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Abstract In energy management, the unit-commitment problem deals with com-
puting the most cost-efficient production schedule that meets customer load, while
satisfying the operational constraints of the units. When the problem is large scale
and/or much modelling detail is required, decomposition approaches are vital for
solving this problem. The recent strong increase in intermittent, relative unforesee-
able production has brought forth the need of examining methods from stochastic
programming. In this paper we investigate and compare four such methods: proba-
bilistically constrained programming, robust optimization and 2-stage stochastic and
robust programming, on several large-scale instances from practice. The results show
that the robust optimization approach is computationally the least costly but difficult
to parameterize and has the highest recourse cost. The probabilistically constrained
approach is second as computational cost is concerned and improves significantly the
recourse cost functions with respect to the robust optimization approach. The 2-stage
optimization approaches do poorly in terms of robustness, because the recourse deci-
sions can compensate for this. Their total computational cost is highest. This leads
to the insight that 2-stage flexibility and robustness can be (practically) orthogonal
concepts.
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1 Introduction

Unit-commitment is an optimization problem that deals with finding the most cost-
effective production schedule while satisfying the operational constraints of the
production units. These units are typically hydro valleys, i.e. series of reservoirs con-
nected through pumps/turbines and thermal units. The obtained production schedule
has to be sent to the grid operator one day in advance. Intra-daily changes to this
schedule are allowed but need to be communicated to the grid operator at very spe-
cific moments in time. Any deviations between production and load will be highly
penalized by the grid operator. This strong incentive ensures system safety when gen-
eration companies and the grid operator are legally separated units. When uncertainty
is neglected, e.g. a forecast based approach is used, unit-commitment can already be
challenging for two reasons: the system is large scale and much modelling detail is
required for production schedules to be practically meaningful.

The recent increase in renewable generation has significantly increased overall
uncertainty in the system. This fact combined with significant theoretical/algorithmic
advances in stochastic methods has brought to the foreground stochastic program-
ming approaches in unit-commitment. In this paper we propose to compare four of
these approaches on several instances from the large-scale French system, namely
an approach based on joint probabilistic constraints, a robust optimization approach
and two-stage stochastic and robust approaches. Although, ideally one would like
to consider uncertainty on customer load, renewable generation, inflows for hydro
reservoirs and unit availability, we will focus on net load (i.e. customer load + renew-
able generation). We refer to Tahanan et al. (2015) for a recent survey on (stochastic)
optimization approaches in unit-commitment. The survey also covers methods from
robust optimization.

1.1 A structural viewpoint on (deterministic) unit-commitment

Unit-commitment problems are already challenging in a deterministic setting. The
reason for this is that the units are coupled through constraints such as the offer-
demand equilibrium constraint and are moreover subject to many complex technical
constraints, specific to the their type (thermal, hydraulic, contracts). Frequently, com-
puting an optimal production schedule of a unit, when seen as acting on a price signal,
requires specific approaches for an efficient solution.

We consider m units; for any unit indexed by i = 1, . . . ,m, we denote its decision
variables (including production) xi ∈ R

ni , its production cost fi (xi ) and its specific
production constraints xi ∈ Xi . The decision variable is x = (x1, ..., xm) ∈ R

n

where
∑m

i=1 ni = n. Units are usually linked through the offer-demand equilibrium
constraints that state, in a deterministic setting, that deviation between production and
customer load has to remain small. These constraints have the typical form:

sd ≤ D − Ax ≤ su, (1)

where sd , su ∈ R
T are operator chosen bounds, T is the number of time steps in the

considered time horizon, D ∈ R
T is the customer load and A is the T × n matrix
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summing the production in the decision vector x = (x1, ..., xm) ∈ R
n . In this paper we

will not explicitly consider network constraints, but under a DC-current assumption
this would not perturb the linear structure of (1).

An abstract formulation of (deterministic) unit-commitment then has the following
form:

minx=(x1,...,xm )

m∑

i=1

fi (xi ),

s.t. xi ∈ Xi ⊆ R
ni , i = 1, ...,m

sd ≤ D − Ax ≤ su .

Using aggregated objects f : Rn → R as f (x) = ∑m
i=1 fi (xi ),

X1 :=
m∏

i=1

Xi and X2 :=
{
y ∈ R

n : sd ≤ D − Ax ≤ su
}

,

we can write the above unit-commitment problem in a short manner as

minx∈Rn f (x)

s.t. x ∈ X1 ∩ X2. (2)

There has been quite some undertaking in formulating (2) as a mixed integer linear
program (of very large size). With the advent of strong commercial solvers for mixed
integer programming, this has become an important approach (e.g. Carrión andArroyo
2006; Morales-España et al. 2013a, b). However, the success of such an approach
strongly depends on the amount of modelling detail (i.e. the description of the sets Xi )
taken into account. We will make the assumption that decomposition approaches are
the only possible tools to solve (2). This assumption is driven by the characteristics of
the French system, both large scale and requiring substantial modelling details. This
hydro-thermal system divides into hydro valleys, a set of connected reservoirs, pumps
and turbines, and thermal units, both conventional and nuclear. The hydro valleys may
for instance rely on joint probabilistic constraints for taking into account uncertainty
on inflows (e.g. van Ackooij et al. 2014) or require a fine description of the power-to-
discharge curve (e.g. Finardi and Da Silva 2006). The thermal units are also subject
to many additional constraints beyond the model that is standard in the literature (e.g.
Tahanan et al. 2015). A popular decomposition approach is Lagrangian decomposition
of the coupling constraints, hidden in the set X2 (see Dubost et al. 2005; Frangioni
et al. 2011 and references therein). Maximizing the Lagrangian dual is of interest in
its own, since the optimal dual vector is partially used as marginal prices (e.g. Zaourar
and Malick 2013). Although, in general one cannot expect to obtain a primal feasible
solution, well-established primal recovery heuristics exist and allow us to obtain very
good solutions (see Wang et al. 1995; Beltran and Heredia 2002; Dubost et al. 2005;
Frangioni et al. 2008; Sagastizábal 2012; Zhuang and Galiana 1988).
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122 W. van Ackooij

