving M C. If it is infeasible, the current node
can be fathomed. Also, using Proposition 3, we can generate a combinatorial Benders
cut, which is stored in the global cut pool. Otherwise, if M C is feasible, we denote by x°
an optimal solution. We first verify if Z 51/1 c=>Z * in which case the current node can be
fathomed. Then, for each free arc (i, j) € Ag; such that ZkeK fl"j > (1—€)u;j, where

€ € (0, 1) is a parameter, we solve M C with the additional constraint ) _, K xf‘j =0.
If the resulting problem is infeasible, then we can conclude that arc (i, j) must nec-
essarily be opened in any optimal solution to the MCND. If the resulting problem is
feasible, thus providing a lower bound Zét/IC (i, j), then we verify if Zﬁwc i j)=2Z*,
in which case we can conclude again that arc (i, j) must be opened in any optimal
solution to the MCND.

To fully understand this filtering procedure, several remarks are in order. First,
it is useless to test a free arc (i, j) € Ag; such that Zkerfj = 0, since in that
case, arc (i, j) cannot be opened by the procedure. Second, this type of filtering
achieves success mostly for free arcs that fully use their capacity in X. Hence, €
must be small (we use € = 0.01 in our tests). Third, it is possible to implement a
similar filtering procedure that attempts to close free arcs with no flow circulating
on them in solution X. Indeed, we tested this procedure, but given the weakness of
the lower bound, its impact was very limited. Fourth, capacity-based filtering can
succeed only when many arcs are fixed to 0. Hence, we perform it only when the
number of closed arcs is large enough, i.e., if |Ag| > y|A|, where y € [0, 1] is a
parameter (in Sect. 5, we show results for y = 0.85, 0.9 and 0.95). Fifth, capacity-
based filtering is called only when some arcs have been closed since the last time it was
performed, because only arcs that are closed can incur infeasibility. Sixth, capacity-
based filtering complements connectivity-based filtering and is therefore performed
immediately after.

4 Overview of the branch-and-cut algorithm

This section summarizes the overall B&C algorithm. Before providing the details of
the algorithm in Sect. 4.3, we first explain how upper bounds are computed during the
course of the algorithm. This is the topic of Sect. 4.1, while in Sect. 4.2, we explain
how we search the B&C tree.

@ Springer



158 M. Chouman et al.

4.1 Computation of upper bounds

As mentioned in Introduction, very good upper bounds are obtained by the heuristic
methods proposed in the literature (Crainic et al. 2000, 2004; Crainic and Gendreau
2002; Ghamlouche et al. 2003, 2004; Hewitt et al. 2010; Katayama et al. 2009;
Rodriguez-Martin and Salazar-Gonzdlez 2010). In our tests, reported in Sect. 5, we use
as initial upper bound the value (1 4+ &) x Z, where Z is the best known upper bound
on the optimal value (which is the optimal value for most tested instances) and & is a
small number (we use £ = 0.00001). Apart from the fact that it is realistic to assume
that a very good initial upper bound is known, this setting allows to test the capacity of
the B&C algorithm and the different filtering methods to focus only on lower bound
improvement and optimality proof. Nevertheless, the B&C algorithm has the ability to
compute upper bounds and to prove optimality, even if its initial upper bound is + oo.
We now show how these upper bounds are computed during the course of the algorithm.

The following (the proof of which is omitted, as it is trivial) states that we can
derive an upper bound on the optimal value of the MCND from any feasible solution
to the multicommodity flow system M F, presented in Sect. 3.4.

Proposition 4 For any feasible solution X to M F,

Z® =Y > aE+ Y. fi ’72}\;}/”1']—‘

keK (i,j)eA @i,j)eA keK

is an upper bound on the optimal value Z of the MCND.

Corollary 5 Ar any iteration of the cutting-plane procedure, if the LP relaxation is
feasible, then

zGH=2"+ Y (51—
@i, j)eA
is an upper bound on the optimal value Z of the MCND.

Proof First, we note that any solution (x,y) generated during the cutting-plane
procedure satisfies the multicommodity flow system M F. In addition, we have
Vii = Y okek ffj/u,-j, for each (i, j) € A. By applying the previous proposition,
we obtain an upper bound on the optimal value of the MCND:

Z® =Y Y X+ Y filY X /uif

kekK (i,j)eA (i,j)eA keK
—k —
<D D iyt Y il
keK (i,j)eA (i,j)eA
=7+ ) L =i
(i,j)eA

@ Springer



The impact of filtering in a branch-and-cut algorithm... 159

The last result is used to quickly compute an upper bound after performing the
cutting-plane procedure. In particular, this bound has a nice interpretation when y is
integral: in that case, Z(y) = Z! and the lower bound test Z' > Z* suffices to fathom
the node. In addition, Proposition 4 is exploited when performing the capacity-based
filtering method. Details are given below in the algorithm statement.

4.2 Tree search

We use a hybrid search strategy that combines the depth-first and best-first approaches.
After branching, the next node to evaluate is the child that gives the smallest estimated
lower bound increase among the two generated children, in order to mimic a best-first
approach. When a strong branching evaluation has just been performed to select a
branching arc a*, this corresponds to the child that attains the value min(Ag*, A}l*).
When, instead, the branching arc a* is selected by a pseudo-cost estimate, the next
child to evaluate is the one that achieves the value min(gg* ,52*, gcll* ,5;*). The other
child is stored in the node pool and will eventually be evaluated when backtracking is
performed. When a newly generated node is stored in the node pool, we keep in mem-
ory its lower bound estimate, which is equal to the lower bound of its parent plus the
estimated lower bound increase computed by the branching rule. When backtracking,
we select the node that has the smallest lower bound estimate among all the nodes in
the node pool.

4.3 Statement of the algorithm

We now outline the algorithm, the steps being commented below:

1. Initialize the upper bound Z*, the node pool £ and the current node as the root
node (L < ¥ and Ag; < A).
2. Evaluation: Evaluate the current node:
(a) Determine LP-fix, LR-fix, Flow, Benders, Conn, Cap.
(b) If Conn, perform connectivity-based filtering; if the network at the current
node is not connected, go to step 4 (Backtrack).
(c) If Cap, perform capacity-based filtering:
i. Solve MC.
ii. If MC is infeasible: if Benders, generate a combinatorial Benders cut; go
to step 4.
iii. Let X be an optimal solution to M C; compute an upper bound Z(x); if
Z(X) < Z*, Z* <~ Z(x).
iv. If quc > Z*, goto step 4.
v. For each (i, j) € Ao such that Zkerfj > (1 — €)u;j, solve MC with
the added constraint Zkek flkj =0;if Zﬁwc(i, j) > Z*, open arc (i, j).
(d) Apply the cutting-plane procedure to solve the LP relaxation.
(e) If the LP relaxation is infeasible: if Benders, generate a combinatorial Benders
cut; go to step 4.

@ Springer



160 M. Chouman et al.

(f) Let (x, ¥) be an optimal solution to the LP relaxation; compute an upper bound
ZG) =2+ X jyea Lii (31 = 3ip)s if Z() < 2%, 2% < Z(9).
(g) If Z! > Z*, go to step 4.
(h) If Benders, try to add violated combinatorial Benders cuts; if cuts were gener-
ated, go to step 2d.
(1) If LP-fix, perform LP-based reduced cost fixing.
(j) If Flow, perform LP-based flow upper bound reduction.
(k) If LR-fix or Flow:
i. Compute the Lagrangian relaxation bound ZlL R
i. If ZILR > Z*, goto step 4.
iii. If LR-fix, perform LR-based reduced cost fixing.
iv. If Flow, perform LR-based flow upper bound reduction.
3. Branching: Perform branching to generate two child nodes; select one child as the
next current node to evaluate; insert the other into £; Go to step 2.
4. Backtracking: If L = (J, stop the algorithm; otherwise, select from £ the next
current node to evaluate and go to step 2.

In step 1, the upper bound is initialized as described in Sect. 4.1. The node pool
L is also initialized, and the first current node is the root node. Step 2 is the main
procedure to be performed at every node of the B&C tree. The details of that step are
further commented below. Step 3 performs the reliability branching rule presented in
Sect. 2.4. The next current node is selected among the two children according to the
rule described in Sect. 4.2. Step 4 verifies the stopping condition £ = ¢ and, if it
is not satisfied, it performs backtracking as discussed in Sect. 4.2. We also stop the
algorithm when a time limit has been reached. Finally, the best global lower bound,
Z i, is stored and updated in an obvious way. This lower bound on the optimal value
of the MCND is used to compute the final gap, 100 x (Z* — Zi)/Z*, when the B&C
algorithm is stopped by the time limit.

