
EURO J Comput Optim (2017) 5:423–454
DOI 10.1007/s13675-016-0075-x

ORIGINAL PAPER

Variable neighborhood search: basics and variants

Pierre Hansen1 · Nenad Mladenović2,3 ·
Raca Todosijević2,3 · Saïd Hanafi2

Received: 12 November 2015 / Accepted: 26 July 2016 / Published online: 12 August 2016
© EURO - The Association of European Operational Research Societies 2016

Abstract Variable neighborhood search (VNS) is a framework for building heuristics,
based upon systematic changes of neighborhoods both in a descent phase, to find a local
minimum, and in a perturbation phase to escape from the corresponding valley. In this
paper, we present some ofVNS basic schemes aswell as several VNS variants deduced
from these basic schemes. In addition, the paper includes parallel implementations and
hybrids with other metaheuristics.

Keywords Variable neighborhood search · Metaheuristic · Heuristic

Mathematics Subject Classification 90C59 · 68T20 · 68W25

1 Introduction

An optimization problem may be stated in a general form as:

min{ f (x)|x ∈ X ⊆ S}, (1)

B Raca Todosijević
racatodosijevic@gmail.com

Pierre Hansen
pierre.hansen@gerad.ca

Nenad Mladenović
nenadmladenovic12@gmail.com

Saïd Hanafi
said.hanafi@univ-valenciennes.fr

1 GERAD and HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, QC, Canada

2 LAMIH-UVHC, CNRS UMR 8201, Le Mont Houy, Valenciennes Cedex 9, France

3 Mathematical Institute, SANU, Belgrade, Serbia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13675-016-0075-x&domain=pdf

424 P. Hansen et al.

where S, X, x and f, respectively, denote the solution space and the feasible set,
a feasible solution and a real-valued objective function. Depending on the set S,

we distinguish combinatorial optimization problem (in which the set S is finite but
extremely large) and continuous optimization problems (S = R

n). Let N (x) denote
a neighborhood structure of a given solution x (i.e., N : X → P(X), where P(X)

denotes the power set of the set X). Generally, a neighborhood N (x) is defined rel-
ative to a given metric (or quasi-metric) function δ introduced in the solution space
S as:

N (x) = {y ∈ X |δ(x, y) ≤ α},

where α is a given positive number. Then, on the one hand a solution x∗ ∈ N (x)
is a local minimum, relative to neighborhood N (x∗), for problem (1) if f (x∗) ≤
f (x), ∀x ∈ N (x∗); on the other hand, a solution x∗ ∈ X is an optimal solution
(global optimum) for problem (1) if f (x∗) ≤ f (x), ∀x ∈ X .

Many practical instances of problems of form (1) cannot be solved exactly (i.e.,
providing an optimal solution alongwith the proof of its optimality) in reasonable time.
It is well known that many problems of the form (1) are NP-hard, i.e., no algorithm
with a number of steps polynomial in the size of the instances is known for solving any
of them and that if one were found it would be a solution for all. Therefore, there is a
need for heuristics able to quickly produce an approximate solution of high quality, or
sometimes an optimal solution butwithout proof of its optimality. Note that there could
be a very large number of local minima for some optimization problems. Usually, it
is not hard to get a local minimum, but it is not easy to find a global one. Indeed,
such search methods may get trapped in a local optimum and miss the global one.
Resolving local optima trap problems is one important issue and consists in finding a
way to escape from a local minimum within some method.

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenović
and Hansen (1997). It represents a flexible framework for building heuristics for
approximately solving combinatorial and non-linear continuous optimization prob-
lems. VNS systematically changes neighborhood structures during the search for an
optimal (or near-optimal) solution based on the following observations:

(i) A local optimum relative to one neighborhood structure is not necessarily a local
optimum for another neighborhood structure.

(ii) A global optimum is a local optimumwith respect to all neighborhood structures.
(iii) Empirical evidence shows that for many problems, all or a large majority of the

local optima are relatively close to each other Kirkpatrick and Toulouse (1985).

The first property is exploited by increasingly using complex moves to find local
optima with respect to all neighborhood structures used. The second property suggests
using several neighborhoods, if local optima found are of poor quality. Finally, the
third property suggests increased exploitation of the vicinity of the current incumbent
solution.

This tutorial reviews not only VNS variants already described in the last survey
Hansen et al. (2010), but also new VNS variants proposed in the last few years (e.g.,

123

Variable neighborhood search: basics and variants 425

cyclic VND, nested VNS, two-level VNS, VNS heuristics for solving mixed integer
programs, etc.). These new variants have been used for solving many NP-hard prob-
lems on which they turned out to be new state-of-the-art heuristics, and thus applying
these variants on other optimization problems leads in promising future work direc-
tions. Hence, the main purpose of this tutorial is to provide practitioners with precise
user guide for creating a VNS-based heuristic rather than compare VNS variants or
provide an exhaustive list of VNS applications.

The rest of the paper is organized as follows. In Sect. 2, we present the main
ingredients of a VNS heuristic. More precisely, we describe the shaking procedure, the
most common improvement procedures used within a VNS, such as local search and
variable neighborhood descent variants, and neighborhood change functions. Section
3 is dedicated to the basic VNS variants and Sect. 4 to more advanced VNS variants.
Finally, in Sect. 5, we draw some conclusions.

2 Variable neighborhood search ingredients

The ingredients of a variable neighborhood search heuristic include an improvement
phase used to possibly improve a given solution and a so-called shaking phase used
to hopefully resolve local minima traps. The improvement phase and the shaking
procedure together with the neighborhood change step are executed alternately until
fulfilling a predefined stopping criterion. In other words, the following three steps are
repeated until some stopping criterion is fulfilled:

(1) Shaking procedure.
(2) Improvement procedure.
(3) Neighborhood change step.

To distinguish neighborhoods used in shaking and improvement procedures, we used
two different notations N and N , respectively.

2.1 Shaking procedure

The aim of a shaking procedure used within a VNS heuristic is to hopefully resolve
local minima traps. Let N = {N1, . . . ,Nkmax} be a set of operators such that each
operator Nk , 1 ≤ k ≤ kmax maps a given solution x to a predefined neighborhood
structureNk(x). Note that the order of operators in the setN will also define the order
of examining neighborhood structures of a given solution x . The simple shaking pro-
cedure consists in selecting a random solution from the kth neighborhood structure,
Nk(x). For some problem instances, a completely random jump in the kth neighbor-
hood is too diversified. Hence, sometimes it is preferable to do so-called intensified
shaking which takes into account how sensitive the objective function is to small
changes (shaking) of the solution. However, for the sake of simplicity, we will assume
that each VNS variant presented hereafter uses a simple shaking procedure based on
selecting a random solution from the kth neighborhood structure (see Algorithm 1).

123

426 P. Hansen et al.

Algorithm 1: Shaking procedure
Function Shake(x, k,N);
choose x ′ ∈ Nk (x) at random;
return x ′

2.2 Neighborhood change step

The purpose of a neighborhood change step is to guide the variable neighborhood
search heuristic while exploring the solution space.More precisely, it makes a decision
on which neighborhood will be explored as the next as well as whether some solution
will be accepted as a new incumbent solution or not. The widely used neighborhood
change procedures are:

– Sequential neighborhood change step (see e.g., Todosijević et al.
2015): The steps of the sequential neighborhood change step are given inAlgorithm
2. If an improvement of the incumbent solution in some neighborhood structure
occurs, the search is resumed in the first neighborhood structure (according to the
defined order) of the new incumbent solution; otherwise the search is continued
in the next neighborhood (according to the defined order).

Algorithm 2: Sequential neighborhood change step
Procedure Neighborhood_change_sequential(x , x ′, k)
if f (x ′) < f (x) then

x ← x ′;
k ← 1;

else
k ← k + 1;

end

– Cyclic neighborhood change step (see e.g., Todosijević et al. 2014):
regardless of whether there is an improvement with respect to some neighborhood
or not, the search is continued in the next neighborhood structure in the list (see
Algorithm 3).

Algorithm 3: Cyclic neighborhood change step
Procedure Neighborhood_change_cyclic(x , x ′, k)
k ← k + 1;
if f (x ′) < f (x) then

x ← x ′;
end

– Pipe neighborhood change step (see e.g., Todosijević et al. 2016): if
an improvement of the current solution occurs in some neighborhood, the explo-
ration is continued in that neighborhood (see Algorithm 4).

– The skewed neighborhood change step (see e.g., Brimberg et al.
2015) may accept as new incumbent solution not only improving solution, but

123

Variable neighborhood search: basics and variants 427

Algorithm 4: Pipe neighborhood change step
Procedure Neighborhood_change_pipe(x , x ′, k)
if f (x ′) < f (x) then

x ← x ′;
else

k ← k + 1;
end

also a non-improving one. The purpose of such neighborhood change step is to
allow exploration of valleys far from the incumbent solution. Therefore, in the
so-called skewed neighborhood change step, a trial solution is evaluated taking
into account not only the objective values of the trial and the incumbent solution,
but also the distance between them. The evaluation function used in the skewed
neighborhood change step, in the case of theminimization of the objective function
f , may be stated as:

g(x, y) = f (x) − f (y) − αd(x, y),

where α represents a positive parameter, while d(x, y) represents the distance
between solutions x and y. The skewed neighborhood change step using this func-
tion and the sequential neighborhood change are given in Algorithm 5. Note that
instead of the sequential neighborhood change, “pipe” and “cyclic” neighborhood
changes may be used as well.