1.2 Approaches for stochastic unit-commitment

In order to present the approaches, let us assume that D is unknown in (1). The key
modelling choice is how x relates to (partial) observation of D. If we have to decide
on x prior to observing D, the inequality system (1) is meaningless. If no changes
to x are allowed (within the model), it becomes meaningful to request that (1) holds
in a sufficiently large set of situations. A second possibility is that we are allowed
to make changes to x at a later stage in time after having observed partially D. This
leads to models involving the so-called recourse decisions. Indeed, in practice, the
solution of problem (2) defines a production schedule x (commitment decisions and
power output). This schedule is sent to the grid operator before being activated and
most importantly before observing uncertainty. If, in real time, the constraint (1) is
violated, a new production schedule, redefining both commitment decisions and power
output, can be sent to the grid operator at specific moments in time. The former change
can be particularly useful if a later moment in the day might lack production. This
implies that the recourse problem is exactly of the same structure as (2) and has the
same complexity, but with a smaller time horizon. The modelling choices discussed
here are but a few out of many (e.g. Kall and Mayer 2005).

In a first setting we do not model recourse decisions, but would like x to behave
nonetheless in a controlled manner. This leads us to replace (1) with

P[sd ≤ D − Ax ≤ su] ≥ p, (3)

where p ∈ (0, 1) is a user defined safety level and P a probability measure. The
constraint (3) is a joint probabilistic constraint. Thismeans that wewish that sd ≤ D−
Ax ≤ su holdswith high enough probability for all time steps simultaneously.We refer
to van Ackooij (2014) for a thorough discussion of such a unit-commitment model.
We also emphasize that this model differs from the individual chance-constrained
approaches considered in Ding et al. (2010), Ozturk et al. (2004). Indeed the individual
chance constraints on the offer-demand equilibrium with uncertainty on load have an
equivalent linear formulation with an additional safety term and lead to insufficient
robustness (e.g. van Ackooij et al. 2010, 2014).

This choice leads to the following probabilistically constrained unit-commitment
problem:

minx∈Rn f (x)

s.t. x ∈ X1 ∩ X2
ccp, (4)

where X2
ccp = {

x ∈ R
n : P[sd ≤ D − Ax ≤ su] ≥ p

}
.

A second related approach consists in replacing (1) with

sd ≤ D − Ax ≤ su ∀D ∈ D, (5)

where D ⊆ R
T is a user defined uncertainty set. This choice corresponds to a model

coming from robust optimization (e.g. Ben-Tal et al. 2009).
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This choice leads to the following robust unit-commitment problem:

minx∈Rn f (x)

s.t. x ∈ X1 ∩ X2
rob, (6)

where X2
rob = {

x ∈ R
n : sd ≤ D − Ax ≤ su ∀D ∈ D}

.
A final model involves modelling explicitly the recourse decisions. More pre-

cisely, we consider an abstract random process affecting uncertainty on customer
load and renewable generation denoted ξ ∈ R

k . Observing this process at time step
τ ∈ {1, ..., T } results in “observing” the net customer load D(ξ) ∈ R

T . This load
consists of D(ξ)1, ..., D(ξ)τ , the actually observed net customer load of the previous
time t = 1, . . . , τ , and D(ξ)τ+1, ..., D(ξ)T , the current best forecast of net customer
load after τ .

We introduce the appropriate modification of X2 involving the change in D denoted
as

X2(ξ) :=
{
y ∈ R

n : sd ≤ D(ξ) − Ay ≤ su
}

and the recourse cost function c : Rn × R
k → R ∪ {+∞} as

c(x, ξ) :=
⎧
⎨

⎩

miny∈Rn f (y)
s.t. y ∈ X1 ∩ X2(ξ)

Px = Py,
, (7)

where P is a �× n matrix having a single non-zero element for each line and column.
The size of � is the number of variables restricted to the first stage. The equation
Px = Py models the fact that the power output of each unit i = 1, ...,m prior to τ

is fixed and that the recourse decision y can only modify power output after τ . This
equation Px = Py can be understood as a non-anticipativity condition. We care to
emphasize that y plays exactly the same role as x , and in particular it can contain
binary variables.

The expected recourse cost function is then naturally defined as

v : Rn → R ∪ {+∞} v(x) := E (c(x, ξ)) .