Step 2a determines the values of six parameters that are used to trigger the filtering
methods at the current node. Each of these parameters is set to False if we do not want
to activate the corresponding filtering method. Otherwise, a parameter value is set to
True depending on the conditions that allow the execution of the filtering method,
conditions that are described in the corresponding section. The parameters are LP-
fix, LR-fix, Flow, Benders, Conn, Cap, which correspond to the following filtering
methods, respectively: LP-based reduced cost fixing (Sect. 3.1 and step 2i), LR-based
reduced cost fixing (Sect. 3.2 and step 2k), flow upper bound reduction (Sect. 3.3 and
steps 2j and 2(k)iv), combinatorial Benders cuts (Sect. 3.4 and steps 2(c)ii, 2e and
2h), connectivity-based filtering (Sect. 3.5 and step 2b) and capacity-based filtering
(Sect. 3.6 and step 2¢). The cutting-plane procedure performed at step 2d follows the
developments in Sect. 2.3. Finally, the computation and update of upper bounds, steps
2(c)iii and 2f, correspond to Sect. 4.1.

@ Springer



The impact of filtering in a branch-and-cut algorithm... 161

Table 1 Classes and problem dimensions (number of instances within parentheses)

Class I 3D Class IT (12) Class III-A (72) Class III-B (81)
VI, 1AL K] VI, 1AL K] VI, 1AL K| VI, 1AL K]
20, 230, 40 3) 25, 100, 10 3) 10, 35, 10 (6) 20, 120, 40 9)
20, 230, 200 4 25, 100, 30 3) 10, 35,25 (6) 20, 120, 100 9)
20, 300, 40 4 100, 400, 10 3) 10, 35, 50 (6) 20, 120, 200 9)
20, 300, 200 4) 100, 400, 30 3) 10, 60, 10 9) 20, 220, 40 9)
30, 520, 100 4) 10, 60, 25 9) 20, 220, 100 )
30, 520, 400 4) 10, 60, 50 9) 20, 220, 200 )
30, 700, 100 4) 10, 85, 10 9) 20, 320, 40 9)
30, 700, 400 4) 10, 85,25 9) 20, 320, 100 9)
10, 85, 50 9) 20, 320, 200 9)

5 Computational results

This section presents computational results obtained by the B&C algorithm on a
publicly available set of 196 instances (the so-called Canad instances, see Frangioni
(2017)) used in several papers on the M C N D, for instance (Ghamlouche et al. 2003;
Hewitt et al. 2010; Kliewer and Timajev 2005), and described in detail in Crainic et al.
(2001). These problem instances consist of general networks with one commodity per
origin-destination pair and no parallel arcs. Associated with each arc are three positive
quantities: the capacity, the routing cost, and the fixed cost. These instances are char-
acterized by various degrees of capacity tightness, with regard to the total demand,
and importance of the fixed cost, with respect to the routing cost.

The instances are divided into three classes. Class I [the “C” instances in Frangioni
(2017)] consists of 31 problem instances with many commodities compared to the
number of nodes, while Class II [the “C+” instances in Frangioni (2017)] contains 12
problem instances with few commodities compared to the number of nodes. Class III
[the “R” instances in Frangioni (2017)] is divided into two categories, A and B, each
containing nine sets of nine problem instances each. Each set is characterized by the
numbers of nodes, arcs, and commodities, which are the same for the nine instances,
and by instance-specific levels of capacity tightness and importance of the fixed cost.
Class III-A (instances “R01” to “R09”) contains 72 small size problem instances with
10 nodes (nine infeasible instances have been discarded), while Class III-B (instances
“R10” to “R18”) contains 81 medium to large size instances with 20 nodes. Table 1
gives the size of the instances in each class.

The B&C algorithm was implemented in C++ with the OOBB library (Crainic et
al. 2009), using CPLEX version 12.6.1.0 as the LP solver. The code was compiled
with g++ 4.8.1 and performed on an Intel Xeon ES-2609 v2 operating at 2,50 GHz, in
single-threaded mode. All instances were solved with a time limit of 10 hours, which
allows to divide the set of instances according to their difficulty, while at the same time
to study trends in the evolution of the lower bounds for the most difficult instances,
still unsolved after that time limit (we come back to this issue at the end of Sect. 5.1).

@ Springer



162 M. Chouman et al.

The following measures are used to evaluate the performance of the B&C algorithm:
(1) CPU time in seconds; (2) number of generated B&C nodes; (3) relative gap in
percentage computed as Gap = 100 x (Z* — Zi)/Z*.

We first present the results obtained with different configurations of the filtering
parameters in Sect. 5.1. Then, in Sect. 5.2, we compare the B&C variant including
filtering with CPLEX and with other variants having limited filtering or no filtering at
all. Inboth sections, we divide the instances into two classes: 148 instances solved by all
parameter configurations within the time limit of 10 hours (for which Gap = 0), called
solved instances, and 45 instances unsolved by any of the parameter configurations
after the time limit of 10 hours (for which Gap > 0), called unsolved instances. The
remaining three instances are solved by some parameter configurations, but unsolved
by others. To simplify the analysis, we did not include them in the tables of results
presented in Sects. 5.1 and 5.2. Appendix presents detailed results of each of the 196
instances in the data set, including these three instances, for the “best” parameter
configuration identified in Sect. 5.1.

5.1 Impact of the filtering methods

This section presents tables of results for different configurations of the filtering param-
eters, separating the analysis for each set of configurations into two tables, one for the
solved instances and one for the unsolved instances. For the solved instances, we report
only the CPU time in seconds and the number of nodes, Columns “CPU” and “Nodes,”
respectively, since Gap = 0 for all these instances. For the unsolved instances, we show
only the number of nodes and the relative gap in percentage, Column “Gap,” since
the CPU time limit was attained for all these instances. Note that the value “Nodes”
has different meanings, depending on the class of instances: for solved instances, a
smaller number of nodes is to be preferred and is often correlated with a smaller CPU
time, while for unsolved instances, a larger number of nodes is to be preferred and is
often correlated with a smaller gap.

In each table, the first column gives the name of the class of instances, I, II, III-A
or ITI-B, and the number of instances on which the average performance measures are
computed. Both arithmetic means and shifted geometric means are reported for each
performance measure. Shifted geometric means are now widely used for analyzing the
performance of MIP solvers, since a geometric mean prevents hard instances close to
the CPU time limit from having a huge impact on the measures, while the shift reduces
the effect of very easy instances. For both “CPU” and “Nodes,” we use a shift of 100,
while for “Gap,” the shift is set to 0.001%. The second column in each table identifies
the filtering parameters activated in each configuration. The next columns give the
mean values for the performance measures, first the arithmetic means, “Arithmetic,”
then the shifted geometric means, “Shifted geom.”

Tables 2 and 3 show the results obtained on solved and unsolved instances, respec-
tively, for four parameter configurations. We compare the configuration with no
filtering with three duality-based filtering configurations: LP-based reduced cost fixing
is activated in all three configurations, while LR-based reduced cost fixing is activated

@ Springer



The impact of filtering in a branch-and-cut algorithm... 163

Table 2 Results with duality-based filtering on solved instances

Class Parameters Arithmetic Shifted geom
CPU Nodes CPU Nodes
1(11) - 3840 5025 344 674
LP-fix 2390 4802 284 660
LP-fix, LR-fix 2100 4661 268 651
LP-fix, LR-fix, Flow 1987 4612 263 631
11 (8) - 2212 18,600 150 1629
LP-fix 1354 17,658 130 1590
LP-fix, LR-fix 1372 17,658 132 1590
LP-fix, LR-fix, Flow 1350 17,658 131 1590
1I-A (72) - 8 325 6 103
LP-fix 6 282 5 94
LP-fix, LR-fix 6 281 5 93
LP-fix, LR-fix, Flow 6 280 5 93
III-B (57) - 4459 3845 604 827
LP-fix 3412 3762 521 818
LP-fix, LR-fix 2917 3724 481 809
LP-fix, LR-fix, Flow 2914 3735 480 808

Table 3 Results with duality-based filtering on unsolved instances

Class Parameters Arithmetic Shifted geom
Nodes Gap Nodes Gap
1(19) - 10,595 0.77 3465 0.61
LP-fix 11,422 0.75 3727 0.60
LP-fix, LR-fix 12,182 0.74 3963 0.57
LP-fix, LR-fix, Flow 11,996 0.74 3984 0.57
I @3) - 436,831 4.87 343,471 2.60
LP-fix 465,655 4.88 340,208 2.61
LP-fix, LR-fix 444,157 4.88 328,695 2.62
LP-fix, LR-fix, Flow 455,112 4.88 334,995 2.62
1I-B (23) - 48,336 1.04 11,948 0.76
LP-fix 62,201 1.01 13,544 0.70
LP-fix, LR-fix 64,285 0.95 14,727 0.65
LP-fix, LR-fix, Flow 67,527 0.91 16,578 0.60

in two of the configurations and flow upper bound reduction is activated in only one
configuration.