Algorithm 5: Skewed neighborhood change step
Procedure Skewed_Neighborhood_change(x , x ′, k, α)
if f (x ′) − f (x) < αd(x ′, x) then

x ← x ′;
k ← 1;

else
k ← k + 1;

end

2.3 Improvement procedures within VNS

2.3.1 Local search

A local search heuristic is based on the exploration of a neighborhood structure N (x)
of a current incumbent solution x at each iteration. Starting from an initial solution
x , at each iteration it selects a better solution than x ′ (if any) from the predefined
neighborhood structure N (x) and sets it to be the new incumbent solution x . A local
search heuristic finishes its work reaching an incumbent solution x such that it is
already the local optimum with respect to its neighborhood structure N (x). The most
common search strategies usedwithin a local search heuristic are the first improvement
(as soon as an improving solution in a neighborhood N (x) is detected, it is set to be

123

428 P. Hansen et al.

the new incumbent solution) and the best improvement (the best among all improving
solutions in N (x) (if any) is set to be the new incumbent solution). The steps of a local
search heuristic using the first improvement strategy and a local search heuristic using
the best improvement strategy are given in Algorithms 6 and 7, respectively. Note that
for the sake of simplicity, we assume in Algorithm 6 that |N (x)| < ∞. However, in
the case that |N (x)| is infinite or uncountable, the first improvement strategy works
analogously by examining systematically solutions xi ∈ N (x) and making a move as
soon as a an improving solution is encountered.

Note that a metaheuristic can also be used as a local search, for example Simulated
Annealing, Tabu Search, Iterated local search, GRASP, Genetic algorithm, etc. The
Variable Neighborhood Descent described in the next section can be also used as a
local search in VNS (see e.g., the description of General VNS in Sect. 3.4).

Algorithm 6: Local search using the first improvement search strategy
Function LS_FI(x , N)
repeat

Let N (x) = {x1, . . . , x p};
i ← 0;
x ′ ← x ;
repeat

i ← i + 1;
if f (xi) < f (x) then

x ← xi ;
break;

end
until i = p;

until f (x ′) ≤ f (x);
return x ′;

Algorithm 7: Local search using the best improvement search strategy
Function LS_BI(x , N)
repeat

x ′ ← x ;
x ← argminy∈ N (x ′) f (y);

until f (x ′) ≤ f (x);
return x ′;

2.3.2 Variable neighborhood descent procedures

The variable neighborhood descent (VND) procedures exploit the fact that the solution
which is a local optimum with respect to several neighborhood structures is more
likely to be a global optimum than the solution generated as a local optimum for
just one neighborhood structure. More precisely, a VND procedure explores several
neighborhood structures either in a sequential or nested fashion to possibly improve
a given solution. As a search strategy, it may use either the first improvement or the
best improvement search strategy. One example ofVNDprocedure is the improvement

123

Variable neighborhood search: basics and variants 429

procedure of Pivot and Complement heuristic, a heuristic for solving a pure 0–1Mixed
Integer Programs (MIP) (Balas and Martin 1980).

Sequential variable neighborhood descent procedures The basic sequential VND (B-
VND) procedure works in the following way. Several neighborhood structures are
firstly ordered in a list and after that examined one after another respecting the estab-
lished order. Let N = {N1, . . . , N�max} be a set of operators defining the neighborhood
structures and the order of their examination. Starting from a given solution x , the basic
sequential VND procedure iteratively explores its neighborhood structures defined by
the operators N�, 1 ≤ � ≤ �max one after another according to the established order.
As soon as an improvement of the incumbent solution in some neighborhood structure
occurs, the basic sequential VND procedure resumes search in the first neighborhood
structure (according to the defined order) of the new incumbent solution. The whole
process is stopped if the current incumbent solution cannot be improved with respect
to any of the �max neighborhood structures. The steps of the sequential VND using
the best improvement search strategy are given in Algorithm 8. Besides this basic
sequential VNDprocedure, two sequential VNDprocedures have been proposed using
the different rules for selecting the next neighborhood structure to be explored if an
improvement of the current incumbent solution occurs:

– pipe VND (P-VND): uses the pipe neighborhood change step to decide which
neighborhood will be explored as the next. Thus, the steps of pipe VND using the
best improvement search strategy may be deduced from the Algorithm 8, replacing
the neighborhood change procedure Neighborhood_change_sequential
(x , x ′, �) given inAlgorithm2by the procedureNeighborhood_change_pipe
(x , x ′, �) given in Algorithm 4. Note that the P-VND sometimes is referred to as
the token ring search (see e.g., Lü et al. 2011; Gaspero and Schaerf 2006).

– cyclic VND (C-VND): uses the cyclic neighborhood change step to decide which
neighborhood will be explored next. Thus, the steps of cyclic VND using the
best improvement search strategy may be deduced from Algorithm 8, replacing
the neighborhood change procedure Neighborhood_change_sequential
given in Algorithm 2 by the procedure Neighborhood_change_cyclic (x ,
x ′, �) given in Algorithm 3. The approach presented in Glover et al. (1984) could
be considered as a cyclic VND except that it has cycles within cycles and uses
additional evaluation criteria along the way.

Finally, the last sequential VND variant isUnion VND (U-VND) (sometimes called
multiple neighborhood search) which at each iteration explores the single neighbor-
hood, obtained as the union of all predefined �max neighborhoods, trying to improve
the current incumbent solution. If the union does not contain any improving solution,
then U-VND finishes its work; otherwise, the best among improving solutions is set
to be the new incumbent solution and the process is resumed. U-VND is usually used
within Tabu search (see e.g., Lü et al. 2011; Wu et al. 2012).

Note that each of these VND algorithms may also use the first improvement search
strategy to explore neighborhood structures. If the first improvement strategy is used,
the steps of each VND variant are the same as the steps of the corresponding VND
variant that uses the best improvement strategy, but with additional assumption that the

123

430 P. Hansen et al.

call argminy∈N�(x) f (y) returns the first encountered solution y in the neighborhood
N�(x) such that f (y) < f (x).

Algorithm 8: Sequential VND using the best improvement search strategy
Function B-VND(x , �max , N)
repeat

stop ← f alse;
� ← 1;
x ′ ← x ;
repeat

x ′′ ← argminy∈N�(x) f (y);
Neighboorhood_change_sequential(x , x ′′, �);

until � = �max ;
if f (x ′) ≤ f (x) then

stop ← true;
end

until stop = true;
return x ′;

Empirical study In Mjirda et al. (2016), an empirical study on performances of VND
variants used to solve the traveling salesman problem (TSP) is performed. For testing
purposes, random test instances were generated in the way described in Hansen and
Mladenović (2006).WithinVNDvariants, three classical TSPneighborhood structures
are considered: 2-opt (Fig. 1), insertion-1 (Fig. 2) and insertion-2 (Fig. 3). For each
instance from this data set, each VND variant, except U-VND, is tested under 24
different settings. Each setting corresponds to choosing the following: (1) one out of
two common ways for getting an initial solution: at random (solution generated as a
random permutation of nodes) or greedy; (2) one out of six possible neighborhood
orders, and (3) the best or the first improvement search strategy. This gives 2×6×2 =
24 different search methods that use 2-opt, Insertion-1 and Insertion-2 neighborhoods.
On the other hand, U-VND is tested under only two different settings as: U-VND that
uses the best improvement search strategy and the greedy initial solution and U-VND
that uses the best improvement search strategy and the random initial solution. Note
that if the first improvement search strategy is used within U-VND, then U-VND is
equivalent to B-VND.

Table 1 summarizes the results considering the entire set of 15,200 instances as a
test case. Namely, the average solution values (Column ‘av. best value’) and
average CPU times (Column ‘av. time’) over all test instances in the data set,
attained by VND variants under the best settings, are reported.

Fig. 1 2-Opt move

123

Variable neighborhood search: basics and variants 431

Fig. 2 Insertion-1 move

Fig. 3 Insertion-2 move

Table 1 Comparison of VND
variants

VND variant Av. best value Av. time (s)

Basic VND 1198.24 0.16

Pipe VND 1198.52 0.12

Cyclic VND 1198.76 0.46

Union VND 1197.65 1.06

From the results presented in Table 1, the following conclusions may be drawn:

(i) U-VND is slightly better than the other VNDs, regarding the best average values
attained, but much slower than the others. This is explained by the fact that U-
VND in each iteration performs the exploration of a large part of the solution
space before deciding to re-center the search.Obviously, such principle is suitable
for reaching a good final solution, but requires a large CPU time.

(ii) Comparing VNDs that re-center the search in the inner loop (i.e., B-VND, P-
VND and C-VND), it follows that B-VND is able to provide the best solution
values. Regarding averageCPU times consumedbyB-VND,P-VNDandC-VND
to find the best reported average solution value, their ranking is as follows: the
fastest is P-VND, B-VND is ranked as the second, while C-VND is the slowest
one. However, B-VND consumed negligibly more CPU time to find the best
reported average solution value, compared to CPU time P-VND consumed; we
may conclude that B-VND is the most appropriate VND version among those
that re-center search in the inner loop.

Nested variable neighborhood descent procedures A nested (composite) variable
neighborhood descent procedure (Ilić et al. 2010) explores a large neighborhood
structure obtained as a composition of several neighborhoods. More precisely, let
N = {N1, . . . , N�max} again be a set of operators such that each operator N�,
1 ≤ � ≤ �max maps a given solution x to a predefined neighborhood structure N�(x).
Then, the neighborhood explored within a nested variable neighborhood procedure is
defined by operator N∗ = N1 ◦ N2 ◦ · · · ◦ N�max . The cardinality of a neighborhood

123

432 P. Hansen et al.

structure N∗(x) = N1(N2(. . . (N�max(x)))) of some solution x is bounded by
∏�max

�=1 n�

where n� = max{|N�(x)| : x ∈ X}, 1 ≤ � ≤ �max.
Such a large cardinality obviously increases the chances to find an improvement

in the neighborhood. The steps of nested VND using the best improvement search
strategy are given in Algorithm 9. The neighborhood N∗(x) may be also explored
using the first improvement search strategy, following the steps of the local search
procedure using the first improvement strategy given in Algorithm 6. However, since
its cardinality is usually very large, the first improvement is used more often (Ilić et al.
2010; Todosijević et al. 2015).