This leads to the following formulation of the two-stage unit-commitment problem:

minx∈Rn f (x) + v(x)

s.t. x ∈ X1 ∩ X2. (8)

The constraints of problems (4), (6) and (8) are the same as the initial unit-
commitment problem (2). That is, we are keen on computing a first stage solution
x ∈ X1. Under the natural assumption that X2

rob ⊆ X2 and X2
ccp ⊆ X2, it is more-

over immediate that any feasible solution to problems (4), (6) and (8) is feasible for
(2).
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Note that a set of popular approaches called adaptive robust optimization (or 2-
stage robust optimization) can also be closely related to problem (8) above. Indeed
this would lead to a problem of the type:

minx∈Rn f (x) + max
D∈D

c(x, D)

s.t. x ∈ X1 ∩ X2, (9)

where D is a user defined uncertainty set. Here we have replaced the argument ξ by
D to emphasize the “non-random” nature, but the meaning of c(x, D) is immedi-
ately understood. Such a methodology is for instance considered in Bertsimas et al.
(2013), Zugno and Conejo (2013). The frequent assumption is that binary variables are
restricted to the first-stage variables. Then in principle a cutting plane methodology
can be deployed as soon as x �→ c(x, D) is convex for each D in the uncertainty setD.
The difficulty then boils down to being able to identify in an efficient way which of the
family of mappings x �→ c(x, D) is active at some given x̄ ∈ X1. For a very explicit
form of the set X1 and mapping c, the authors in Zugno and Conejo (2013) suggest
two formulations, either by using a bilinear program or a complementarity constrained
problem. The latter problem is linearized with the help of binary variables. Alterna-
tive approaches considered in Ben-Salem (2011), Minoux (2014) excessively simplify
the mapping c, i.e. problem (7) by making the assumption of simple recourse. Then
computing the value of the map x �→ maxD∈D c(x, D) and a subgradient at some
x̄ ∈ X1 can be done by using a dynamic programming method. In our setting we
wish to keep implicit the description of the set X1 and non-trivial the mapping c so
that it would seem that these 2-stage robust approaches need significant work to be
extended to this case. Still to have some idea of what such a method may give, we
will consider problem (9) wherein D is a finite set consisting of the same scenarios
as used for problem (8). The extension of the methodology for (8) presented below is
then straightforward.

1.3 Organization of this document

This paper is organized as follows: Sect. 2 sketches the approaches, assumptions
and employed algorithms. Section 3 contains the numerical results and setup of the
datasets. The paper ends with conclusions and perspectives. Appendix 1 contains an
illustrative example highlighting the differences and similarities between the suggested
approaches.

2 Details on the approaches

In this section we provide global details on how we plan to solve problems (4),
(6), (8) and (9). The suggested solution approaches involve classic ingredients from
unit-commitment that are Lagrangian dualization, Lagrangian-based primal recovery
heuristics and bundle methods (e.g. Tahanan et al. 2015; Sagastizábal 2012).
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As explained in Sect. 1, X1 can contain many binary variables, implicit constraints
and joint probabilistic constraints. In this document, we do not suppose to know X1

explicitly; we just make the following assumptions on problems (4), (6) or (8) and (9):

– Practical assumption 1: we can solve (approximatively) the (sub)problems defined
as minimizing the sum of fi and a linear term over Xi :

min
xi∈Xi

fi (xi ) + bT
i xi .

– Practical assumption 2: Lagrangian-based primal recovery heuristics (e.g. Felten-
mark and Kiwiel 2000; Takriti and Birge 2000; Borghetti et al. 2003) are readily
available to build a primal feasible solution out of primal iterates and dual infor-
mation.

– Theoretical assumption on X1: each Xi ⊂ R
ni is compact. The compactness of

X1 implies that its convex hull conv(X1) is compact as well (by (Hiriart-Urruty
and Lemaréchal 1996, III.1.4.3)). Thus, the sets X1 ∩ X2 and conv X1 ∩ X2 and
conv(X1 ∩ X2) are compact as well.

– Theoretical assumption on f : each fi : Rni → R is a closed convex function on
R
ni , bounded from below. In view of the first practical assumption above, the fi

should be simple, as piece-wise linear or quadratic. Notice that we can assume
without loss of generality that fi ≥ 0 upon replacing fi by fi (xi ) − f

i
, where f

i
is the lower bound on fi .

– Consistency assumption 1: Observe that problem (8) has implicit constraints com-
ing from v, whose domain is

Dom(v) := {x : v(x) < +∞}
=

{
x : for all ξ ∈ Ξ, ∃ y ∈ X1 ∩ X2(ξ) such that Px = Py

}
.

We assume that Dom(v) is nonempty, so that there exists a solution to (8). Note
that following our specific form of the uncertainty set D in (9), we also have
{x ∈ R

n : maxD∈D c(x, D) < ∞} = Dom(v). Consequently there exists a solu-
tion to problem (9).

– Consistency assumption 2: In problem (4), the set X1 ∩ X2
ccp is not empty so that

problem (4) admits a solution.
– Consistency assumption 3: In problem (6), the set X1 ∩ X2

rob is not empty so that
problem (6) admits a solution.

– Comparative assumption 1: The uncertainty set D of (5) is set up in such a way
that P[D ∈ D] ≥ p. This implies X2

rob ⊆ X2
ccp.