Before analyzing the results reported in Tables 2 and 3, it is important to note that,
when any of the three duality-based filtering configurations is used, two instances
unsolved by the configuration with no filtering (one more in each of Classes I and III-

@ Springer



164 M. Chouman et al.

B) are solved within the time limit of 10 hours, so that the number of solved instances
increases from 149 (with no filtering) to 151. This is already a clear indication of the
positive effect of LP-based reduced cost fixing. The two additional solved instances
are not reported in any of the two tables, so that the comparison for both classes
of instances, solved and unsolved, relies on the same instances and the performance
measures retain the same meaning.

The results in Table 2 show that, when more filtering is performed, the number of
nodes is generally reduced. In general, the most significant reduction in the number of
nodes is observed for LP-based reduced cost fixing. These reductions in the number
of nodes always translate into reductions in the CPU time. In general, the results in
Tables 2 and 3 indicate that LP-based reduced cost fixing has a clear positive impact
on the overall performance. The impact of the other duality-based filtering techniques
is less clear, but we note that both the LR-based reduced cost fixing and the flow upper
bound reduction allow to reduce the final gap for some hard instances in Class I1I-B.
Thus, for the remaining tested parameter configurations, we activate LP-fix, LR-fix,
and Flow.

Tables 4 and 5 show the results obtained by performing feasibility-based filtering,
in addition to duality-based filtering. More specifically, we display the results obtained
with three parameter configurations, obtained by activating Benders and Conn in iso-
lation and in conjunction. To facilitate the comparison, we report the results when
these parameters are not activated, which are also displayed in Tables 2 and 3. The
same instances are used, 148 solved ones and 45 unsolved ones. The remaining three
instances in the set of 196 instances are solved by the two configurations that use Ben-
ders cuts, but one of these three instances (in Class II) is no more solved when using
connectivity-based filtering. However, the final gap for this instance is 0.07%, which
is negligible. We can thus consider that the four configurations reported in Tables 4
and 5 are performing equally well in terms of the total number of solved instances
within the limit of 10 hours of CPU time.

The results in Table 4 show that the addition of Benders cuts has a negligible
impact on all instances. In contrast, connectivity-based filtering generally has a positive
impact, especially on Class III-B instances. Overall, the best configuration is obtained
by activating only connectivity-based filtering, with notable reductions in the CPU
time on Class III-B instances. The results in Table 5 show decreases in the gap for all
configurations that include feasibility-based filtering, except for Class III-B for which
lower gaps are obtained only when Conn alone is activated, while higher gaps are
observed when Benders is activated. The results in Tables 4 and 5 point to the general
conclusions that the addition of combinatorial Benders cuts might have a positive
impact for some instances, but that better results are obtained when connectivity-based
filtering is used alone, without activating Benders.

Tables 6 and 7 show the results obtained when the parameter Cap is activated, in
addition to LP-fix, LR-fix, Flow and Conn. We report the results with three values of
the parameter y, which controls when capacity-based filtering is performed depending
on the proportion of design variables fixed to 0: y = 0.85,0.90, 0.95 (values around
y = 0.90 generally give the best results, according to preliminary experiments). To
ease the comparison, we also report the results when Cap is not activated, which are

@ Springer



The impact of filtering in a branch-and-cut algorithm... 165

Table 4 Results with feasibility-based filtering on solved instances

Class Parameters Arithmetic Shifted geom
CPU Nodes CPU Nodes
I(11) LP-fix, LR-fix, Flow 1987 4612 263 631
LP-fix, LR-fix, Flow, Benders 2016 5869 261 631
LP-fix, LR-fix, Flow, Conn 1923 4705 265 630
LP-fix, LR-fix, Flow, Benders, Conn 1940 4704 268 630
I (8) LP-fix, LR-fix, Flow 1350 17,658 131 1590
LP-fix, LR-fix, Flow, Benders 1665 18,074 135 1528
LP-fix, LR-fix, Flow, Conn 1072 15,307 127 1589
LP-fix, LR-fix, Flow, Benders, Conn 1407 15,312 133 1544
1II-A (72) LP-fix, LR-fix, Flow 6 280 5 93
LP-fix, LR-fix, Flow, Benders 6 278 5 92
LP-fix, LR-fix, Flow, Conn 6 284 5 92
LP-fix, LR-fix, Flow, Benders, Conn 6 282 5 92
1I1-B (57) LP-fix, LR-fix, Flow 2914 3735 480 808
LP-fix, LR-fix, Flow, Benders 2891 3733 475 808
LP-fix, LR-fix, Flow, Conn 2557 3695 451 790
LP-fix, LR-fix, Flow, Benders, Conn 2661 3683 452 768

Table 5 Results with feasibility-based filtering on unsolved instances

Class Parameters Arithmetic Shifted geom
Nodes Gap Nodes Gap
1(19) LP-fix, LR-fix, Flow 11,996 0.74 3984 0.57
LP-fix, LR-fix, Flow, Benders 11,275 0.74 4006 0.56
LP-fix, LR-fix, Flow, Conn 12,856 0.73 4424 0.55
LP-fix, LR-fix, Flow, Benders, Conn 12,848 0.73 4401 0.55
I Q3) LP-fix, LR-fix, Flow 455,112 4.88 334,995 2.62
LP-fix, LR-fix, Flow, Benders 440,386 4.87 327,037 2.61
LP-fix, LR-fix, Flow, Conn 416,637 4.86 313,117 2.62
LP-fix, LR-fix, Flow, Conn, Benders 380,457 4.83 380,557 2.61
III-B (23) LP-fix, LR-fix, Flow 67,527 0.91 16,578 0.60
LP-fix, LR-fix, Flow, Benders 63,725 0.95 14,701 0.65
LP-fix, LR-fix, Flow, Conn 62,209 0.89 17,706 0.55
LP-fix, LR-fix, Flow, Benders, Conn 59,398 0.92 15,766 0.61

already shown in Tables 4 and 5. The same instances are also used, 148 solved ones
and 45 unsolved ones.

The results in Table 6 show that capacity-based filtering (with the tested values
of y) has a marginal impact on both the number of nodes and the CPU time. In

@ Springer



166 M. Chouman et al.

Table 6 Results with capacity-based filtering on solved instances

Class Parameters Arithmetic Shifted geom

CPU Nodes CPU Nodes

1(11) LP-fix, LR-fix, Flow, Conn 1923 4705 265 630
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.85) 2023 4705 270 630
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.90) 1929 4705 263 630
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.95) 1912 4705 265 630
1 (8) LP-fix, LR-fix, Flow, Conn 1072 15,307 127 1589

LP-fix, LR-fix, Flow, Conn, Cap (y = 0.85) 1079 15,307 127 1589
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.90) 1077 15,307 126 1589
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.95) 1080 15,307 126 1589

1II-A (72) LP-fix, LR-fix, Flow, Conn 6 284 5 92
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.85) 6 284 5 92
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.90) 6 284 5 92
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.95) 6 284 5 92
1I1-B (57) LP-fix, LR-fix, Flow, Conn 2657 3695 451 790
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.85) 2665 3695 454 790
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.90) 2640 3695 451 790
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.95) 2624 3695 449 790

Table 7 Results with capacity-based filtering on unsolved instances

Class Parameters Arithmetic Shifted geom
Nodes Gap Nodes Gap
1(19) LP-fix, LR-fix, Flow, Conn 12,856 0.73 4424 0.55
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.85) 10,429 0.78 4402 0.55
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.90) 13,082 0.73 4438 0.55
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.95) 13,209 0.73 4453 0.55
I Q3) LP-fix, LR-fix, Flow, Conn 416,637 4.86 313,117 2.62

LP-fix, LR-fix, Flow, Conn, Cap (y = 0.85) 445,574 4.86 328,383 2.60
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.90) 418,647 4.86 313,013 2.62
Lp-fix, LR-fix, Flow, Conn, Cap (y = 0.95) 416,490 4.86 313,148 2.62
1II-B (23) LP-fix, LR-fix, Flow, Conn 62,209 0.89 17,706 0.55
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.85) 58,902 0.92 15,881 0.61
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.90) 59,260 0.92 15,867 0.63
LP-fix, LR-fix, Flow, Conn, Cap (y = 0.95) 62,181 0.88 18,181 0.49

preliminary experiments, we have observed significant variations in the CPU time for
smaller values of y, but this behavior is highly instance-dependent and, thus, difficult
to generalize to obtain consistent improvements. The results in Table 7 confirm that
capacity-based filtering (with the tested values of ) has a marginal impact on the

@ Springer



The impact of filtering in a branch-and-cut algorithm... 167

3,00%
2,50%
2,00%
[=X
©  1,50%
(U]

—o—Class |

1,00%
: —&—Class Il

4
L 3

o
—¢

0,50% ~8—Class llI-B

0,00%

CPU (hours)
Fig. 1 Gap vs CPU(h), one instance per class I: ¢58; II: ¢100_400_30_F_L; III-B: r17.6

performance of the algorithm. Overall, the results in Tables 6 and 7 point to the
conclusion that capacity-based filtering, with appropriate values of the parameter y,
has a marginal effect on the overall performance of the algorithm. When y = 0.95,
we note, however, that slight improvements are obtained on most instances, with
reductions in the CPU time for solved instances (in Classes I and III-B) and reductions
in the gap for unsolved instances (in Class III-B). For the remaining tests, we thus
activate Cap with y = 0.95.