Algorithm 9: Nested VND using the best improvement search strategy
Function Nested_VND(x , �max , N)
N∗ = N1 ◦ N2 ◦ · · · ◦ N�max

repeat
x ′ ← x ;
x ← argminy∈N∗(x ′) f (y);

until f (x ′) ≤ f (x);
return x ′;

Mixed variable neighborhood descent procedures Mixed variable neighborhood
descent (mixed VND) (Ilić et al. 2010) combines ideas of sequential and nested vari-
able neighborhood descent. Namely, it uses a set of operators N ′ = {N1, . . . Nb} to
define a nested neighborhood, and each time a solution in this nested neighborhood
is visited a sequential variable neighborhood descent variant defined by a set of oper-
ators N ′′ = {Nb+1, . . . N�max} is launched. The cardinality of the set explored in one
iteration of a mixed VND is bounded by

|Nmixed(x)| ≤
b∏

�=1

n�

�max∑

�=b+1

n�, x ∈ X

where n� = max{|N�(x)| : x ∈ X}, 1 ≤ � ≤ �max.
Note that if the set N ′ is the empty set (i.e., b = 0), we get pure sequential VND.

If b = �max, we get pure nested VND. Since nested VND intensifies the search in a
deterministic way, boost parameter bmay be seen as a balance between intensification
and diversification in deterministic local search with several neighborhoods.

In Algorithm 10, we give steps of a mixed VND where the basic sequential VND
presented in Algorithm 8 is applied on each solution of a nested neighborhood. The
best improvement search strategy is used within both the nested neighborhood and
the basic sequential VND. Note that mixed VND may be implemented using the
first improvement search strategy either within a nested neighborhood or a sequential
VND as well as using a pipe or a cyclic VND instead of a basic sequential VND. The
ideas similar to those of mixed VND have been exploited in the filter and fan and the
ejection chains methods; see Rego and Glover (2010), Khemakhem et al. (2012) and
the references therein.

123

Variable neighborhood search: basics and variants 433

Algorithm 10: Mixed VND using the best improvement search strategy

Function Mixed_VND(x , b, �max , N ′, N ′′)
N∗ = N1 ◦ N2 ◦ · · · ◦ Nb

x ′ ← x ;
repeat

stop = true;
x ← x ′;
for each y ∈ N∗(x) do

x ′′ ← B-VND(y, �max − b, N ′′) ;
if f (x ′′) < f (x ′) then

stop = f alse
x ′ ← x ′′;

end
end

until stop = true;
return x ′;

2.4 Existing combinations of VNS variants and neighborhood change step
procedures

In Table 2, we present which VND variants and which neighborhood change steps are
used together within the VNS framework up to now. Sign ‘+’ in the table means that
there is a VNS variant that employs together certain VND variant and neighborhood
change procedure, while sign ‘-’ stands for the opposite. Note that in Table 2, the
neighborhood change step provided under column ‘neigh. change step’ refers
to the one used within a VNS and not the one used within the VND. From the table, it
follows that the sequential neighborhood change step is the one widely used. Recently,
the sequential neighborhood change step is used togetherwith: (1)B-VND inCarrizosa
et al. (2013), Mladenović et al. (2013), Armas and Melián-Batista (2015), Kirlik and
Oguz (2012); (2) P-VND in Todosijević et al. (2012, 2016); (3) C-VND in Todosijević
et al. (2014); (4) Nested_VND in Todosijević et al. (2015); (5) Mixed_VND in Ilić
et al. (2010). On the other hand, the skewed neighborhood change step has been used
in combination with B-VND in Brimberg et al. (2015), Mladenović et al. (2014). To
the best of our knowledge, the other combinations of neighborhood change steps and
VND procedures have not been investigated yet and represent an open chapter for the
future research in the area of optimization.

3 Variable neighborhood search variants

3.1 Fixed neighborhood search

Fixed neighborhood search (FNS) (Brimberg et al. 2000), also known as iterated local
search (ILS) (Johnson and McGeoch 1997), is a step in between classical local search
and variable metric on the one hand and VNS on the other. Instead of generating

123

434 P. Hansen et al.

Table 2 Existing combinations of VND variants and neighborhood change step procedures

Neigh. change step VND variant

B-VND P-VND C-VND U-VND Nested_VND Mixed_VND

Sequential + + + − + +

Pipe − − − − − −
Cyclic − − − − − −
Skewed + − − − − −

initial solutions completely at random, the next starting point for local search in FNS
is a randomly generated solution taken from the vicinity of the best one found so
far (incumbent solution). With this simple modification of the multi-start local search
(MLS), two advantages are obtained: (1) improved effectiveness: some of the solution
attributes with good values in the incumbent are kept; (2) improved efficiency: the
next local search will have fewer iterations, since the incumbent will be in a deeper
valley of the solution space. To find a perturbed solution, one needs to define a neigh-
borhood structure N (x) different from N (x), the one used in the local search. The
perturbed solution x ′ will belong to N (x). The FNS (or ILS) procedure is given in
Algorithm 11.

Algorithm 11: Fixed neighborhood search
Function FNS (x,N , N , tmax)

1 fbest ← ∞
2 repeat
3 Generate perturb point x ′ ∈ N (x) at random;
4 x ′ ← LocalSearch(x ′, N)
5 if f (x ′) < fbest then
6 x ← x ′; fbest = f (x);

end
7 t ← CpuTime()

until t > tmax
8 return x;

3.2 Basic VNS

The basic VNS variant executes alternately a simple local search procedure (one of
two presented in Algorithms 6 and 7) and a shaking procedure presented in Algorithm
1 together with a neighborhood change step (one of these presented in Algorithms 2,
3, 4 and 5) until fulfilling a predefined stopping criterion. Typical stopping criteria are
a maximum number of iterations without improvement or a maximum allowed CPU
time. The steps of Basic VNS using sequential neighborhood change step are given in
Algorithm 12.

123

Variable neighborhood search: basics and variants 435

Algorithm 12: Basic variable neighborhood search
Function Basic_VNS(x , kmax , N ,N)
repeat

k ← 1;
while k ≤ kmax do

x ′ ← Shake(x, k,N);
x ′′ ← Local_search(x ′, N);
Neighborhood_change_sequential(x , x ′′, k);

end
until stopping condition is fulfilled;
return x ;

3.3 Reduced VNS

From this basic VNS scheme, several other VNS approaches have been derived. The
simplest one is so-called Reduced VNS, which employs a shaking procedure and a
neighborhood change step procedure while the improvement phase is discarded. The
steps of Reduced VNS that uses sequential neighborhood change function are given
in Algorithm 13. Note that the Monte Carlo method is a special case of reduced VNS
(i.e., if kmax = 1 andN1(x) = X, then reduced VNS turns out to be the Monte Carlo
method).

Algorithm 13: Reduced variable neighborhood search
Function Reduced_VNS(x , kmax , N)
repeat

k ← 1;
while k ≤ kmax do

x ′ ← Shake(x, k,N);
Neighborhood_change_sequential(x , x ′, k);

end
until stopping condition is fulfilled;
return x ;

3.4 General VNS

Another variant is the so-called general VNS which as an improvement procedure uses
someof theVNDprocedure presented above unlike basicVNSwhich uses just a simple
local search. Note that it is not obligatory that neighborhood structures used within the
shaking procedure and a VND procedure are the same, although it is more desirable.
The steps of a general VNS that uses sequential neighborhood change function are
given in Algorithm 14. In the algorithm, the statement of the form VND (x ′, �max, N)
means that a certain VND variant presented above is executed.

123

436 P. Hansen et al.

Algorithm 14: General variable neighborhood search
Function General_VNS(x , kmax , �max , N , N)
repeat

k ← 1;
while k ≤ kmax do

x ′ ← Shake(x, k,N);
x ′′ ← VND(x ′, �max , N);
Neighborhood_change_sequential(x , x ′′, k);

end
until stopping condition is fulfilled;
return x ;

As previously shown, regarding the best average solution quality, the best VND
approach is U-VND, while the best VND approach among those that re-center search
in the inner loop is B-VND. However, U-VND is significantly slower than B-VND.
Thus, in Mjirda et al. (2016), series of experiments are conducted to reveal whether it
is more beneficial to use, within VNS, a VND that re-centers search in the inner loop
or not. For that purpose, two GVNS heuristics are implemented and tested. The first
one named GVNS_B-VND uses B-VND as a local search, while the second named
GVNS_U-VND employs U-VND as a local search. U-VND and B-VND used within
tested GVNS heuristics explore again neighborhood structures 2-opt, insertion-1 and
insertion-2. The search strategy and order of neighborhoods used within B-VND are
determined as the ones that enable B-VND to achieve the highest performance. The
shaking procedure used for the input requires solution x and parameter k, while at the
output it returns a solution obtained executing k random 2-opt moves on the solution
x . Following the observation that the best initial solution for all VND approaches is the
one built by a greedy procedure, we provide the same greedy solution as the initial one
for both GVNS heuristics. The performances of GVNS_B-VND and GVNS_U-VND
have been disclosed on 23 TSP instances from TSPLIB (Reinelt 1991). On each
test instance, each GVNS has been executed ten times with different random seeds. In
addition, we test both GVNS using 12 different time limits ranging from 10 to 300 s. In
all testing, the GVNS parameter kmax is set to 10. The results are summarized in Fig. 4.

From the results presented in Fig. 4, we may draw the following conclusions.
GVNS_B-VND significantly outperforms GVNS_U-VND regarding solution quality
for each time limit imposed. In addition, it is worth mentioning that even with the time
limit of 300 s, GVNS_U-VND cannot reach the best or the average solution quality
obtained by GVNS_B-VND after 10 s of execution.

All in all, these observations, undoubtable confirm the superiority ofGVNS_B-VND
over GVNS_U-VND. Such outcome may be explained by the fact that U-VND used
within GVNS_U-VND is very slow compared to B-VND as demonstrated in the pre-
vious subsection. In addition, since at each iteration U-VND generates local optimum
with respect to three neighborhood structures, it may get stuck in some local optima
valley with higher probability than a VND variant that re-centers the search in the
inner loop. Thus, we may conclude that to achieve high performance of GVNS, it is
preferable to use VND variant in all iterations, but the last, and re-center the search
around a new solution which is not a local optimum for the union of neighborhoods.