– Comparative assumption 2: The random realizations used in problem (8) are drawn
according to their joint distribution used in (3). Throughout this document we
will assume that the latter follows a (regular) multivariate Gaussian distribution
centred around the currently useddeterministic load.This assumption is reasonably
realistic (e.g. Bruhns 2005). Although we will not make the assumption in this
paper that D follows a discrete distribution with a finite set of realizations, this
assumption can be compatible with probabilistically constrained optimization.
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Indeed efficient approaches from mixed integer programming have been designed
for these situations (e.g. Lejeune 2012; Luedtke 2010, 2014). Note however that
adapting the methods presented here to that situation will not be straightforward
as the resulting set X2

ccp will be non-convex.
If network constraints are integrated in model (1) under a DC-current assumption,
then the multivariate Gaussian random variable D may be singular. In which case
the continuous differentiability of the probability function P[sd ≤ D − z ≤ su]
is altered. We refer to Henrion and Möller (2012), van Ackooij et al. (2015) for
more details and a thorough discussion of conditions under which differentiability
holds or alternatively a (Clarke)-subgradient can be identified. This technicality
does not influence the methods exposed in this paper, and they can carry through
verbatim in the case of a singular Gaussian distribution (for D).

In theory, the different methods can define the same set of “first stage” constraints:
when Dom(v) = X2

ccp = X2
rob. Obviously this is a somewhat utopic request. To

begin with, the set X2
ccp is defined by a joint probabilistic constraint, which is only

known implicitly and does not admit an analytic representation. Several authors (e.g.
Bremer et al. 2015) consider robust optimization as an approximate way to solve
chance-constrained problemsmuch like convex (safe) approximationsNemirovski and
Shapiro (2006). Fine tuning the conservativeness has led to several works (e.g. Hong
et al. 2011; Shan et al. 2014) highlighting the difficulty. The obtained formulations
typically result in a feasible set much smaller than X2

ccp. Based on the result Dyer and
Frieze (1988) several authors argue that solving joint chance-constrained programming
problems is NP-hard, since computing the volume (uniformly distributed random
variables) of a polyhedron is NP-hard. We can deduce from this that establishing an
explicit equivalent description of X2

ccp, e.g. X
2
ccp = X2

rob is in general also NP-hard.
Similarly, defining a recourse function v in such a way that Dom(v) = X2

ccp is also
quite a challenging undertaking. Consequently the suggested approaches will differ
and their comparison is non-trivial and meaningful.

2.1 Probabilistically constrained unit-commitment

Our first suggestion involves reducing the dimension of the set X2
ccp, which

is currently a subset of R
n . In order to do so, we define X̃2

ccp =
{
z ∈ R

T : P[sd ≤ D − z ≤ su] ≥ p
}
. In this formulation z ∈ R

T directly represents
the total amount of generated power for each time step. We henceforth reformulate
problem (4) as

minx∈Rn f (x)

s.t. x ∈ X1, z ∈ X̃2
ccp,

Ax = z. (10)

The coupling linear constraint Ax = z can be dualized, and the corresponding dual
problem is

max
λ∈RT

Θccp(λ), (11)
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where
Θccp(λ) = min

x∈X1,z∈X̃2
ccp

f (x) + 〈λ, Ax − z〉. (12)

Solving the optimization problem appearing in (12) is not computationally expen-
sive as it decomposes over the m production units due to the special structure of X1

and function f . One also needs to solve an additional equilibrium problem. The map-
ping Θccp : RT → R is concave. For any given λ ∈ R

T , let (x∗, z∗) be the optimal
solutions for the optimization problem in (12). Then, we have Ax∗ − z∗ ∈ ∂Θccp(λ).
Solving problem (11) can thus be carried out by a bundle method (e.g. Bonnans et al.
2006 and references therein). Solving the m subproblems inexactly can immediately
be incorporated in this framework by considering recent variants of bundle methods
(e.g. de Oliveira et al. 2014 and references therein).

The equilibrium problem has the following form:

minz∈RT λ
Tz

s.t. P[sd ≤ D − z ≤ su] ≥ p,

z ∈ Z , (13)

where Z is a polyhedral set containing additional constraints on the total amount of
generated power (e.g. bounds). Under the assumption that D follows a multivariate
Gaussian random variable, the set X̃2

ccp is convex (Prékopa 1995, Theorem 4.2.4).
Convexity can also be assured under many other distributions (e.g. Prékopa 2003;
Dentcheva 2009). Still the resulting problem (13) is a non-linear convex optimization
problem for which specific algorithms have been developed, such as supporting hyper-
plane methods (e.g. Prékopa 2003) or bundle methods (van Ackooij and Sagastizábal
2014; van Ackooij and de Oliveira 2014). For further details on the probabilistically
constrained unit-commitment problem we refer to van Ackooij (2014).

2.1.1 Primal recovery

At convergence of the bundle method solving (11), we do not only dispose of a
sequence of iterations (x�, z�) produced while evaluating (12) but also of the so-called
pseudo-schedule. The latter is an appropriate convex combination of {(x�, z�)}�≥1.
We will denote this solution by (x̂, ẑ) and remark that it is the optimal solution of
the problem bi-dual to (10). In particular ẑ ∈ X̃2

ccp since the latter set is convex. We
suggest to interpret ẑ as the “load” that needs to be generated and employ the (deter-
ministic) Lagrangian-based primal recovery heuristics where ẑ plays the role of the
deterministic load.

In the situation wherein D follows a discrete distribution, or wherein X2
ccp is non-

convex, we only have ẑ ∈ conv(X̃2
ccp). Consequently, for primal recovery, it is needed

to identify an appropriate element of the set X̃2
ccp. For instance by projecting ẑ on

X̃2
ccp, i.e. by solving:

min
z∈Z⊆RT

∥
∥z − ẑ

∥
∥2
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128 W. van Ackooij

s.t. P[sd ≤ D − z ≤ su] ≥ p

and then using the resulting solution as a substitute for “load” to be produced.Although
this will ultimately produce a feasible solution x , the effect on the “optimality” of such
a simple procedure is unclear.