Note that we have performed additional tests where we modify the order in which
the configurations are tested [a systematic approach could have been used, e.g., the
fractional design-of-experiments described in Adenso-Diaz and Laguna (2006)]. The
results are consistent with the following observations: (1) Duality-based filtering
(including Flow) should be performed in all cases; (2) connectivity-based filtering must
be performed in all cases and Benders cuts should be avoided; (3) capacity-based fil-
tering generally has a marginally positive impact when it is performed in deep regions
of the search tree (i.e., with values of y around 0.9). The sequential way in which we
have presented the configuration testing has been adopted to facilitate the exposition.

Before comparing the different B&C variants, we look at the evolution of the lower
bounds over the course of the algorithm. Figure 1 shows the evolution of gaps with
respect to CPU times (in hours) on three difficult instances, each taken from a different
class. The name of each instance comes from Frangioni (2017), which also specifies
their dimensions | V|, |A[, | K |: ¢58 in Class I has size 30,700,100; c100_400_30_F_L
in Class II has size 100,400,30; r17.6 in Class III-B has size 20,320,100. Note that
these three instances are representative of the behavior over the whole set of unsolved
instances. To obtain the gap evolution curves shown in Fig. 1, we ran the B&C algo-
rithm by reporting the gap after each hour. We used the following configuration of
filtering parameters, based on our observations: LP-Fix, LR-Fix, Flow, Conn and Cap
(y = 0.95). The gap evolution curve for each of the three instances exhibits a con-
vex shape, indicating that the gap diminishes relatively quickly at the beginning and
relatively slowly as we approach the time limit. On all unsolved instances, including

@ Springer



168 M. Chouman et al.

the three representative ones, the gap decreases by less than 2%, sometimes by less
than 1%, as can be seen for Class I instance c58 on the graph. It is interesting to note
that Class II instance c100_400_30_F L is almost solved after 10 hours, with a final
gap smaller than 0.1%. In general, however, even though 10 hours is a long time to
be given to the B&C algorithm, most difficult instances are still far from being solved
when the time limit is attained.

5.2 Comparison between branch-and-cut variants

In this section, we summarize the performances of three variants of the B&C algorithm:
with no filtering, identified as “B&C”’; with only the “classical” reduced cost fixing
techniques LP-Fix and LR-Fix, “B&C&Fix”; and with the best identified configuration
of filtering parameters, “B&C&Filter,” which activates, in addition to LP-Fix and LR-
Fix, Flow, Conn, and Cap (y = 0.95). We use the same set of instances as before, 148
solved and 45 unsolved instances, so these results can be found already in the previous
tables, but they are easier to read in Tables 8 and 9, which show the results on solved
and unsolved instances, respectively. In addition, these two tables show the results
obtained with CPLEX on the strong formulation, defined by (1)—(5), with the addition
of the strong inequalities (6). Since for many instances, there are too many strong
inequalities to add all of them a priori, they are declared as user cuts, which allows
CPLEX to generate them dynamically, within its own branch-and-cut algorithm. In
preliminary experiments, this approach was shown to be superior to the alternative
that consists in solving the so-called weak formulation defined by (1)—(5) by CPLEX,
i.e., the strong inequalities are not given to CPLEX. CPLEX is performed with default
parameters, with two exceptions: we give as initial incumbent value the same upper
bound provided to the B&C and we deactivate the heuristic features of CPLEX. Since
CPLEX does not solve the same instances as the three B&C variants, we also count:
(1) the number of instances that CPLEX does not solve among those that are solved by
the B&C variants, reported with a “— sign in column “Instances” of Table 8; (2) the
number of instances that CPLEX solves among those that are unsolved by the B&C
variants, reported with a “+” sign in column “Instances” of Table 9.

The results in Tables 8 and 9 show that the filtering methods have a notable impact
on the performance of the B&C algorithm for all classes of instances. On the solved
instances, reductions in the CPU time are observed: 50%, 51%, 25% and 41% reduc-
tions in the arithmetic means are obtained on Classes I, I, ITI-A, and III-B, respectively,
with corresponding reductions of 23%, 16%, 17%, and 26% in the shifted geometric
means. Among the filtering techniques, reduced cost fixing is responsible for a major
part of these improvements, with reductions in the CPU time of 45%, 38%, 25% and
35% in the arithmetic means on Classes I, II, III-A and III-B, respectively, with cor-
responding reductions of 22%, 12%, 17% and 20% in the shifted geometric means.
On unsolved instances, the arithmetic means of the gaps are reduced by 0.04% and
0.16% on Classes I and III-B, respectively, with corresponding reductions of 0.05%
and 0.27% in the shifted geometric means. The reductions in the gap are generally
correlated with increases in the number of nodes that can be explored within the time
limit of 10 hours of CPU time: 25% and 29% increases in the arithmetic means of the

@ Springer



The impact of filtering in a branch-and-cut algorithm... 169

Table 8 Comparison with CPLEX on solved instances

Class Method Arithmetic Shifted geom Instances
CPU Nodes Gap CPU Nodes Gap

1(11) B&C&Filter 1912 4705 0.00 265 630 0.00 0
B&C&Fix 2100 4661 0.00 268 651 0.00 0
B&C 3840 5025 0.00 344 674 0.00 0
CPLEX 3882 299,527 0.06 235 894 0.00 -1

11 (8) B&C&Filter 1080 15,307 0.00 126 1589 0.00 0
B&C&Fix 1372 17,658 0.00 132 1590 0.00 0
B&C 2212 18,600 0.00 150 1629 0.00 0
CPLEX 23 977 0.00 17 459 0.00 0

1I-A (72)  B&C&Filter 6 284 0.00 5 92 0.00 0
B&C&Fix 6 281 0.00 5 93 0.00 0
B&C 8 325 0.00 6 103 0.00 0
CPLEX 4 1306 0.00 3 103 0.00 0

III-B (57) B&C&Filter 2624 3695 0.00 449 790 0.00 0
B&C&Fix 2917 3724 0.00 481 809 0.00 0
B&C 4459 3845 0.00 604 827 0.00 0
CPLEX 11,628 1,965,599 0.60 930 12,364 001 -—16

number of nodes are obtained on Classes I and III-B, respectively, with corresponding
increases of 29% and 52% in the shifted geometric means.

These results also show that the three B&C variants outperform CPLEX on Classes
I and III-B, while the opposite is true for Class II. These observations are consistent
with the results presented in Chouman et al. (2017), where it was already shown that
the strong inequalities are particularly useful for instances with many commodities,
such as those found in Classes I and III-B, while other types of cuts, namely flow
cover/pack inequalities, are more effective for instances with few commodities, such
as those in Class II. As our B&C algorithm relies mostly on strong inequalities, while
CPLEX generates flow cover inequalities (among other types of cuts), these compara-
tive results are consistent with those presented in Chouman et al. (2017). The appendix
gives the detailed results, for each of the 196 instances in the data set, of the com-
parison between CPLEX and B&C&Filter. Overall, B&C&Filter solves 19 instances
more than CPLEX on instances in Classes I and III-B (B&C&Filter solves two of the
three instances not considered in Tables 8 and 9), while CPLEX solves one instance
more than B&C&Filter on instances of Class II. On the unsolved instances in Classes
I and III-B, the gap is also significantly smaller with B&C&Filter, compared with the
gap obtained by CPLEX.

6 Conclusion

We have presented a B&C algorithm for the MCND that combines the cutting-plane
method from Chouman et al. (2017), an adaptation of the reliability branching rule

@ Springer



M. Chouman et al.

170

0 LTT TLO'LYS'T 000°9¢ YLT LT9°0TYT 000°9¢ XATdD
0 9L0 8Y6 11 000°9¢ P01 9¢€°8y 000°9€¢ ord
0 $9°0 LTLYI 000°9¢ $6'0 S8T 49 000°9€¢ XPOPY
0 610 181°81 000°9¢ 88°0 181°79 000°9¢ 1NAPOPY (€0) -1
I+ 0€0 €6L°0LT S92 we 296°405°T 010%C XATdD
0 09°C 1LY €vE 000°9¢ L8 1€8°69% 000°9¢ ord
0 9T $69°8C¢ 000°9¢ 88t LST v 000°9¢ XPOPg
0 9T 8PIclE 000°9¢ 98t 06t°91+ 000°9¢ LNLIPOYE ©nu
0 SS'l 9€S°LLS 000°9¢ P81 SI1°982°1 000°9¢ XATdD
0 190 SorE 000°9€ LLO $65°01 000°9¢ ord
0 LSO £96€ 000°9¢ vLO T81°CI 000°9€¢ XPOPg
0 S50 £ShP 000°9¢ €L0 60T €1 000°9€¢ 1NAPOPY 6D 1
dep SOpPON ndo dep SOPON ndo
sadueysuy woas PayIysS nauylLy POYIRIN Sse[D

S9OUB)SUT PIAJOSUN U0 X TJD Yia uostedwo) ¢ Iqey,

pringer

As



The impact of filtering in a branch-and-cut algorithm... 171

Achterberg et al. (2005), and a series of filtering methods taking advantage of the
structure of the MCND. Our experiments on a large set of randomly generated instances
have demonstrated the efficiency and the effectiveness of both the B&C algorithm and
the filtering methods. In particular, these experiments have shown that an appropriate
selection of filtering techniques allows the B&C algorithm to perform better than
the variant of the algorithm without filtering. These experiments have confirmed that
the B&C algorithm, with or without filtering, is competitive with a state-of-the-art
MIP solver, especially for instances with many commodities (typically more than
100).