123

Variable neighborhood search: basics and variants 437

Fig. 4 GVNS_U-VND versus GVNS_B-VND

3.5 Skewed VNS

SkewedVNS (S-VNS) variants are those that in the neighborhood change step accept as
new incumbent solutions that not only improve solutions, but in somecases thosewhich
are worse than the current incumbent solution. Therefore, in the so-called skewed
neighborhood change step, a trial solution is evaluated taking into account not only
the objective values of the trial and the incumbent solution, but also the distance
between them as shown in Algorithm 5. In that way, skewed VNS may successfully
resolve possible local optima traps exploring valleys far from the incumbent solution.

3.6 Nested VNS

One generalization of VNS called nested VNS (Todosijević et al. 2016) consists in
applying aVNSvariant on each point of a predefined nested (composed) neighborhood
structure, instead of applying a local search or a VND variant as it is usual. Hence, it
may be also seen as a generalization of mixed VND (see Algorithm 10). In Algorithm
15, we give steps of nested VNS which uses the best improvement search strategy
to explore the given neighborhood structure (although the first improvement search
strategy may be used as well). For performance of nested VNS, it is crucial that the
VNS applied at each point of the predefined neighborhood is very fast. For that reason,
it is desirable to use small CPU time limit as a stooping criterion for this VNS.

Since the nested VNS iterates until there is no improvement, it may be seen as a
local search procedure. Therefore, it may be used as the improvement procedure of a

123

438 P. Hansen et al.

Algorithm 15: Nested VNS using the best improvement search strategy
Function Nested_VNS(x , b,kmax , �max ,N , N ′, N ′′)
N∗ = N ′

1 ◦ N ′
2 ◦ · · · ◦ N ′

b;
x ′ ← x ;
repeat

stop = true;
x ← x ′;
for each y ∈ N∗(x) do

x ′′ ← VNS(y, kmax , �max , N , N ′′) ;
if f (x ′′) < f (x ′) then

stop = f alse;
x ′ ← x ′′;

end
end

until stop = true;
return x ′;

VNS heuristic. In that case, the resulting VNS is called two-level VNS (Mladenović
et al. 2014).

4 Advanced VNS variants

4.1 Variable neighborhood decomposition search

The main idea of the variable neighborhood decomposition search (VNDS) (Hansen
et al. 2001) is to systematically change the size of subproblems that appear in
the decomposition (from smaller to larger). Moreover the subproblems obtained by
decomposition are solved by VNS, yielding a two-level VNS approach. Namely,
unlike other VNS variants, VNDS does not launch an improvement phase in the
whole solution space of a considered problem, but within a reduced solution space
that corresponds to a reduced problem derived from the original one. The steps of
VNDS are given in Algorithm 16. In this algorithm, the solution y corresponds to
the solution obtained by decomposing the problem. Usually, it is generated so that it
has k attributes which are different from those in the current incumbent solution x .
On such generated solution, an improvement phase is applied in the reduced solution
space. Then, the solution returned by the improvement procedure is used to create the
solution of the original problem. Namely, the solution returned by the improvement
procedure together with the partial solution x ′\y constitutes a solution of the original
problem. As an improvement procedure, within VNDS, some local search procedure,
VND variant or some VNS variant may be used.

4.2 Primal–dual VNS

The primal–dual VNS (Hansen et al. 2007) is a variant of VNS that provides the
estimation of quality of the obtained solution unlike the other VNS variants. Namely,
the primal–dual VNS in the first phase uses a VNS heuristic to obtain a primal feasible

123

Variable neighborhood search: basics and variants 439

Algorithm 16: Variable neighborhood decomposition search
Function VNDS(x , kmax ,N)
repeat

k ← 1;
repeat

x ′ ← Shake(x, k,N);
y ← x ′ \ x ;
y′ ← Improvement_procedure(y);
x ′′ = (x ′ \ y) ∪ y′;
Neighborhood_change_sequential(x , x ′′, k);

until k = kmax ;
until stopping condition is fulfilled;
return x ;

solution. After that, this solution is used to deduce a dual (infeasible) solution. On
such an obtained dual solution, a VNS heuristic is applied to reduce dual infeasibility
followed by an exact method to solve relaxed dual problem and generate a lower
bound. Finally, a standard branch-and-bound algorithm is launched to find an optimal
solution of the original problem using tight upper and lower bounds, obtained from
the heuristic primal solution and the exact dual solution, respectively.

4.3 VNS for nonlinear optimization

We assume that f : Rn → R is a continuous function in (1). No further assumptions
are made on f. In particular, f does not need to be convex or smooth.

4.3.1 Glob-VNS

Several VNS-based methods for solving continuous (un)constrained optimization
problems have been proposed in the literature. For example, radar polyphase code
design is considered in Mladenović et al. (2003), Audet et al. (2004) solves the
bilinear (pooling) problem, while Liberti et al. (2009), Dražić et al. (2008) consid-
ers distance geometry. Drazić et al. (2006) suggests a VNS-based heuristic called
Glob-VNS for solving general unconstrained optimization problems. The pseudo-
code for Glob-VNS is given in Algorithm 17.

Besides tmax and kmax, the choice of the local search solver may be seen as an
additional parameter of Glob-VNS. The user can use one out of six well-known
unconstrained methods offered in the software described in Drazić et al. (2006). Three
are first-order methods (Steepest descent, Fletcher-Reeves, Variable metric), while the
other three are direct search methods (Nelder–Mead, Hooke–Jeeves, Rosenbrock). In
the shaking step, there are two aspects that need to be considered. One is the set of
neighborhood structuresNk (induced from somemetric such as the �p norm),while the
other concerns how to take a random point from Nk(x). This second question relates
to the distributionD j used to select the point. Neighborhood structuresNk are usually
induced from the �∞ norm. Radii around the incumbent are found automatically,

123

440 P. Hansen et al.

Algorithm 17: Glob-VNS algorithm for unconstrained optimization
Function Glob-VNS (x, kmax , tmax)

1 Select the set of neighborhood structures Nk , k = 1, . . . , kmax
2 Select the array of distribution types D j , j = 1, . . . , r
3 t ← 0
4 while t < tmax do
5 k ← 1 // Initialize neighborhood counter k
6 repeat
7 for all distribution types D j do
8 x ′ ← Shake(x, k) // Get x ′ ∈ Nk (x) at random with D j distribution
9 x ′′ ← LocalSearch(x ′) // Apply Local Search to get a local minimum x ′′

10 if f (x ′′) < f (x) then
11 x ← x ′′, go to 5

end
end

12 k ← k + 1
until k = kmax

13 t ← CpuTime()
end

14 return x ;

taking into account the box constraints: each coordinate is divided into kmax intervals
from both sides of the incumbent, forming kmax concentric hypercubes.

4.3.2 Gauss-VNS

VNS variants that do not use metric distances to define neighborhoods are proposed in
Toksarı and Güner (2007); Mladenović et al. (2008) extends the unconstrained solver
GLOB-VNS to the constrained case, using an exterior penalty function method; Audet
et al. (2008) and Bierlaire et al. (2010) hybridize VNS with Trust region methods;
in Carrizosa et al. (2012), GLOB-VNS is modified by the so-called Gaussian VNS
(Gauss-VNS), whose steps are given as follows (Algorithm 18).

The paradigm of neighborhoods is generalized in the Gauss VNS approach, so
that problems with unbounded domains can be addressed. The idea is to replace the
class {Nk(x)}1≤k≤kmax of neighborhoods of point x by a class of probability distribu-
tions {Pk(x)}1≤k≤kmax . The next random point in the shaking step is generated using
the probability distribution Pk(x). The probabilistic analysis linked to the choice of
distribution could be an interesting idea for future work.

4.3.3 VNS with modified Nelder Mead as a local search

A weak point of both Glob-VNS and Gauss-VNS is the fact that the choice of a
local search procedure is left completely to the user (steps 9 and 7 in Glob-VNS and
Gauss-VNS, respectively). To make the VNS method more user friendly, a restarted
modified Nelder–Mead (NM) method (Zhao et al. 2009, 2012) is suggested in Dražić
et al. (2014) as the local search for any type of optimization problem. The basic ideas
of restarted modified NM (RMNM) are: (1) a shrink move is performed one vertex at

123

Variable neighborhood search: basics and variants 441

Algorithm 18: Gauss-VNS algorithm for unconstrained optimization
Function Gauss-VNS (x, kmax , tmax)

1 Select the set of covariance matrices Σk , k = 1, . . . , kmax
2 t ← 0
3 while t < tmax do
4 k ← 1
5 repeat
6 x ′ ← Shake(x, k) // Get x ′ from a Gaussian distribution with

// mean x and covariance matrix Σk
7 x ′′ ← LocalSearch(x ′) // Apply Local Search to get a local minimum x ′′
8 k ← k + 1
9 if f (x ′′) < f (x) then

10 x ← x ′′, k ← 1
end

until k = kmax
11 t ← CpuTime()

end
12 return x;

a time, instead of moving all vertices to the direction of the best; (2) parameter values
α, β, γ, δ are taken at random from a given interval, i.e., the next simplex vertex is
obtained by

xnew = (1 + g) · x̄ − g · xn+1, (2)

where x̄ is the centroid of the simplex X = {x1, . . . , xn, xn+1}\{xn+1}, xn+1 is a
simplex vertex with the worst objective function value, and g = α, α · β, α · γ or
−γ , expressing re f lection, expansion, inside contraction and outside contraction,
respectively Zhao et al. (2012); (3) once the volume of the simplex is less than an
arbitrarily small number of ε, the procedure is restarted with the initial value of the
simplex side length size unless no improvement has been reached from the previous
big iteration. The steps of the RMNM used in the local search routine of Glob-VNS
are given in Algorithm 19.

In step 2, the initial simplex X = {x1, . . . , xn+1} is generated around a given point
x1 ∈ R

n , and then its vertices are ordered according to their quality (f (x1) ≤ · · · ≤
f (xn+1)). If a Nelder–Mead iteration is unsuccessful, i.e., if there is no point on the
line segment that connects xn+1 and centroid x̄ with better objective function value,
we perform the shrink step only for one vertex x j of the simplex X . Otherwise, the
simplex is updated: the worst point is swapped with the new one, and all vertices of X
are again ranked according to their objective function values. Once a local minimum
is reached (a big iteration ends), the procedure is restarted with the same simplex
size as the initial one, but now centered around the new local minimum. This restart
procedure allows RMNM to try to escape from the current local minimum.