2.2 Robust unit-commitment

Quite similarly as for the probabilistic unit-commitment problem, we
suggest to operate a dimension reduction first. Hence, we introduce X̃2

rob ={
z ∈ R

T : sd ≤ D − z ≤ su ∀D ∈ D}
. We reformulate problem (6) as

minx∈Rn f (x)

s.t. x ∈ X1, z ∈ X̃2
rob,

Ax = z. (14)

The coupling linear constraint Ax = z can be dualized and the corresponding dual
problem is

max
λ∈RT

Θrob(λ), (15)

where
Θrob(λ) = min

x∈X1,z∈X̃2
rob

f (x) + 〈λ, Ax − z〉. (16)

2.2.1 Structure and setup of the equilibrium problem

The aspect that still needs to be commented is the solution and setup of the equilibrium
problem. It has the following form:

minz∈RT λ
Tz

s.t. sd ≤ D − z ≤ su, ∀D ∈ D
z ∈ Z , (17)

where Z is a polyhedral set containing additional constraints on the total amount of
generated power (e.g. bounds).

Under the assumption that D ∼ N (μ,Σ) follows a multivariate Gaussian distri-
bution, we can provide an interesting form for the set D. For a centred multivariate
Gaussian random variable ξ ∈ R

T having covariance matrix Σ , it is well known that
its lines of iso-probability are of the form yTΣ−1y ≤ β. It is also readily seen that
ξTΣ−1ξ ∼ χ2(T ), where χ2(T ) is a 1-dimensional χ -squared distribution with T
degrees of freedom. Hence, if β is defined as the p-th quantile of a χ2(T ) distribu-
tion, we have P[ξ ∈ D] ≥ p, where D = {

y ∈ R
T : (y − μ)TΣ−1(y − μ) ≤ β

}
. A

computation gives β = T + Φ−1(p)
√
2T , where Φ−1 is the inverse of the standard

normal distribution function (see also van Ackooij et al. 2014). In order to understand
the subsequent reasoning, it is important to recall that
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minx∈Rn f (x),

s.t. Ax ≤ b ∀b ∈ D,

for a given function f : Rn → R, is equivalent with

minx∈Rn f (x),

s.t. Ax ≤ b,

where b ∈ R
m is defined as

bi := min
b∈D

bi .

The specific form of problem (17) therefore implies that we need to compute z, z ∈
R
T by solving T minimization and maximization problems over the uncertainty set.

However, in practice it turns out that P[ξ ∈ [z, z]] >> p, when β is defined as above.
It is therefore important to integrate a threshold, βrob ∈ (0, 1] and define

β = βrob(T + Φ−1(p)
√
2T ). (18)

Problem (17) still appears to have an infinite set of constraints but can actually be
reduced to a linear programming problem. For this we need the following auxiliary
result:

Lemma 1 Let γ ∈ R
n be given and Q be a positive definite n × n matrix, α > 0 a

scalar. Then the optimization problem

minx∈Rn γ Tx

s.t.
1

2
xTQx ≤ α

admits the optimal solution x∗ = − Q−1γ

λ∗ , where λ∗ =
√

1
2

γ TQ−1γ
α

is the optimal dual

solution and Q−1 denotes the inverse of matrix Q.

Proof Let λ ≥ 0 denote the dual multiplier belonging to the convex constraint
1
2 x

TQx ≤ α. Writing down the KKT conditions gives

γ + λQx = 0,
1

2
xTQx ≤ α,

λ ≥ 0,

λ

(
1

2
xTQx − α

)

= 0.

The form of the asserted solution x∗ follows from the first inequality. Substituting
this form in the last inequality provides the value for λ∗, which is readily seen to
be non-negative. Substituting x∗ in the second equation allows us to deduce primal
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feasibility of x∗ so that the couple (x∗,λ∗) is indeed a solution to the KKT conditions.
Since the constraint 1

2 x
TQx ≤ α satisfies the slater condition for x = 0, the pair is

also optimal. ��
It is now immediate that z ≤ D for all D ∈ D if and only if zi ≤ eT

i D for all
D ∈ D, where ei is the i th unit vector in R

T . Hence, by solving T optimization
problems of the form given in Lemma 1, one can compute z ∈ R

T such that z ≤ D
for all D ∈ D. These T problems have γ equal to e1, ...eT , respectively, Q = Σ−1

and zi = μi + x∗,i
i , where x∗,i is the optimal solution of the i th problem. Likewise

one can compute an upper bound which is zi = μi − x∗,i
i : it suffices to replace ei by

−ei in the objective function.
Problem (17) then becomes

minz∈RT λ
Tz

s.t. z ≤ z − sd

− z ≤ su − z

z ∈ Z . (19)

We care to emphasize the importance of setting βrob appropriately. A too high
value will make (19) infeasible.

After having solved (15), primal recovery can be conducted as for the probabilis-
tically constrained unit-commitment problem.