The filtering methods exploit the particular structure of the MCND. It would be
interesting to adapt them to other exact algorithms for the MCND (see the references
in Introduction). In particular, the feasibility-based filtering techniques (combinato-
rial Benders cuts, connectivity-based and capacity-based filtering) do not depend on
the cutting-plane method and can be used in any enumerative algorithm. In contrast,
the duality-based filtering techniques (reduced cost bound reduction, LP-based and
Lagrangian-based reduced cost fixing) depend on the cutting-plane procedure, but
could be adapted in the context of column generation and Lagrangian relaxation meth-
ods. The implementation of these different bounding methods under the same interface
for enumerative algorithms, including adaptations of the filtering and branching proce-
dures presented here, would allow a fair comparison of the exact approaches proposed
so far for the MCND. Finally, another avenue of research would be to adapt the filtering
methods to other difficult network design problems.

Acknowledgements The authors express their gratitude to Genevieve Hernu and Serge Bisaillon, analysts
at CIRRELT. Their efforts and dedication in implementing and testing the innumerable variants of our
methods were instrumental in achieving our results. While working on this project, the second author was
the NSERC Industrial Research Chair on Logistics Management, ESG UQAM, and Adjunct Professor,
Department of Computer Science and Operations Research, Université de Montréal, and Department of
Economics and Business Administration, Molde University College, Norway. Funding for this project has
been provided by NSERC, through its Industrial Research Chair and Discovery Grants programs, by the
partners of the Chair, CN, Rona, Alimentation Couche-Tard and the Ministry of Transportation of Québec.
We also gratefully acknowledge the support of FRQNT through their infrastructure grants and of Calcul
Québec and Compute Canada through access to their computing infrastructure.

Appendix: Detailed results for CPLEX and B&C&Filter

Tables 10, 11, 12, 13, 14, and 15 give the detailed results for the 196 instances in the
data set. The name of each instance, “Instance,” is taken from Frangioni (2017), which
also specifies the dimensions of each instance. The performance measures are defined
in Sect. 5. The lines “Arithm” and “ShiftG” at the end of a table provide the arithmetic
and the shifted geometric means over all instances in the corresponding Class. Each
instance name in bold corresponds to an instance solved by B&C&Filter, but not by
CPLEX. Each instance name in italics shows an instance solved by CPLEX, but not
by B&C&Filter.

@ Springer



M. Chouman et al.

172

9'0 IvLL 100°9€ L1%°901 9T 0€6'€€T'T 000°9€ ELY'POT 201°L01 810
000 veet LSte 166'7L 000 1029 101€ 166'7L 166'7L Lo
95’1 609 900°9€ 9TL'ETT or' 109°1LT'1 000°9€ PESTTIT STS'SII 990
9€'0 'zl 100°9€ PPSrL 6’ L66'LY9'1 000°9€ SLE'eL 118°hL S0
000 $6 € 861709 000 59 I 861°109 861°709 o
000 ss €1 605 7oP 000 65 I 605 7ov 60 7ov £po
000 91T 01 LL098S 000 6¢v € LL098S LL098S wo
000 14 0 86€'671 000 ¥ 0 86¢"6TY 8661 1$0
690 SL6S 100°9€ 0vT'SEl we 608°7L9'T 000°9€ P8Y'TET 981°9€T 0o
000 179¢ 9€£9 v16°L6 000 8€95 sos¢ 16'L6 v16'L6 6€0
6£°0 00€S £00°9€ EITLET 8T TWr'6L9'] 000°9€ TPL'EST €P9°LET 862
000 6cch 9E1'¥1 €12'%6 861 €L8°LT€'C 000°9€ LYE'T6 €176 LEd
000 65Tl 6c€ $€0°€P9 000 0€s € 9€0°€+9 9€0° €19 960
000 8L1 ¥ SLY'ILE 000 w 0 SLY'ILE SLY'ILE g
000 81 0 8v8°cTy 000 9 0 8v8°cTy 88Ty £
(%) dep SapoN ndd tz (%) dep SapoN ndo Yz
PRI XA1dD Z aouelsuy

soouesuI ] 81D U0 JANILIRDRE PUe XATdD O dqBL

pringer

as



173

The impact of filtering in a branch-and-cut algorithm...

500 vLTT 99.9 v1'0 £6v'18 19L9 oyms
70 2066 £02°€T 171 1$9°696 £09'v¢ wypy
260 €0L 120°9¢ 2L9'8Tl €'l L9¥*€91 000°9€ 888°L1 698°6C1 92
69'0 126 800°9€ $59°16 a SP's9T 000°9€ 8ET'76 80€'S6 €90
w61 06v £20°9€ 01°Z€1 9T €T T0C 000°9€ LET'ET 069'7€1 79
650 61L £10°9¢ L8T'L6 80'1 $68° vt 000°9€ 08°96 798°L6 199
190 L95°1¢ 100°9€ £09'pS or'1 PECTILI'T 000°9€ (ARES 8€6°1S 090
£€°0 06t St 000°9€ 61L'SP 160 LSL'VLE'T 000°9€ LSY'SP s’y 66
L0 6L1°G1 000°9€ 9LS°65 ST 969°S7€'T 000°9€ 86185 £20°09 860
000 69 L€ £09°LY 000 oLg 3 £09°LY £09'LY L8
901 618 £20°9€ 108°0ST €5 18°'6LC 000°9€ 160°0ST PIP'TST 96
100 191¢ £00°9€ €65 P11 0€'0 $86°€EY 000°9€ 20811 0v9'pT1 g
80 8LL $70°9¢ LL8'LYT 1T 86°02€"'1 000°9€ I1°LpT 60°6v1 v$o
S1'0 1Ly £00°9€ £09°TI1 99'0 0LS 907 000°9€ 0£0°TI1 sLL'ei €6
661 61°11 000°9€ 186°S6 197 981686 000°9€ IPL'16 8€€°L6 2
S1'0 800°101 000°9€ 996°1¢ 09'0 98L°686'C 000°9€ 9ELTS 9%0°zS 160
80 a6 200°9€ 0LT'€6 L€ 9L0°02T'C 000°9€ L8°06 £70°16 082
000 LLT'YE 8€8°T1 856°€S 290 €118 000°9€ £€29'€S 856°€S 6
(%) dep SIpON ndo Yz (%) deo SIpON ndd 1z
RERE T XA1dO Z aouelsuy

panunuod (Y JqeL,

pringer

As



M. Chouman et al.

174

100 LL8L LTIl 100 8479 S6€ JUUN
@l 0v0°LIT 0zL'Tl S0'1 19L°T66 8106 wyLy
000 @ 0 TLT'S9€E 000 44 0 TLT'S9€E TLT'S9€E L AT0€7 001529
000 067C 09 0£5°S8 000 €501 9 0€5°58 0€S°S8 L7d 0€ 00§22
000 9¢8¢ €51 SS0°LE 000 102C 13 SS0°LE $S0°LE T4 0001 §T0
000 ¥ 0 TIL'Yl 000 0 0 TIL'YL TIL'Yl T A017001762?
000 L091 01 66867 000 sor I 66867 6686 L 747017001 §20
000 LLy L 17671 000 eeel S 17671 176°t1 T4017001§20
S€0 €€8°€6Y 000°9¢ Ovt'ese 000 €091 0¢ 208 ¥8¢ 208'78€ LTAT0€00r 0012
60'L 0£6°€6 000°9¢ 9L0L'TI s €S Y61°T 000°9¢ 9€9°6C1 08L'9€1 L7470€7007 0012
600 9¥S'TE 100°9¢ SLO'8Y 1€7C 655°06€"Y 000°9€ $88°LY 810°67 T 470€7007 0012
000 7508 0L €Th'8T 000 LT 0 €Th'8T €Th'8T T A™01700¥ 0012
€r'L 90L°199 000°9¢ 902'6S €0°S OYL'8IE'S 000°9¢ S$S 09 €5L°€9 L7 017007 0012
000 1L16°01 1€8 616'€T 000 658C It 616°€T 6v6°€T T 470170070012
(%) deo SOPON ndo 'z (%) deo SO9PON ndo 'z
EISE R Tl Xa1dD «Z aouEIsU|

soouwIsuI ] SSE[D) U0 INLIRI®d Pue XATdD T d1qEL

pringer

As



175

The impact of filtering in a branch-and-cut algorithm...