4.4 VNS for mixed integer non-linear programs

In recent papers (Liberti et al. 2010, 2011) an effective and reliable mixed integer non-
linear programming (MINLP) heuristic based on VNS is suggested, called Relaxed-

123

442 P. Hansen et al.

Algorithm 19: Restarted modified NM (RMNM)
function RMNM(f, n, x∗, si ze)

1 x1 ← InitialPoint; j ← 0
repeat

2 X ← InitialSimplex(x1, si ze); X∗ ← X ; x∗ ← x1
3 while Stopping condition is not met do
4 if not MNMIteration(X) then
5 X ← X∗; j ← j + 1
6 X ← Shrink(X, j)
7 if j = n then
8 X∗ ← X ; j ← 0

end
else

9 X∗ ← X ; j ← 0
end

end
until f (x1) < f (x∗)

10 return x∗

Exact Continuous-Integer Problem Exploration (RECIPE for short). RECIPE puts
together a global search phase based onVNSand a local search phase based on a branch
and bound (B&B) type of heuristic. The VNS global phase relies on neighborhoods
defined as hyperrectangles for the continuous and general integer variables and by
local branching constraints for the binary variables. The local phase employs a B&B
solver for convexMINLPs (Fletcher and Leyffer 1998), which is applied to nonconvex
MINLPs heuristically. A local solution using a Sequential Quadratic Programming
(SQP) algorithm (Gill et al. 2002) supplies an initial constraint-feasible solution to
be employed by the B&B as initial upper bound. RECIPE (see Algorithm 20) is
an efficient, effective and reliable general-purpose algorithm for solving complex
MINLPs of small and medium scale. Note that besides tmax and kmax, the input value
in Algorithm 20 is the initial solution x∗. The original contribution of RECIPE is the
particular combination of some well-known and well-tested tools to produce a very
powerful global optimization method. It turns out that RECIPE, acting on the whole
MINLPLib library (Bussieck et al. 2003), is able to find optima equal to or better than
those reported in the literature for 55% of the instances. The closest competitor is
SBB+CONOPT with 37%. The known optima are improved in 7% of the cases.

4.5 Variable formulation space search

It is well known that many optimization problems have more than one formulation.
In the case that a problem has several formulations, very often it appears that a local
optimum with respect to one formulation is not necessarily a local optimum with
respect to another formulation. This fact has been exploited by variable formulation
space search (Mladenović et al. 2005). Its main idea is to use several formulations of
a considered problem and to switch from one to another formulation, depending on
the current state of the solution process. When the change from one formulation to

123

Variable neighborhood search: basics and variants 443

Algorithm 20: The RECIPE heuristic for solving MINLP
Function RECIPE (kmax , tmax , x∗)

1 t ← 0
2 while t < tmax do
3 k ← 1
4 while k ≤ kmax do
5 i ← 1
6 while i ≤ b do
7 Sample x̄ ∈ Nk (x

∗) at random
8 x ← SQP(x̄)
9 if x not feasible then

10 x ← x̄
end

11 x ′ ← B&B (x, k, kmax)
12 if x ′ is better than x∗ then
13 x∗ ← x ′; k ← 0; break;

end

14 i ← i + 1
end

15 k ← k + 1
end

16 t ← CpuTime()
end

17 return x∗;

another occurs, the solution resulting from the former formulation is used as an initial
solution for the latter formulation. In Algorithm 21, a formulation change procedure
is given. In this procedure, notation f (φ, x) corresponds to the objective value of the
solution x in the formulation φ, while assignment φ ← φ′ represents the change of a
formulation.

One variant of variable formulation space search is the so-called variable formu-
lation search. It uses alternative formulations of the problem to determine which
solution is more promising when they have the same value of the objective function
in the original formulation. Variable formulation search was applied to the Cutwidth
Minimization Problem in Pardo et al. (2013).

Algorithm 21: Formulation change procedure
Procedure Formulation_change(x , x ′, φ, φ′,k)
if f (φ′, x ′) < f (φ, x) then

x ← x ′; φ ← φ′; k ← 1;
else

k ← k + 1;
end

123

444 P. Hansen et al.

4.6 Matheuristics with VNS

Variable neighborhood search has been combined with solvers for mixed integer pro-
grams (MIP) in the context of providing a first feasible solution as well as finding good
quality solutions. Here, we present such heuristics used to tackle 0–1 mixed integer
programs. A 0–1 mixed integer program (MIP) may be written in the following form:

(MI P)

⎧
⎪⎪⎨

⎪⎪⎩

min v = cx
s.t. Ax ≤ b
0 ≤ x j ≤ Uj , j ∈ V = {1, . . . , n}
x j ∈ {0, 1}, j ∈ I ⊆ V

, (3)

where A is a m × n constant matrix, b is a constant vector and the set V denotes
the index set of variables, while the set I contains indices of binary variables. Each
variable x j has an upper bound denoted byUj (which equals 1 if x j is a binary variable,
while otherwise it may be infinite). The integer problem defined in this manner will
be denoted simply by MI P, while the relaxation of MI P obtained by excluding
integrality constraints will be denoted by LP . A feasible solution of MI P(LP) will
be called MI P(LP) feasible. An optimal solution of the LP problem will be denoted
by x . The set of all MIP feasible solutions will be denoted by X , i.e., X = {x ∈ R

n :
Ax ≤ b; 0 ≤ x j ≤ Uj , j ∈ V = {1, . . . , n}; x j ∈ {0, 1}, j ∈ I ⊆ V }. An optimal
solution or the best found solution obtained in an attempt to solve the MIP problem
will be denoted by x∗, while its objective value will be denoted by v∗.

Hamming distance between two solutions x and x ′ such that x j , x ′
j ∈ {0, 1}, j ∈ I

is defined by

δ(x, x ′) =
∑

j∈I
|x j − x ′

j | =
∑

j∈I
x j (1 − x ′

j) + x ′
j (1 − x j).

The partial Hamming distance between x and x ′, relative to the subset J ⊂ I, is
defined as δ(J, x, x ′) = ∑

j∈J | x j − x ′
j | (obviously, δ(I, x, x ′) = δ(x, x ′)).

The MIP relaxation of the 0-1 MIP problem relative to a subset J ⊂ I is expressed
as:

(MI P(J))

⎧
⎪⎪⎨

⎪⎪⎩

min v = cx
s.t. Ax ≤ b
0 ≤ x j ≤ Uj , j ∈ V = {1, . . . , n}
x j ∈ {0, 1}, j ∈ J ⊂ I ⊆ V

. (4)

Given an MIP problem, P min{cx | x ∈ X} and an arbitrary LP feasible solution
x0. The problem reduced from the original problem P and associated with x0 and a
subset J ⊆ I is defined as:

P(x0, J) min{cx | x ∈ X, x j = x0j for j ∈ J such that x0j ∈ {0, 1}}. (5)

Note that in the case that J = I, the reduced problem will be denoted by P(x0).

123

Variable neighborhood search: basics and variants 445

Similarly, given an MIP problem P and a solution x̃ such that x̃ j ∈ {0, 1}, j ∈
I. Then, MI P(P, x̃) will denote a minimization problem, obtained from the MIP
problem P by replacing the original objective function with δ(x, x̃):

MI P(P, x̃) min{δ(x̃, x) | x ∈ X}. (6)

The LP relaxation of such defined MIP problem MI P(P, x̃) will be denoted by
LP(P, x̃).

If C is a set of constraints, we will denote with (P | C) the problem obtained by
adding all constraints in C to the problem P .

Let α be a real number, then near(α) will refer to the nearest integer value of a
real value α, i.e., near(α) = �α + 0.5�, where �α + 0.5� represents the integer part
of the number α + 0.5 (i.e., the greatest integer ≤ α + 0.5). Furthermore, let x be a
vector, then near(x) will represent the nearest integer vector relative to the vector x ,
by defining each component as near(x) j = near(x j) = �x j + 0.5�.

4.6.1 Variable neighborhood branching

In 2006, Hansen et al. (2006) proposed variable neighborhood search (VNS) heuristic
combined with local branching (LB) (Fischetti and Lodi 2003), called variable neigh-
borhood branching (see Algorithm 22), for solving mixed-integer programs which
may be seen as a generalization of local branching. The main advantage of the pro-
posed VNS compared to the LB heuristic is the fact that it performs more systematic
neighborhood exploration than local branching (Fischetti and Lodi 2003).

Algorithm 22: Variable neighborhood descent branching
Function VND-MIP(P, tvnd , tmip, rmax , x ′);

1 Set r = 1, tstart = CpuT ime(), t = 0;
2 Set Q = P;
3 while t < tvnd and r ≤ rmax do
4 set time_limit = min{tmip, tvnd − t};
5 Q = (Q|{δ(x ′, x) ≤ r});
6 x ′′ = MIPsolve(Q, time_limit, x ′);
7 switch solution status do
8 case OptSolFound:
9 Reverse last pseudo-cut into δ(x ′, x) > r + 1;

10 x ′ = x ′′, r = 1;
11 case feasibleSolFound:
12 Replace last pseudo-cut with δ(x ′, x) ≥ 1;
13 x ′ = x ′′, r = 1;
14 case ProvenInfeasible:
15 Reverse last pseudo-cut into δ(x ′, x) > r + 1;
16 r = r + 1;
17 case nofeasiblesolfound:
18 return x ′;

endsw
19 set tend = CpuT ime(), t = tend − tstart ;

end
20 return x ′;