2.3 2-Stage unit-commitment

Solving (8) requires 2 steps which can be identified with the 2 decision-making stages.
The first step involves replacing v by a cutting plane model v̌k defined as

v̌k(x):= max
i=1,...,k−1

{〈ḡi , x − xi 〉 + v̄i } ≤ v(x), (20)

for values v̄i and vectors ḡi ∈ R
n . The second step deals with improving the cutting

plane model v̌k . Both steps rely on Lagrangian dualization. The Lagrangian dual of
problem (7) with respect to the coupling constraints in X2(ξ) and linking constraints
Px = Py allows us to derive a cutting plane for the mapping v at any given x . To
this end let λ1 be the dual multiplier associated with the constraints Px = Py and λ2
the multiplier associated with the constraints in the set X2(ξ). Then, for a given set of
realizations ξ1, ..., ξS with associated probabilities p1, ..., pS , we have

ḡi := PT

⎛

⎝
S∑

j=1

p j λ1(x
i , ξ j )

⎞

⎠ and v̄i :=
S∑

j=1

p jθxi ,ξ j

(
λ1(x

i , ξ j ),λ2(x
i , ξ j )

)

(21)
for the dual variables

(
λ1(xi , ξ j ),λ2(xi , ξ j )

)
. Here θx,ξ denotes the Lagrangian dual

to problem (7). Note that, we decide to aggregate cuts as above to simplify pre-
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sentation. As usual in stochastic programming (see e.g. Ruszczyński 2003), these
cuts could also be combined in other ways; see for example the so-called multi-cut
of Birge and Louveaux (1988), Birge and Louveaux (1997), which is a disaggre-
gate cutting plane model for v. Other variants consist of partially aggregating cuts as
explained in Xiong and Jirutitijaroen (2011). A second feature worth mentioning is
that maximizing the Lagrangian dual θx,ξ can be hot-started since X2(ξ) only con-
strains right-hand side uncertainty and Px = Py is linear. Consequently the solution
of the subproblems of this dual are independent of (x, ξ) and one can recycle a pre-
vious cutting plane model for θx,ξ when (x, ξ) changes to (x ′, ξ ′) with no additional
cost. When dealing with problem (9), the only modification needed is to figure out
which scenario ξ∗ is active and redefine ḡi , v̄i in (21) by setting ḡi = PTλ1(xi , ξ∗),
v̄i = θxi ,ξ∗

(
λ1(xi , ξ∗),λ2(xi , ξ∗)

)
. When the uncertainty set D consists of a finite,

not very large, collection of scenarios, one readily identifies the active scenario ξ∗.
The approximated first-stage problem

min f (x) + v̌k(x),

x ∈ X1 ∩ X2, (22)

can be reformulated as

min(x,ν) f (x) + ν,

s.t. (ḡi )Tx + v̄i ≤ ν, i = 1, . . . , k − 1

x ∈ X1 ∩ X2. (23)

Once again we suggest to consider the Lagrangian dual of problem (23) involving
multipliers for the constraints in the set X2 and k −1 multipliers belonging to the cuts
in the model v̌k(x).

The algorithm now behaves as follows. First we maximize the Lagrangian dual
to problem (22). This should be followed by a Lagrangian-based primal recovery
heuristic for recovering a feasible solution xk to problem (22). We define the observed
duality gap Δk

G := f (xk) + v̌k(xk) − Θk(μ
k, νk). Here Θk is the dual function to

problem (22) with dual multipliers μk (to the cutting plane constraints) and νk (to the
constraints in X2). The solution xk is then processed by a step enriching the model for
v, i.e. solving the S dual problems to (7). Once this step is completed, we define the
approximation errorΔk

A := v̌k+1(xk)−v̌k(xk).WheneverΔk
A is small enough,we stop

the algorithm. Note that, under usual assumptions in Bender’s type decomposition,
we can establish that the final iterate xk is aΔk

A +Δk
G -optimal solution to problem (8)

(problem (9), respectively) wherein v is replaced with an appropriately convexified
version of it (not the convex hull). This convexifiedmapping is automatically computed
by having moved to the Lagrangian dual. For full details on the approach, we refer the
reader to van Ackooij et al. (2014).

3 Numerical experiments

The approaches given in Sect. 2 do not rely on the specific form of the set X1. They,
however, all require at some stage, a primal recovery step. One of the general purpose
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Fig. 1 An example of two hydro valleys. a Ain valley. b Arc valley

heuristics is the one given in Takriti and Birge (2000) that does not rely on the specific
form of X1. In general, the primal recovery heuristics do exploit specific knowledge
of the set X1. For this reason we will restrict our model to standard choices in the unit-
commitment literature, i.e. a convex model for hydro valleys (e.g. van Ackooij et al.
2014) and a standard non-convex model for thermal units (e.g. Frangioni et al. 2011).
The data are taken from actual datasets from the French system. We will consider a
total of 96 half hourly time steps. The total number of variables describing the set
X1 is around 50000 continuous variables, 27000 binary variables and uses around
815000 constraints. The 2-stage approach will consider 50 scenarios (see Figure 2
for an example), and both stages deal with the set of technically feasible production
schedules X1. This means that part of the commitment decisions can be changed in
the second stage. Figure 1 shows two typical hydro valleys.

3.1 Description of the primal recovery heuristics

In our numerical experiments, we use a heuristic inspired by Borghetti et al. (2003).
The heuristic uses information returned by the bundle algorithm maximizing (11),
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(15) or the dual to (22). More precisely, denoting by p the number of iterations of this
algorithm and x j a primal iterate obtained at iteration j ∈ {1, . . . , p}, the heuristic
uses the following quantities:

1. the dual simplicial multipliers α of the last quadratic program that the bundle
method solved.