000 v 0 079'881'T 000 S 0 8€9°881'T 8€9'881'T 9'€0x
000 1 0 L68°T€6 000 a1 0 L68°T€6 L68°T€6 gEon
000 € 0 LYTHOL 000 0 0 LYTHOL LYTHOL g0l
000 €1 0 066716 000 vI 0 066716 066°76 £'€0!
000 L 0 29€°E0L 000 S 0 79€'€0L 29€'€0L Teor
000 € 0 0€8' 8P 000 € 0 0€8° 8P 0€8' 8P 1'€0s
000 I 0 8L5'65S 000 v 0 8L5'65S 8LS65S 970!
000 I 0 0ST'1EY 000 S 0 0ST'IEY 0ST'1ED $'Ton
000 S 0 LEV'9TE 000 0 0 LEV'9TE LEV9IE Tor
000 €1 0 £0S°617 000 81 0 £0S'617 £0S°61% €708
000 S 0 gsvzes 000 €1 0 gsvzes £5v'TTE TTor
000 9 0 6£7°TET 000 € 0 6€7°TET 6£7°TET 1701
000 6v 0 665" LT 000 08 0 66S°LYT 66S°LYT 9TOr
000 £ 0 9€0'€T1 000 €€ 0 9€0'€T1 9€0°€T1 STox
000 €1 0 806'18 000 8 0 806'+8 80678 Ay
000 v 0 POS'STI 000 ¢ 0 POS'STT YOS €100
000 I 0 £0v'26 000 0 0 £0v'26 £0v'26 T8
000 I 0 6L0°tL 000 0 0 6L0°VL 6L0°vL 1’108
(%) depy SapoN ndd tz (%) depy SapoN ndd tz
PILROPE XATdD «Z aouesuy

(1) seoueysur y-III SSB[D UO 1Y147929d Pue XA1dD I 19eL

pringer

As



M. Chouman et al.

000 8 0 68529 000 0 618579 68529 6'SO1
000 @ 0 018°Shp 000 0 018°Shp 018°ShP 8501
000 o1 0 TLesLe 000 0 TLEsLT TLE'sLT L'sox
000 8¢ 9 12S'98C 000 I 12S'98C 125 98¢ 9'g01
000 P I LST'H0T 000 0 LST'H0T LST'H0T S50
000 01 0 809°1€1 000 0 809'I€1 809°T€1 ¥'so1
000 T I 98¥°12¢ 000 0 98¥°12¢ 98%°12C €508
000 L 0 090°0L1 000 0 090°0L1 090°0LT TS0
000 4 0 £00°€CI 000 0 £00°€CI £00°€T1 1501
000 L 0 802°€91 000 0 802°€91 80T €91 6701
000 6z 0 P00'ETT 000 0 P00'€TT P00°ETT 8'pOr
000 L8 0 267'89 000 0 2627'89 26'39 Lp0r
000 13 0 0€0'PL 000 0 0€0'PL 0£0'PL 9701
000 P 0 06L°€S 000 0 06L°€S 06L°€S Shos
000 3 0 ObLEE 000 0 ObLEE OPL'EE s
000 € 0 L9L°€9 000 0 L9L°€9 L9L'€9 €08
000 € 0 026'8k 000 0 026'8k 0T6'8y THor
000 I 0 0€L'TE 000 0 0€L'TE 0€L'TE 1401
(%) dep SapON tz (%) dep tz
PINARORE Xa1dO Z aouelsuy

176

panunuod 7y Jqel,

pringer

As



177

The impact of filtering in a branch-and-cut algorithm...

000 8€LI 8 269111 000 0cs I 269171 269° 71 6'LOY
000 0€9 € 61°66 000 evl 0 6166 761°66 8'LOY
000 88¢ 4 LY6°68 000 181 0 LY6'68 LY6'68 LLox
000 1201 v 6vT'LL 000 6L 0 6V LL 6vT°LL 9'LOx
000 e I SLY'9S 000 L€ 0 SLY'9S SLY'9S S'Lox
000 19 0 Ter'Le 000 €1 0 TEr'Le Ev'Le v'LOx
000 6 0 79679 000 ¥ 0 79679 29679 g£L08
000 z 0 T Ly 000 0 0 T LY Ty TLOx
000 I 0 L08°T€ 000 0 0 L08°TE L08°T€ 1208
000 vS 4 91€'sTy 000 st 4 91€'€Th o1€'€Ty 6901
000 € 0 08Y°0£0'T 000 0 0 6L°0E0'T 6L'0E0'T 8901
000 z 0 126'289 000 0 0 126'289 126789 L/901
000 g01€ 0€T PIvPEL 000 6£€°6L 681 PIvPEL PIvPEL 9901
000 SIvl £r 992861 000 epl 4l 992861 992861 901
000 L1 4 789°'98¢ 000 102 0 89'98¢ 789°98¢ 901
000 bT L1 LLY'65S 000 €8 L LLY'65S LLY'6SS €901
000 99 ¢ $89°10% 000 Ley ¢ $89°10% $89°10% T90!
000 Al 0 9€6'SHe 000 8¢ 0 9€6'SHe 9€6°ShT 1901
(%) depy SapoN ndd tz (%) depy SapoN ndd tz
PILROPE XATdD «Z aouesuy

(7) soourysul Y-III SSB[D UO 1V1479D29d Pue XA1dD €1 19eL

pringer

As



M. Chouman et al.

178

000 26 S 000 €01 € oyms
000 78T 9 000 90€1 ¥ wypy
000 €26 1z 9ET'156 000 1611 8 9ET'156 9E1°156 6601
000 ot v 6L5°9%9 000 121 I 6LS°919 6LS°9%9 8601
000 €11 € LS0'SHE 000 L6 0 LS0'SHE LS0'SHE L'601
000 96 0s 181°TTS 000 65T€ w L81°TTS L81°TTS 9'601
000 g61 6 81€°LSE 000 6LS s 81€°LSE 81€°LSE §'601
000 vE I 9€L'T61 000 18 0 9€L'T61 9€L'T61 601
000 o11 6 99z TP 000 799 L1 99z TP 99z TP £'601
000 6¢ I TIL'96T 000 $01 I TIL'96T T1L'96T T601
000 9 0 TIS'IL 000 6 0 TIS'ILL IS 1L 1601
000 $96T IS €6L°STY 000 6791 6 €6LSTY €6L°STY 6’801
000 969€ 8¢ 998°1LT 000 €501 9 L98°VLT L98°VLT 8'801
000 18L 6 091'¥S1 000 99z I 091451 091'pS1 L'801
000 79 I 0bS'L0T 000 ore I 0bS*L0T 0pS*L0T 9'801
000 0c 0 LYO'LST 000 101 0 LYO'LST LYO°LST 808
000 o1 0 STE'601 000 4l 0 $TE601 $TE'601 801
000 01 0 €6L281 000 L 0 €6L281 £6L°T81 £'801
000 € 0 68°€r1 000 ¥ 0 68°€v1 768 P 780!
000 61 0 1€5°201 000 €1 0 1€5°201 1€5°201 1801
(%) dep SapON ndo tz (%) dep SN ndo tz
PINARORE Xa1dO Z aouelsuy

panunuod ¢y Jqe],

pringer

as



179

The impact of filtering in a branch-and-cut algorithm...

000 89 L 008'699'% 000 €Ig Ly 66L'699'% 66L'699't sz
000 S8 001 095°€0€° 00'0 681 Lz LSS'€0E°T LSS'E0€°'T i
000 6LL8 £9°'2C 01L'8TT'S 0T 9L8'80L 000°9€ £T6°€TI'S 01L'8TT'S €T
000 6v1°01 79¢°61 080°96£'€ 8Ll T6L'878 000°9€ 167'S€€°€ 080°96£ '€ T
000 8¥s 8¢ OPh'6€9'T 000 0c8 76 EVh'6€9°1 EPr'6€9'T 1z
000 1z 4 0SE'6LS'P 000 w@ I £SE'6LS'Y £SE°6LS Y e
000 €€ € 001°L0S'€ 000 62 C 001°L0S'€ 001°L0S'€ ERE
000 1 4 016767 000 81 I T16'76T°T T16'76T'T L
000 9795 (444 09011 000 16L'716 £vS°TI 09071 09011 9T
000 9The €01 0v9'€79'1 000 56'060°T 2001 0v9'€79'T 0v9'€79'1 e
000 oL 96T 0St°0L8 000 7861 L9 157°0L8 1S7°0L8 At
000 9099 9208 019°€v8'T ve'T 8IE°616'€ 000°9€ 0LS'008°T 019'¢18'1 €I
000 80¢€ el 01L'€9T'1 8¢’ SPL'0IS'S 000°9€ L9T9VT'1 €1L°€9T'1 I
000 ss 8 [Craal) 000 LzTg 8 1P vIL TEPPIL I
000 £LvT so1 0SL'T1Th'T 000 98¢l €1 OPLITH'T OPLITH'T 6011
000 L€81 98 950°156 000 586 1 950156 950°156 8011
000 6551 €6 $63°98% 000 £€§ S $68°98 $63°98% Lot
000 STIS°61 9812 $01°609 LTl L6°98€ €1 000°9€ S67°L6S £01°609 901
000 8TSL LLy ¥99'TT¥ 000 168'%19°L 819°¢1 199" 11 799'TT¥ sou
000 081 ¥ 961°6CC 00'0 109 € 961°67¢ 961°6CC yo1s
000 26 vl S10°88% 000 1661 3 $10°88% S10°88% £on
000 svl 4l v18°9p€ 000 Ise 3 I8°opE v18°9pE Ton
000 S1 0 £80°00C 000 v 0 £80°00C L80°00C 1om
(%) dep S3pON ndd tz (%) deo SapoN ndd 'z
RN XATdD Z aouesuy