123

446 P. Hansen et al.

4.6.2 Hybrid variable neighborhood decomposition search heuristics

In 2010, Lazić et al. (2010) proposed a hybrid heuristic for solving 0–1 mixed inte-
ger programs which combines variable neighborhood decomposition search (VNDS)
with the CPLEX MIP solver (see Algorithm 23). The algorithm starts solving the
LP-relaxation of the original problem, obtaining an optimal solution x̄ . If the optimal
solution x̄ is integer feasible, the procedure returns x̄ as an optimal solution of the
initial problem. Otherwise, an initial feasible solution x is generated. At each iteration
of the VNDS procedure, the distances δ j = |x j − x̄ j | between the current incumbent
solution values and corresponding LP-relaxation solution values are computed. Those
distance values serve as criteria of choosing variables which will be fixed. Namely,
at each iteration, k variables, whose indices correspond to the indices of k smallest
δ j values, are fixed at their values in the current incumbent solution x . After that, the
resulting problem is solved using the CPLEX MIP solver. If an improvement of the
current solution is achieved, a variable neighborhood descent branching is launched
as the local search in the whole solution space and the process is repeated. If not, the
number of fixed variables in the current subproblem is decreased. The pseudo-code is
given in Algorithm 23. The input parameters for the VNDS algorithm are: the MIP
problem P; the parameter d, which controls the change of neighborhood size during
the search process; parameters tmax, tsub, tvnd, tmip, rmax, which represent the maxi-
mum running time allowed for VNDS, time allowed for solving subproblems, time
allowed for call to the VND-MIP procedure and time allowed for call to theMIP solver
within the VND-MIP procedure, respectively. Finally, the parameter rmax represents
the maximum size of the neighborhood to be explored within the VND-MIP proce-
dure. In the pseudo-code, the statement of the form y = FindFirstFeasible(P)

denotes a call to a generic MIP solver, an attempt to find a first feasible solution of
an input problem P . Further, the statement of the form y = MIPsolve(P, t, x∗)
denotes a call to a generic MIP solver to solve input problem P within a given time
limit t starting from the best solution found x∗.

123

Variable neighborhood search: basics and variants 447

Algorithm 23: Variable neighborhood decomposition search for 0-1 MIP
Function VNDS(P, d, tmax , tsub, tvnd , tmip, rmax);

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
2 if x MIP feasible then return x ;
3 x∗ = FindFirstFeasible(P);
4 set tstart = CpuT ime(); t = 0;
5 while t < tmax do
6 δ j =| x∗

j − x j |; index x j so that δ j ≤ δ j+1, j = 1, . . . , |I| − 1;

7 set q =| { j ∈ I | δ j �= 0} |;
8 set kstep = near(q/d), k = |I| − kstep ;
9 while t < tmax and k > 0 do

10 x ′ = MIPsolve(P(x̃, {1, . . . , k}), tsub, x∗) ;
11 if cx ′ < cx∗ then
12 x∗ = VND-MIP(P, tvnd , tmip, rmax , x ′);
13 break;

else
14 if k − kstep > |I| − q then kstep = max{near(k/2), 1};
15 set k = k − kstep ;
16 set tend = CpuT ime(), t = tend − tstart ;

end
end

end
17 return x∗;

In 2010, Hanafi et al. (2010) proposed a hybrid variable neighborhood decompo-
sition search heuristic that constitutes an improved version of variable neighborhood
decomposition search heuristic proposed in Lazić et al. (2010). The enhancement is
achieved by restricting the search space by adding pseudo-cuts, to avoid multiple
explorations of the same areas. A sequence of lower and upper bounds on the problem
objective is produced by adding pseudo-cuts, thereby reducing the integrality gap.

4.6.3 Variable neighborhood pump

In 2010, Hanafi et al. (2010) proposed a new method for finding an initial feasi-
ble solution for mixed integer programs called Variable Neighborhood Pump (VNP)
(Algorithm 24), which combines variable neighborhood branching (VNB) (Hansen
et al. 2006) and feasibility pump heuristics (Fischetti et al. 2005). The VNP works
in the following way. First, an optimal solution x of the LP-relaxation of the initial
0–1 MIP problem is determined. After that, the obtained solution is rounded and one
iteration of the FP pumping cycle is applied on it to obtain a near-feasible vector x̃ .
Then on the solution x̃ , variable neighborhood branching, adapted for 0–1 MIP feasi-
bility (Hanafi et al. 2010), is applied, in an attempt to locate a feasible solution of the
original problem. If VNB does not return a feasible solution, a pseudo-cut is added
to the current subproblem to change the linear relaxation solution, and the process is
iterated. VNB returns either a feasible solution or reports failure and returns the last
integer (infeasible) solution.

123

448 P. Hansen et al.

Algorithm 24: Variable neighborhood pump for 0-1 MIP
Function VNP(P);

1 Set proceed1 = true;
2 while proceed1 do
3 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
4 Set x̃ = near(x);
5 Set proceed2 = true;
6 while proceed2 do
7 if x is integer then return x ;
8 Solve the LP(P, x̃) problem to obtain an optimal solution x ;
9 if x̃ �= near(x) then

x̃ = near(x);
else

10 Set proceed2 = false;
end

end
11 kmin = �δ(x̃, x)�; kmax = �(|I| − kmin)/2�; kstep = (kmax − kmin)/5;
12 x ′ = VNB(P, x̃, kmin , kstep, kmax);
13 if x ′ = x̃ then
14 P = (P | δ(x, x) ≥ kmin); Update proceed1;

else
15 return x ′;

end
end

16 Output message: "No feasible solution found"; return x̃ ;

4.6.4 Diving heuristics

In 2014, Lazić et al. (2014) proposed two diving heuristics for obtaining a first MIP
feasible solution. Diving heuristics are based on the systematic hard variable fixing
(diving) process, according to the information obtained from the linear relaxation
solution of the problem. They rely on the observation that a general-purpose MIP
solver can be used not only for finding (near) optimal solutions of a given input
problem, but also for finding the initial feasible solution.

The variable neighborhood (VN) diving algorithm begins by obtaining the LP-
relaxation solution x of the original problem P and generating an initial integer
(not necessarily feasible) solution x̃ = near(x) by rounding the LP-solution x . If
the optimal solution x is integer feasible for P , VN diving stops and returns x .
At each iteration of the VN diving procedure, the distances δ j = |x̃ j − x j | from
the current integer solution values (x̃ j) j∈I to the corresponding LP-relaxation solu-
tion values (x j) j∈I are computed and the variables x̃ j , j ∈ I are indexed so that
δ1 ≤ δ2 ≤ · · · ≤ δ|I|. Then, VN diving successively solves the subproblems
P(x̃, {1, . . . , k}) obtained from the original problem P , where the first k variables
are fixed to their values in the current incumbent solution x̃ . If a feasible solution is
found by solving P(x̃, {1, . . . , k}), it is returned as a feasible solution of the orig-
inal problem P . Otherwise, a pseudo-cut δ({1, . . . , k}, x̃, x) ≥ 1 is added to avoid
exploring the search space of P(x̃, {1, . . . , k}) again and the next subproblem is exam-
ined. If no feasible solution is detected after solving all subproblems P(x̃, {1, . . . , k}),
kmin ≤ k ≤ kmax, kmin = kstep, kmax = |I| − kstep, the linear relaxation of the current

123

Variable neighborhood search: basics and variants 449

problem P , which includes all the pseudo-cuts added during the search process, is
solved and the process is iterated. If no feasible solution has been found due to the
fulfillment of the stopping criteria, the algorithm reports failure and returns the last
(infeasible) integer solution.

The pseudo-code of the VN diving heuristic is given in the Algorithm 25. The input
parameters for theVNdiving algorithmare the inputMIP problem P and the parameter
d, which controls the change of neighborhood size during the search process. In the
pseudo-code, the statement of the form y = FindFirstFeasible(P, t) denotes
a call to a generic MIP solver, an attempt to find a first feasible solution of an input
problem P within a given time limit t . If a feasible solution is found, it is assigned to
the variable y, otherwise y retains its previous value.

Algorithm 25: Variable neighborhood diving for 0-1 MIP feasibility
Function VNdiving(P, d);

1 Set proceed1 = true, proceed2 = true; Set timeLimit for subproblems;
2 while proceed1 do
3 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
4 x̃ = near(x);
5 if x = x̃ then return x̃ ;
6 δ j =| x̃ j − x j |; index x j so that δ j ≤ δ j+1, j = 1, . . . , |I| − 1;
7 Set nd =| { j ∈ I | δ j �= 0} |, kstep = near(nd/d), k = |I| − kstep ;
8 while proceed2 and k ≥ 0 do
9 Jk = {1, . . . , k}; x ′ = FindFirstFeasible(P(x̃, Jk), timeLimit);

10 if P(x̃, Jk) is proven infeasible then P = (P | δ(Jk , x̃, x) ≥ 1);
11 if x ′ is feasible then return x ′;
12 if k − kstep > |I| − nd then kstep = max{near(k/2), 1};
13 Set k = k − kstep ;
14 Update proceed2;

end
15 Update proceed1;

end
16 Output message: "No feasible solution found"; return x̃ ;

In the case of variable neighborhood diving, a set of subproblems P(x̃, Jk), for
different values of k, is examined in each iteration until a feasible solution is found. In
the single neighborhood diving procedure, we only examine one subproblem P(x̃, Jk)
in each iteration (a single neighborhood, see Algorithm 26). However, because only a
single neighborhood is examined, additional diversification mechanisms are required.
This diversification is provided through keeping the list of constraints which ensures
that the same reference integer solution x̃ cannot occur more than once (i.e., in more
than one iteration) in the solution process. An additional MIP problem Q is introduced
to store these constraints. In the beginning of the algorithm, Q is initialized as an empty
problem (see line 4 in Algorithm 26). Then, in each iteration, if the current reference
solution x̃ is not feasible (see line 8 in Algorithm 26), constraint δ(̃x, x) ≥ �δ(̃x, x)�
is added to Q (line 9). This guarantees that future reference solutions cannot be the
same as the current one, since the next reference solution is obtained by solving the
problem MIP(Q, near(x)) (see line 17), which contains all constraints from Q [see
definition (6)]. The variables to be fixed in the current subproblem are chosen among
those which have the same value as in the linear relaxation solution of the modified

123

450 P. Hansen et al.

problem LP(̃x), where x̃ is the current reference integer solution (see lines 7 and
11). The number of variables to be fixed is controlled by the parameter α (line 11).
After initialization (line 5), the value of α is updated in each iteration, depending on
the solution status returned from the MIP solver. If the current subproblem is proven
infeasible, the value ofα is increased to reduce the number of fixed variables in the next
iteration (see line 16) and thus provide better diversification. Otherwise, if the time
limit allowed for the subproblem is exceeded without reaching a feasible solution or
proving the subproblem infeasibility, the value of α is decreased. Decreasing the value
of α, increases the number of fixed variables in the next iteration (see line 17) and thus
reduces the size of the next subproblem. In the feasibility pump, the next reference
integer solution is obtained by simply rounding the linear relaxation solution x of
the modified problem LP(̃x). However, if near(x) is equal to some of the previous
reference solutions, the solution process is caught in a cycle. To avoid this type of
cycling, we determine the next reference solution as the one which is at the minimum
distance from near(x) (with respect to binary variables) and satisfies all constraints
from the current subproblem Q (see line 18). In this way, the convergence of the
variable neighborhood diving algorithm is guaranteed (see Lazić et al. 2014).