2. the so-called pseudo-schedule x̂ defined as
∑p

j=1 α j x j , (see Daniildis and
Lemaréchal (2005); Dubost et al. (2005));

3. the pseudo-costs (ĉ1, ..., ĉm) defined as ĉi = ∑p
j=1 α j c

j
i where c ji is the pure

production cost (i.e. not involving any Lagrange multiplier valued generation) of
subproblem i at iteration j = 1, ..., p;

4. the pseudo-commitment decisions defined as û j
i = ∑p

j=1 α j u
j
i , where u j

i ∈
{0, 1}T are the commitment decisions of each thermal plant for each iteration
j = 1, ..., p.

Another common ingredient is the resolution of an economic dispatch problem: for
a fixed set of commitment decisions, we let a continuous optimization problem adjust
production levels in order to generate a solution in X2. We begin by remarking that
the pseudo-schedule is a technically feasible solution as hydro valleys are concerned
(since these subproblems have convex feasible sets). Also the pseudo-schedule is
directly related to offer-demand equilibrium constraints through the bundle stopping
criterium. We therefore keep the pseudo-schedule as hydro valleys are concerned and
remove their generation from the load D in order to form D̃. The set of generations
assets is such that the obtained net load is always strictly positive. The heuristic is
therefore mostly concerned with thermal plants.

We begin with an initial guess for the commitment decisions called ũ, for instance
one of the commitment decisions encountered during the optimization of problems
(11), (15) or the dual to (22). We now build a time-independent priority list. This
list is related to sorting the pseudo-costs divided by total generated pseudo-power in
increasing order. A lower value indicates a unit with higher priority (best cost to power
ratio). Note that this idea is directly inspired from the heuristic presented in Borghetti
et al. (2003) wherein a time-dependent priority list is set up, by dividing the pseudo-
commitment decisions by the above pseudo-cost over pseudo-power ratio. A higher
value indicates a unit more likely to be started. We have experimented both heuristics
and found little difference. Hence, we restrict our presentation to the simpler method.

Starting from our initial commitment guess ũ, we first begin by computing the
generation envelope, i.e. the minimum and maximum power the plants can generate
over the whole time horizon at these commitment decisions. We now move from the
first time step to the last one, if D̃ is in the generation envelope, nothing more needs
to be done. If generation is insufficient, we check if we can start the highest priority
unit (if not done so already), we continue in this manner until generation covers load.
If generation is in excess, we try to decommit the lowest priority unit (if not already
off) and continue in this manner until the minimum generation is below load. The
hence-generated commitment decision is post-processed with an economic dispatch
in order to finely adjust generation to actual load. In this manner, we post-process any
of the generated commitment decisions u j , j = 1, ..., p in order to retain the best one.
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3.2 Computational results

We have tested the four approaches of Sect. 2 on a total of 6 datasets covering roughly
the year. Table 1 provides an identifier to each dataset:

We now provide for each method information related to the performance, gaps and
validation criteria. We also provide information on CPU time that should be taken as
an indication only. Various algorithmic improvements such as parallelization have not
been used, but could obviously be so, both while processing the subproblems and in
the algorithmic interior of the methods.

In Table 2, we report the results found when using the method of Sect. 2.2 on
the 6 instances. We have empirically set βrob = 0.025 in order to avoid being to
demanding as robustness is concerned. Nonetheless, one of the data sets is found to be
infeasible. This shows the difficulty in appropriately setting this parameter. We have
also evaluated the value of the probability appearing in (3) as an indication of found
feasibility (by usingGenz’ codeGenz 1992; Genz andBretz 2009). Finally the number
of dual iterations is provided as well. The values 1

2v
TΣ−1v for v = sd + Ax −E (D)

and v = su + Ax −E (D) have also been evaluated but not found to be meaningfully
interpretable. Notice that in principle these values correspond to v belonging to the
ellipsoidal uncertainty set for D, which in practice they do not, i.e. we have obtained
conservative solutions. In order to see the effect of the parameter βrob, we have varied
it slightly from0.03 to 0.05. The results are given in Tables 3 and 4.We can observe that
moving the parameter from 0.03 to 0.031 results in an additional infeasible instance.

Table 1 Instance label and corresponding date, the datasets contain 96 half hourly time steps

Instance Date # Thermal units # Hydro valleys

1 15/01/2013 106 41

2 20/03/2013 106 32

3 13/05/2013 104 35

4 22/08/2013 104 34

5 25/10/2013 104 37

6 10/12/2013 104 40

Table 2 Characteristics of the solutions with the robust optimization approach of Sect. 2.2

Instance Dual value Primal value Gap % P # It. CPU (s)

1 2.77733e7 2.78751e7 0.36 0.89 46 85

2 1.10651e7 1.10991e7 0.31 0.91 67 386

3 6.20137e6 6.22951e6 0.45 0.89 47 215

4 – – – – – –

5 4.03614e6 4.06488e6 0.71 0.87 55 186

6 1.84763e7 1.87301e7 1.37 0.89 117 197

Here βrob was set to 0.025
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Table 3 Characteristics of the solutions with the robust optimization approach of Sect. 2.2

Instance Dual value Primal value Gap % P # It. CPU (s)