(1) seourysur g-TII SSe]D) U0 JANIIRDRE PUe XATdD b1 AqBL

pringer

as



M. Chouman et al.

180

L0°0 L86°0F 000°9€ 0€6°009°C 10 PLT'SOT'T 000°9€ 81685 689°709'C 6P
€L0 £66'8Y 000°9€ 0891091 86'1 10L'St6 000°9€ <8P 18S°1 6T'€19'] gy
800 gse'Iel 000°9€ 199°£99 950 688°789'1 000°9€ TLY'P99 L12°899 L1
000 1288 119°01 019'1T'T 0LT $86'810°€ 000°9€ 128'181°1 809'F1T'T 91
000 LT6'91 $69°T1 91°68 19T 156'S61'% 000°9€ $86'98 £91°678 S
000 65T Ly L09°LEY 000 919 ST L09°LEY L09°LEY Taat
000 9895 126°11 001'€90'1 99'¢ §S€°090°S 000°9¢ 691'720'1 £60'€90'1 €1
000 £107 g61€ £0S'61L 06T 00S'T€8°S 000°9€ gsLLL €05 617L T
000 s6 €1 It €0P 00'0 68 01 PIv'E0P Iv'€0P i
6€0 TIL TP 000°9€ 87569 sTe 96L'0ES"Y 000°9€ 672789 996°L69 cEl
000 9650V L8L'81 9T8 b oLl 916'7S1'9 000°9€ 66°9€Y 9T8 b g€
000 168°9¢ 1v1g 880°80C 000 185°099'% SLS'6l 880°80C 880°80C Len
000 wsLy €911 06L 907 0€'e 9PZ'100°€1 000°9€ 16€'€6¢ 68L°907 o€
000 9L0€ v8¢ 789°78¢ sl 2601581 000°9€ 165'8LT 789°78¢ SEn
000 9re €1 LL6°0ST 000 st t LL60ST LL6'0ST vEn
000 87T 48 9€8'59€ 000 OLIT 8cl 9€8'59¢ 9€8'59€ gen
000 061 ss 008'€9¢ 000 €69 9¢ 008'€9C 008'€9¢ Ten
000 01 0 LY6'Th1 000 8¢ 0 LY6°T1 LY6'TP1 ren
000 1 0 008°L96' 11 00'0 0 C 89L°196'11 89L°L96°T1 6TH
000 S I 00L°L90°01 000 ¥ ¢ THL'L90°01 TrL'L90°01 8Tl
000 ¥ 1 0LT'SE9'L 000 L ¢ 0LT'SE9'L 0LT'SE9'L L
000 3 6¢ 020°001°L 000 9g 8¢ 610°001°L 610°001°L 9TH
(%) dep SIpON ndo 1z (%) deo $9pON ndo 'z

IR T XA1dD Z aouelsuy

penunuod 7y qey,

pringer

as



181

The impact of filtering in a branch-and-cut algorithm...

000 91 9 8€1°vSE 000 8v1 6 8€1°vSE 8E1'7SE L
90T 9709 100°9¢ 880°61S 99t LY9'EPE'S 000°9€ 062508 886'6CS 6911
Tl S6THIT 000°9€ 6T8°EPE €TE £€5°0€5°9 000°9€ 926'9€€ L91°8PE 8911
ST'0 S0%*859 000°9€ 8L6°891 16T 6YC168°01 000°9€ L9°991 £€7°691 L91
000 9y vsT 9L'LEE LTT 00€°LEL'6 000°9€ E11°0€€ 9L LEE 9914
000 es e 108°14C 000 96¢ ve 108°1C 108'1+C e
000 0c I TES'SE 000 L€ I TES SE TES ST roLs
000 898 8LS 1L9°sTE 000 8€81 ves 1L9°sTE 1L9°sTE €91
000 £vh ore 00S'6£¢ 000 ssse LT 00S'6£¢ 00S°6£C Tou
000 S 0 191°9¢1 000 € I 191°9¢1 191°9¢1 1911
000 1z 1z 0£6'969°'8 000 Sp 01 €6'969'8 €6'969'8 98
000 6Ty 159 01Y'€LS'S 000 €79 oL EIP'ELS'S EIPELS'S g
000 0976 L0T'ST 026°'L6T'C 000 616'L67°T SrT6l 616°L67°T 616°L67'T Lsu
091 S18¢ 900°9€ 0LE'S9L'E a3 026°999 000°9€ 789°S0L'€ 9r9°678'€ oS
1 $509 200'9€ 011'0SH'T 6LT TSH'P80°1 000'9€ TIS'80r'T 208 LLY'T SqE
000 <786 7986 009'8¥1°1 70 168'179°C 000'9€ STO'EPI'T 709'8¥1°1 ST
10T ssve £00°9€ 016's78'C sy 1L1'80P1 000°9€ S61'vSL'T $68°€88°C 9E
§50 00vS 200°9€ 00£°S56'1 L6 £76'810°C 000°9€ 9€8°L06'1 902°996'1 TS
000 Ls1 591 06L°000'T 000 8Tl €11 £8L°000'T L8L°000'T rsu
(%) depy SapoN ndd tz (%) dep SapoN ndd 1z
RO XAT1dD Z aouesuy

(7) seoumisur g-TII SSe1D) U0 JANIIRDRE Pue XATdD ST AqBL

pringer

As



M. Chouman et al.

182

000 sele LI 700 S66S gs8e BINEN
$T0 26612 10€°CI wl I8L'OV1'T 6v8°81 wypy
€20 vers 200°9€ 0€E'LVE'9 611 0ST'112 000°9€ 01£'98¢'9 906'19¢9 6’811
£5°0 sesL 200'9€ 026'998°¢ e cerIee 000'9€ PIP'S08°c L£9°L88'€ 881!
8L0 6181 100°9¢ 0€6'S9"'T L1 TITels 000°9€ TET09Y'T S6¢°LLY'T L3I
0r'e 1872 110°9¢ 011'6v9'C sy 661°9L8 000°9€ SLI'T6S'T SEEVIL'T 981!
€1l 1L9€ §00°9€ 0L0°€08'1 e 168°70C'1 000°9€ 650°L9L'] 99L°€78'1 ¢8I
¥T0 1L8'1T 000°9€ VLL'L16 o'l LSL'6VE'T 000°9€ 8€1°L06 £86'616 g1
60 612¢ 00°9€ 016'€51'C 8L'€ LY6°18Y'T 000°9€ 090760 9LTHLI'T €811
000 969 8¥8s 089°€€S"T 000 $691 vLEY SL9'EES'T SLOEES'T T8
000 8¥9¢ L12s L11°8¢8 $60 685°€19°T 000°9€ SLT'0T8 LT1°8T8 'S8T
91 gzLel 200°9€ 006°'8PL'T Lrg 80€°898 000°9€ LEETTLT €9L'LLL'T 6L1x
L0'1 £9'6¢ 000'9€ 0EE'760°T or'e TETPOr' 000'9€ £S9'6L0°1 102'901°T L1
920 LLY'TOT 000'9€ I1€°00S <80 106'761°€ 000'9€ SE'L6b $€9°108 L
001 6£5°T1 100°9¢ 0TS'600°T 19' 807°9L1'E 000°9€ 9LST'96 85L'610°1 9LIx
000 $59¢ 90SL 9PL90L 6LT 888°8LL'E 000°9€ 200°L89 LYL'90L gL
000 99¢ ol 06S°0LE 000 L€zl IS 06S0LE 06S°0LE LI
000 69€8 200°9€ €05°016 8S' LIL'VEL'S 000°9€ YOL'658 815016 gL
000 800C 996 881°v9 60T SE8°08Y'Y 000°9€ LTL'0E9 887'SP9 L
(%) dep S9poN ndo 1z (%) dep SN ndo 1z
AP XA1dO Z aouelsuy

panunuod Gy Jqe],

pringer

as



The impact of filtering in a branch-and-cut algorithm... 183

References

Aardal K (1998) Capacitated facility location: separation algorithms and computational experience. Math
Program 81:149-175