Algorithm 26: Single neighborhood diving for 0-1 MIP feasibility
Function SNDiving(P);

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;

2 Set i = 0; Set x̃0 = near(x);

3 if (x = x̃0) then return x̃0;
4 Set Q0 = ∅;
5 Set proceed = true; Set timeLimit for subproblems; Set value of α;
6 while proceed do
7 Solve the LP(P, x̃ i) problem to obtain an optimal solution x ;

8 if (�δ(̃xi , x)� = 0) then return x̃ i ;

9 Qi+1 = (Qi | δ(̃xi , x) ≥ �δ(̃xi , x)�);
10 δ j =| x̃ ij − x j |; index x j so that δ j ≤ δ j+1, j = 1, . . . , |I| − 1;

11 k = near(| { j ∈ I : x̃ ij = x j } | /α); Jk = {1, . . . , k};
12 x ′ = FindFirstFeasible(P (̃xi , Jk), timeLimit);
13 if feasible solution found then return x ′;
14 if P (̃xi , Jk) is proven infeasible then
15 Qi+1 = (Qi+1 | δ(Jk , x̃

i , x) ≥ 1); P = (P | δ(Jk , x̃
i , x) ≥ 1);

16 α = 3α/2;
else

17 if time limit for subproblem exceeded then α = max{1, α/2};
end

18 x̃ i+1 = FindFirstFeasible(MIP(Qi+1, near(x)), timeLimit);
19 if MIP(Qi+1, near(x)) is proven infeasible then Output message: “Problem P is proven

infeasible”; return;
20 i = i + 1;

end

Algorithms 22, 23, 24, 25 and 26may look at first glance that they do not necessarily
have VNS nature and therefore do not have strong connection with algorithms from
Sects. 2 and 3. However, it should be noted that those methods all systematically use

123

Variable neighborhood search: basics and variants 451

different neighborhood structures induced from the Hamming distance. In Algorithm
22, the parameter r in fact represents the neighborhood index of VND algorithm from
before. The same neighborhoods are used in Algorithm 23, where the size of the
sub-problems is larger and larger, and the number of fixed variables is smaller and
smaller. This is in fact VNDS from before, adapted for solving a 0–1 MIP problem
using general-purpose solvers such as CPLEX and Gurobi. A similar analogy holds
for Algorithms 24, 25 and 26.

4.7 Parallel VNS

Parallel VNS heuristics are usually applied for solving large instances of optimiza-
tion problems in a reasonable time. In the literature, various parallelization strategies
within VNS heuristics have been performed for this purpose. Besides straightforward
parallelization strategies [e.g., (1) parallelize local search; (2) augment the number of
solutions drawn from the current neighborhood and make a local search in parallel
from each of them; or (3) do the same as (2), but update the information about the best
solution found], several more sophisticated approaches that lead to much better per-
formance have been proposed (see e.g., Davidovic and Crainic 2013). These parallel
VNS heuristics were used to solvemany combinatorial optimization problems (e.g., p-
median problem, car sequencing problem, vehicle routing-related problems, job shop
scheduling problems, dynamic memory allocation problems) (García-López et al.
2002; Crainic et al. 2004; Sevkli and Aydin 2007; Polacek et al. 2008; Knausz 2008;
Pirkwieser and Raidl 2009; Yazdani et al. 2010; Todosijević et al. 2016; Sánchez-Oro
et al. 2015) as well as multi-objective optimization problems (see e.g., Eskandarpour
et al. 2013).

4.8 Hybrids

The VNS has been also hybridized with other metaheuristics [e.g., Tabu Search, Path
Relinking, Simulated Annealing, Greedy Randomized Adaptive Search Procedures
(GRASP), Genetic Algorithm, Particle Swarm Optimization, etc]. For example, Li
et al. (2014) combined the VNS with the chemical-reaction optimization (CRO) and
the estimation of distribution (EDA) to solve the hybrid flow shop scheduling problem.
In Oliveira et al. (2015), general variable neighborhood search was hybridized with
GRASP to solve the targeted offers problem in direct marketing campaigns. Belhaiza
et al. proposed a hybrid variable neighborhood-Tabu Search heuristic for the vehicle
routing problem with multiple time windows (Belhaiza et al. 2014), while Xiao et
al. used variable neighborhood simulated annealing algorithm to solve capacitated
vehicle routing problems. For other VNS hybridization, we refer the reader to Hansen
et al. (2010).

5 Conclusions

The basic scheme of variable neighborhood search (VNS) along with its main ingre-
dients (local search and shaking procedures) have been presented. More precisely, we

123

452 P. Hansen et al.

present most common local search procedures used within a VNS heuristic as well
as a typical shaking procedure to resolve local optima traps. In addition, the paper
contains VNS variants that have been deduced from the basic VNS scheme.

VNS-based heuristics turn out to be the state-of-the-art heuristics formanyNP-hard
optimization problems. Such performance indicates that developing VNS heuristics
for solving other NP-hard optimization problems will lead to a promising research
avenue. Thus, we believe that this paper will serve as a guide for developing new
state-of-the-art heuristics based on VNS.

References

Audet C, Béchard V, Le Digabel S (2008) Nonsmooth optimization through mesh adaptive direct search
and variable neighborhood search. J Global Optim 41(2):299–318

Audet C, Brimberg J, Hansen P, Digabel SL, Mladenović N (2004) Pooling problem: alternate formulations
and solution methods. Manag Sci 50(6):761–776

Balas E, Martin C (1980) Pivot and complement-a heuristic for 0–1 programming. Manag Sci 26:86–96
Belhaiza S, Hansen P, Laporte G (2014) A hybrid variable neighborhood tabu search heuristic for the vehicle

routing problem with multiple time windows. Comput Oper Res 52:269–281
Bierlaire M, Thémans M, Zufferey N (2010) A heuristic for nonlinear global optimization. INFORMS J

Comput 22(1):59–70
Brimberg J, Hansen P, Mladenovic N, Taillard ED (2000) Improvements and comparison of heuristics for

solving the uncapacitated multisource weber problem. Oper Res 48(3):444–460
Brimberg J, Mladenović N, Urošević D (2015) Solving the maximally diverse grouping problem by skewed

general variable neighborhood search. Inf Sci 295:650–675
BussieckMR,DrudAS,MeerausA (2003)Minlplib—acollectionof testmodels formixed-integer nonlinear

programming. INFORMS J Comput 15(1):114–119
Carrizosa E, Dražić M, Dražić Z, Mladenović N (2012) Gaussian variable neighborhood search for contin-

uous optimization. Comput Oper Res 39(9):2206–2213
Carrizosa E, Mladenović N, Todosijević R (2013) Variable neighborhood search for minimum sum-of-

squares clustering on networks. Eur J Oper Res 230(2):356–363
Crainic TG, Gendreau M, Hansen P, Mladenović N (2004) Cooperative parallel variable neighborhood

search for the p-median. J Heuristics 10(3):293–314
Davidovic T, Crainic TG (2013) Parallelization strategies for variable neighborhood search. Tecnical report

CIRRELT—2013–47
Di Gaspero L, Schaerf A (2006) Neighborhood portfolio approach for local search applied to timetabling

problems. J Math Model Algorithms 5(1):65–89
de Armas J, Melián-Batista B (2015) Variable neighborhood search for a dynamic rich vehicle routing

problem with time windows. Comput Indus Eng 85:120–131
DražićM, Lavor C,MaculanN,Mladenović N (2008)A continuous variable neighbourhood search heuristic

for finding the tridimensional structure of a molecule. Eur J Oper Res 185:1265–1273
Dražić M, Dražić Z, Mladenović N, Urošević D, Zhao QH (2014) Continuous variable neighbourhood

search with modified nelder–mead for non-differentiable optimization. IMA J Manag Math. doi:10.
1093/imaman/dpu012

Drazić M, Kovacevic-Vujcić V, Cangalović M, Mladenović N (2006) Glob—a new vns-based software for
global optimization. In: Global optimization, Springer, pp 135–154

Eskandarpour M, Zegordi SH, Nikbakhsh E (2013) A parallel variable neighborhood search for the multi-
objective sustainable post-sales network design problem. Int J Prod Econ 145(1):117–131

Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Program 104(1):91–104
Fischetti M, Lodi A (2003) Local branching. Math Prog 98:23–47
Fletcher R, Leyffer S (1998) Numerical experience with lower bounds for miqp branch-and-bound. SIAM

J Optim 8(2):604–616
García-López F, Melián-Batista B, Moreno-Pérez JA, Moreno-Vega JM (2002) The parallel variable neigh-

borhood search for the p-median problem. J Heuristics 8(3):375–388

123

http://dx.doi.org/10.1093/imaman/dpu012
http://dx.doi.org/10.1093/imaman/dpu012

Variable neighborhood search: basics and variants 453

Gill PE, Murray W, Saunders MA (2002) Snopt: an sqp algorithm for large-scale constrained optimization.
SIAM J Optim 12(4):979–1006

Glover F, McMillan C, Glover R (1984) A heuristic programming approach to the employee scheduling
problem and some thoughts on managerial robots. J Oper Manag 4(2):113–128

Hanafi S, Lazić J, Mladenović N (2010) Variable neighbourhood pump heuristic for 0–1 mixed integer
programming feasibility. Electron Notes Discrete Math 36:759–766

Hanafi S, Lazić J,Mladenović N,Wilbaut C, Crévits I (2010)Hybrid variable neighbourhood decomposition
search for 0–1 mixed integer programming problem. Electron Notes Discrete Math 36:883–890

Hansen P, Brimberg J, Uroševic D, Mladenovic N (2007) Primal-dual variable neighborhood search for the
simple plant-location problem. INFORMS J Comput 19(4):552–564

Hansen P, Mladenović N (2006) First vs. best improvement: an empirical study. Discrete Appl Math
154(5):802–817

Hansen P, Mladenović N, Pérez JAM (2010) Variable neighbourhood search: methods and applications.
Ann Oper Res 175(1):367–407

Hansen P, Mladenović N, Perez-Britos D (2001) Variable neighborhood decomposition search. J Heuristics
7(4):335–350

Hansen P, Mladenović N, Urosević D (2006) Variable neighborhood search and local branching. Comput
Oper Res 33(10):3034–3045

Ilić A, Urošević D, Brimberg J, Mladenović N (2010) A general variable neighborhood search for solving
the uncapacitated single allocation p-hub median problem. Eur J Oper Res 206(2):289–300

Johnson DS, McGeoch L (1997) The traveling salesman problem: a case study in local optimization. In:
Aarts E, Lenstra J (eds) Local search in combinatorial optimization. Wiley, New York, pp 215–310

Khemakhem M, Haddar B, Chebil K, Hanafi S (2012) A filter-and-fan metaheuristic for the 0–1 multidi-
mensional knapsack problem. Int. J. Appl Metaheuristic Comput 3:43–63

Kirkpatrick S, Toulouse G (1985) Configuration space analysis of traveling salesman problems. J Phys
46:1277–1292

Kirlik G, Oguz C (2012) A variable neighborhood search for minimizing total weighted tardiness with
sequence dependent setup times on a single machine. Comput Oper Res 39(7):1506–1520

Knausz M (2008) Parallel variable neighbourhood search for the car sequencing problem. Tecnical report,
Fakultat fur Informatik der Technischen Universitat Wien

Lazić J, Hanafi S, Mladenović N, Urosević D (2010) Variable neighbourhood decomposition search for 0–1
mixed integer programs. Comput Oper Res 37:1055–1067

Lazić J, Todosijević R, Hanafi S, Mladenović N (2014) Variable and single neighbourhood diving for mip
feasibility. Yugoslav J Oper Res. doi:10.2298/YJOR140417027L

Li J, Pan Q, Wang F (2014) A hybrid variable neighborhood search for solving the hybrid flow shop
scheduling problem. Appl Soft Comput 24:63–77

Liberti L, Lavor C, Maculan N, Marinelli F (2009) Double variable neighbourhood search with smoothing
for the molecular distance geometry problem. J Global Optim 43:207–218

Liberti L,Mladenović N, Nannicini G (2011) A recipe for finding good solutions toMINLPs.Math Program
Comput 3:349–390

Liberti L, Nannicini G, Mladenović N (2010) A good recipe for solving minlps. In: Maniezzo V, Stuetze T,
Voss S (eds) MATHEURISTICS: hybridizing metaheuristics and mathematical programming, Oper-
ations Research/Computer Science Interface Series. Springer, Berlin, pp 231–244

LüZ,Hao JK,Glover F (2011)Neighborhood analysis: a case study on curriculum-based course timetabling.
J Heuristics 17(2):97–118

Mjirda A, Todosijević R, Hanafi S, Hansen P, Mladenović N (2016) Sequential variable neighborhood
descent variants: an empirical study on the traveling salesman problem. Int Trans Oper Res. doi:10.
1111/itor.12282

Mladenović N, Dražić M, Kovačevic-Vujčić V, Čangalović M (2008) General variable neighborhood search
for the continuous optimization. Eur J Oper Res 191(3):753–770

Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100
Mladenović N, Petrović J, Kovačević-Vujčić V, Čangalović M (2003) Solving spread spectrum radar

polyphase code design problem by tabu search and variable neighbourhood search. Eur J Oper Res
151(2):389–399

Mladenović N, Plastria F, Urošević D (2005) Reformulation descent applied to circle packing problems.
Comput Oper Res 32(9):2419–2434

123

http://dx.doi.org/10.2298/YJOR140417027L
http://dx.doi.org/10.1111/itor.12282
http://dx.doi.org/10.1111/itor.12282

454 P. Hansen et al.

Mladenović N, Todosijević R, Urošević D (2013) An efficient general variable neighborhood search for
large travelling salesman problem with time windows. Yugoslav J Oper Res 23(1):19–31

Mladenović N, Todosijević R, Urošević D (2014) Two level general variable neighborhood search for
attractive traveling salesman problem. Comput Oper Res 52:341–348

MladenovićN,UroševićD, Perez-BritoD (2014)Variable neighborhood search forminimum linear arrange-
ment problem. Yugoslav J Oper Res. doi:10.2298/YJOR140928038M

Oliveira T, Coelho V, Souza MJF, Boava DLT, Boava F, Coelho IM, Coelho BN (2015) A hybrid variable
neighborhood search algorithm for targeted offers in direct marketing. Electron Notes Discrete Math
47:205–212

Pardo EG, Mladenović N, Pantrigo JJ, Duarte A (2013) Variable formulation search for the cutwidth
minimization problem. Appl Soft Comput 13(5):2242–2252

Pirkwieser S, Raidl GR (2009) Multiple variable neighborhood search enriched with ilp techniques for the
periodic vehicle routing problem with time windows. In: Hybrid metaheuristics. Springer, pp 45–59

Polacek M, Benkner S, Doerner KF, Hartl RF (2008) A cooperative and adaptive variable neighborhood
search for the multi depot vehicle routing problem with time windows. BuR Bus Res 1(2):207–218

Rego C, Glover F (2010) Ejection chain and filter-and-fan methods in combinatorial optimization. Ann
Oper Res 175(1):77–105

Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3:376–384
Sánchez-Oro J, SevauxM,Rossi A,Martí R,DuarteA (2015) Solving dynamicmemory allocation problems

in embedded systems with parallel variable neighborhood search strategies. Electron Notes Discrete
Math 47:85–92

Sevkli M, Aydin ME (2007) Parallel variable neighbourhood search algorithms for job shop scheduling
problems. IMA J Manag Math 18(2):117–133

Todosijević R, Benmansour R, Hanafi S, Mladenović N, Artiba A (2016) Nested general variable neigh-
borhood search for the periodic maintenance problem. Eur J Oper Res 252(2):385–396

Todosijević R, Hanafi S, Urošević D, Jarboui B, Gendron B (2016) A general variable neighborhood search
for the swap-body vehicle routing problem. Comput Oper Res. doi:10.1016/j.cor.2016.01.016

Todosijević R, Mjirda A, Mladenović M, Hanafi S, Gendron B (2014) A general variable neighbor-
hood search variants for the travelling salesman problem with draft limits. Optim Lett. doi:10.1007/
s11590-014-0788-9

TodosijevićR,MladenovićM,HanafiS,Crévits I (2012)Vnsbasedheuristic for solving the unit commitment
problem. Electron Notes Discrete Math 39:153–160

Todosijević R, Mladenović M, Hanafi S, Mladenović N, Crévits I (2016) Adaptive general variable neigh-
borhood search heuristics for solving the unit commitment problem. Int J Electr Power Energy Syst
78:873–883

Todosijević R, Urošević D, Mladenović N, Hanafi S (2015) A general variable neighborhood search
for solving the uncapacitated r-allocation p-hub median problem. Optim Lett. doi:10.1007/
s11590-015-0867-6

Toksarı MD, Güner E (2007) Solving the unconstrained optimization problem by a variable neighborhood
search. J Math Anal Appl 328(2):1178–1187

Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight clique problem.
Ann Oper Res 196(1):611–634

Yazdani M, Amiri M, Zandieh M (2010) Flexible job-shop scheduling with parallel variable neighborhood
search algorithm. Expert Syst Appl 37(1):678–687

Zhao Q, Mladenovic N, Uroševic D (2012) A parametric simplex search for unconstrained optimization
problem. Trans Adv Res 8:22–27

Zhao QH, Urosević D, Mladenović N, Hansen P (2009) A restarted and modified simplex search for
unconstrained optimization. Comput Oper Res 36(12):3263–3271

123

http://dx.doi.org/10.2298/YJOR140928038M
http://dx.doi.org/10.1016/j.cor.2016.01.016
http://dx.doi.org/10.1007/s11590-014-0788-9
http://dx.doi.org/10.1007/s11590-014-0788-9
http://dx.doi.org/10.1007/s11590-015-0867-6
http://dx.doi.org/10.1007/s11590-015-0867-6

	Variable neighborhood search: basics and variants
	Abstract
	1 Introduction
	2 Variable neighborhood search ingredients
	2.1 Shaking procedure
	2.2 Neighborhood change step
	2.3 Improvement procedures within VNS
	2.3.1 Local search
	2.3.2 Variable neighborhood descent procedures

	2.4 Existing combinations of VNS variants and neighborhood change step procedures

	3 Variable neighborhood search variants
	3.1 Fixed neighborhood search
	3.2 Basic VNS
	3.3 Reduced VNS
	3.4 General VNS
	3.5 Skewed VNS
	3.6 Nested VNS

	4 Advanced VNS variants
	4.1 Variable neighborhood decomposition search
	4.2 Primal--dual VNS
	4.3 VNS for nonlinear optimization
	4.3.1 Glob-VNS
	4.3.2 Gauss-VNS
	4.3.3 VNS with modified Nelder Mead as a local search

	4.4 VNS for mixed integer non-linear programs
	4.5 Variable formulation space search
	4.6 Matheuristics with VNS
	4.6.1 Variable neighborhood branching
	4.6.2 Hybrid variable neighborhood decomposition search heuristics
	4.6.3 Variable neighborhood pump
	4.6.4 Diving heuristics

	4.7 Parallel VNS
	4.8 Hybrids

	5 Conclusions
	References