Aardal K, Pochet Y, Wolsey LA (1995) Capacitated facility location: valid inequalities and facets. Math
Oper Res 20:562-582

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper Res Lett 33:42-54

Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithms using fractional experimental designs and
local search. Oper Res 54:99-114

Applegate D, Bixby RE, Chvatal V, Cook W (1995) Finding cuts in the TSP. Technical report 95-05,
DIMACS technical report

Atamtiirk A (2001) Flow pack facets of the single node fixed-charge flow polytope. Oper Res Lett 29:107—
114

Atamtiirk A (2002) On capacitated network design cut-set polyhedra. Math Program 92:425-437

Atamtiirk A, Rajan D (2002) On splittable and unsplittable capacitated network design arc-set polyhedra.
Math Program 92:315-333

Atamtiirk A, Savelsbergh MWP (2005) Integer-programming software systems. Ann Oper Res 140:67-124

Balas E (1975) Facets of the knapsack polytope. Math Program 8:146-164

Barahona F (1996) Network design using cut inequalities. STAM J Optim 6:823-837

Benichou M, Gauthier JM, Girodet P, Hentges G, Ribiere G, Vincent O (1971) Experiments in mixed-integer
programming. Math Program 1:76-94

Bienstock D, Chopra S, Giinliik O, Tsai CY (1998) Minimum cost capacity installation for multicommodity
network flows. Math Program 81:177-199

Bienstock D, Giinliik O (1996) Capacitated network design-polyhedral structure and computation.
INFORMS J Comput 8:243-259

Chouman M, Crainic TG, Gendron B (2017) Commodity representations and cut-set-based inequalities for
multicommodity capacitated fixed charge network design problem. Transp Sci 51:650-667

Codato G, Fischetti M (2006) Combinatorial Benders cuts for mixed-integer linear programming. Oper Res
54:756-766

Costa AM, Cordeau JF, Gendron B (2009) Benders, metric and cutset inequalities for multicommodity
capacitated network design. Comput Optim Appl 42:371-392

Costa AM, Cordeau JF, Gendron B, Laporte G (2012) Accelerating Benders decomposition with heuristic
master problem solutions. Pesqui Oper 32:3-20

Crainic TG, Gendreau M, Farvolden JM (2000) A simplex-based tabu search method for capacitated network
design. INFORMS J Comput 12:223-236

Crainic TG, Frangioni A, Gendron B (1999) Telecommunications network planning. In: Soriano P, Sanso B
(eds) Multicommodity capacitated network design. Kluwer Academics Publisher, Dordrecht, pp 1-19

Crainic TG, Frangioni A, Gendron B (2001) Bundle-based relaxation methods for multicommodity capac-
itated fixed charge network design. Discrete Appl Math 112:73-99

Crainic TG, Frangioni A, Gendron B, Guertin F (2009) OOBB: an object-oriented library for parallel
branch-and-bound. In: Presented at the CORS/INFORMS international conference, Toronto, Canada,
June 14-17 2009

Crainic TG, Gendreau M (2002) Cooperative parallel tabu search for capacitated network design. J Heuristics
8:601-627

Crainic TG, Gendron B, Hernu G (2004) A slope scaling/Lagrangean perturbation heuristic with long-term
memory for multicommodity capacitated fixed-charge network design. J Heuristics 10:525-545

Frangioni A (2017) http://www.di.unipi.it/~frangio

Gabrel V, Knippel A, Minoux M (1999) Exact solution of multicommodity network optimization problems
with general step cost functions. Oper Res Lett 25:15-23

Gendron B, Crainic TG (1994) Relaxations for multicommodity capacitated network design problems.
Technical report, Publication CRT-945, Centre de recherche sur les transports, Université de Montréal

Gendron B, Larose M (2014) Branch-and-price-and-cut for large-scale multicommodity capacitated fixed-
charge network design. EURO J Comput Optim 2:55-75

Ghamlouche I, Crainic TG, Gendreau M (2003) Cycle-based neighbourhoods for fixed charge capacitated
multicommodity network design. Oper Res 51:655-667

Ghamlouche I, Crainic TG, Gendreau M (2004) Path relinking, cycle-based neighbourhoods and capacitated
multicommodity network design. Ann Oper Res 131:109-133

@ Springer


http://www.di.unipi.it/~frangio

184 M. Chouman et al.

Gu Z, Nemhauser GL, Savelsbergh MWP (1998) Lifted cover inequalities for O—1 integer programs: com-
putation. INFORMS J Comput 10:427-437

Gu Z, Nemhauser GL, Savelsbergh MWP (1999) Lifted cover inequalities for 0-1 integer programs: com-
plexity. INFORMS J Comput 11:117-123

Gu Z, Nemhauser GL, Savelsbergh MWP (1999) Lifted flow cover inequalities for mixed 0-1 integer
programs. Math Program 85:439-467

Giinliik O (1999) A branch-and-cut algorithm for capacitated network design problems. Math Program
86:17-39

Hammer PL, Johnson EL, Peled UN (1975) Facets of regular 0—1 polytopes. Math Program 8:179-206

Hewitt M, Nemhauser GL, Savelsbergh MWP (2010) Combining exact and heuristic approches for the
capacitated fixed-charge network flow problem. INFORMS J Comput 22:314-325

Holmberg K, Yuan D (2000) A Lagrangian heuristic based branch-and-bound approach for the capacitated
network design problem. Oper Res 48:461-481

Hooker JN (2002) Logic, optimization, and constraint programming. INFORMS J Comput 14:295-321

Katayama N, Chen M, Kubo M (2009) A capacity scaling heuristic for the multicommodity capacitated
network design problem. J Comput Appl Math 232:90-101

Kliewer G, Timajev L (2005) Relax-and-cut for capacitated network design. In Proceedings of algorithms-
ESA 2005: 13th annual european symposium on algorithms, pp 47-58. Lecture notes in computer
science 3369

Leung JMY, Magnanti TL (1989) Valid inequalities and facets of the capacitated plant location problems.
Math Program 44:271-291

Louveaux Q, Wolsey LA (2007) Lifting, superaddititvity, mixed integer rounding and single node flow sets
revisited. Ann Oper Res 153:47-77

Magnanti TL, Mirchandani PB, Vachani R (1993) The convex hull of two core capacitated network design
problems. Math Program 60:233-250

Magnanti TL, Mirchandani PB, Vachani R (1995) Modeling and solving the two-facility capacitated network
loading problem. Oper Res 43:142—157

Martello S, Toth P (1997) Upper bounds and algorithms for hard 0-1 knapsack problems. Oper Res 45:768—
778

Ortega F, Wolsey LA (2003) A branch-and-cut algorithm for the single commodity uncapacitated fixed
charge network flow problem. Networks 41:143—-158

Padberg MW, Van Roy TJ, Wolsey LA (1985) Valid linear inequalities for fixed charge problems. Oper Res
33:842-861

Raack C, Koster AMCA, Orlowski S, Wessily R (2011) On cut-based inequalities for capacitated network
design polyhedra. Networks 57:141-156

Rodriguez-Martin I, Salazar-Gonzélez JJ (2010) A local branching heuristic for the capacitated fixed-charge
network design problem. Comput Oper Res 37:575-581

Savelsbergh MWP (1994) Preprocessing and probing techniques for mixed integer programming problems.
ORSA J Comput 6:445-445

Sellmann M, Kliewer G, Koberstein A (2002) Lagrangian cardinality cuts and variable fixing for capaci-
tated network design. In: Proceedings of algorithms-ESA 2002: 10th annual european symposium on
algorithms, pp 845-858. Lecture notes in computer science 2461

Van Roy TJ, Wolsey LA (1987) Solving mixed integer programming problems using automatic reformula-
tion. Oper Res 35:45-57

Wolsey LA (1975) Faces of linear inequalities in O—1 variables. Math Program 8:165-178

@ Springer



	The impact of filtering in a branch-and-cut algorithm for multicommodity capacitated fixed charge network design
	Abstract
	1 Introduction
	2 Main features of the branch-and-cut algorithm
	2.1 Problem formulation
	2.2 Valid inequalities and separation
	2.2.1 Strong inequalities
	2.2.2 Knapsack inequalities

	2.3 Cutting-plane procedure
	2.4 Branching rule

	3 Filtering methods
	3.1 LP-based reduced cost fixing
	3.2 Lagrangian-based reduced cost fixing
	3.3 Flow upper bound reduction
	3.4 Combinatorial Benders cuts
	3.5 Connectivity-based filtering
	3.6 Capacity-based filtering

	4 Overview of the branch-and-cut algorithm
	4.1 Computation of upper bounds
	4.2 Tree search
	4.3 Statement of the algorithm

	5 Computational results
	5.1 Impact of the filtering methods
	5.2 Comparison between branch-and-cut variants

	6 Conclusion
	Acknowledgements
	Appendix: Detailed results for CPLEX and B&C&Filter
	References