1 2.78600e7 2.79594e7 0.36 0.94 48 118

2 1.10913e7 1.11251e7 0.30 0.92 71 469

3 6.22056e6 6.24777e6 0.44 0.91 33 206

4 – – – – – –

5 – – – – – –

6 1.85176e7 1.86566e7 0.75 0.91 123 287

Here βrob was set to 0.03

Table 4 Characteristics of the solutions with the robust optimization approach of Sect. 2.2

Instance Dual value Primal value Gap % P # It. CPU (s)

1 2.78768e7 2.79762e7 0.36 0.94 45 110

2 1.10965e7 1.11321e7 0.32 0.92 72 488

3 – – – – – –

4 – – – – – –

5 – – – – – –

6 1.85260e7 1.87150e7 1.02 0.92 162 363

Here βrob was set to 0.031

Table 5 Characteristics of the solutions with the probabilistically constrained optimization approach of
Sect. 2.1

Instance Dual value Primal value Gap % P # It. CPU (s) Dual-1 %

1 2.78891e7 2.79614e7 0.26 0.82 144 5813 2.76102e7

2 1.10811e7 1.11138e7 0.30 0.88 53 15503 1.09703e7

3 6.26619e6 6.30719e6 0.65 0.84 179 12309 6.20350e6

4 3.22850e6 3.26396e6 1.10 0.82 185 26012 3.19622e6

5 4.07367e6 4.11380e6 0.99 0.82 198 20940 4.03290e6

6 1.85051e7 1.88178e7 1.69 0.85 171 11510 1.83200e6

Here p was set to 0.8

When the parameter is set to 0.05 all instances were found to be infeasible. The results
also show that the dual/primal values can only be precise within the given oracle error
(here at 0.05 %).

Table 5 reports the results found when using the method of Sect. 2.1. Even though
the probability level was set to 0.8, and this is indeed the feasibility level obtained
as the “equilibrium” pseudo-solution is concerned, primal recovery slightly increases
the actually found probability level. The strongly increased CPU times with respect
to those reported in Table 2 can be attributed to the solution of the equilibrium sub-
problem: a joint probabilistically constraint problemwith random vector in dimension
96. Nonetheless, due to hot-starting of the supporting hyperplane method, only early
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Fig. 2 An illustration of 50 generated scenarios for the 2-stage approach

dual iterations are costly and require several iterations of this method. Algorithmic
improvements such as on-demand accuracy (de Oliveira and Sagastizábal 2014) and
bundle methods (van Ackooij and de Oliveira 2014; van Ackooij and Sagastizábal
2014) specially designed for probabilistically constrained optimization problems may
provide further algorithmic improvements bringing significantly down this algorith-
mic burden. An issue worth commenting is the fact that the dual bounds provided in
Table 5 are not below those found in Table 2 as one would expect. The reason for this
is two-fold:

1. the original uncertainty set D for D is set up in such a way as to satisfy P[D ∈
D] ≥ p. Consequently any feasible solution of the robust problem is feasible for
the probabilistically constrained model. However, we shrunkD in order to be less
demanding. In practice, P[z ≤ D ≤ z] ≈ 0.64, where z, z are as in (19). This
implies that several dual iterations may provide a “static solution”, i.e. solution to
problem (19) infeasible for the probabilistic constraint. This effect is illustrated in
Tables 3 and 4.

2. the subproblems during the dual iterations are solved inexactly. The thermal sub-
problems up to 0.5 % gap and the probabilistically constrained subproblem up to
1 % gap. Consequently the dual values are only precise up to 1 % as well. This is
shown in the last column of Table 5. This imprecision on the dual values also has
an effect on the primal recovery.

We provide the results for the full 2-stage stochastic approach explained in Sect. 2.3
in Table 6. One can observe that a total of roughly 2500 oracle calls (subproblem)
resolutions are needed for obtaining an optimality threshold of around 0.05 %. This
is quite reasonable, when one recalls that we are solving a problem of the size of 510
full large-scale unit-commitment problems. If each unit-commitment problem would
require between 50 and 100 dual iterations, this would require a total of 25,500–
51,000 oracle calls, about 10 times more. The primal recovery heuristic provides
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Table 6 Characteristics of the solutions with the 2-stage optimization approach of Sect. 2.3 using 50
scenarios

Instance Primal value Duality gap % Stop gap % P # It. # Or. (1st). # Or. (2nd). CPU (s)

1 2.76685e7 2.68 0.01 0.16 22 968 2637 26763

2 1.08665e7 3.43 0.05 0.15 11 589 1241 32337

3 6.01728e6 1.20 0.01 0.15 11 441 993 16046

4 3.02334e6 2.84 0.05 0.15 16 656 1961 37380

5 3.84513e6 2.70 0.05 0.16 13 713 1201 16669

6 1.85152e7 3.30 0.02 0.16 16 1035 2392 28430

Stopping criteria δtol = 0.05 %

Table 7 Probability level
obtained when producing
exactly the average load

Instance P

1 0.3295

2 0.3249

3 0.3667

4 0.3242

5 0.3157

6 0.3364

solutions with gaps of around 2 %. The obtained probability levels are lower than
what one would obtain when producing a schedule satisfying exactly the average
load. In that case one would obtain the probability levels given in Table 7. This can be
explained by the availability of additional recourse actions which allow us to re-adjust
the production levels after having observed partially the load. Due to the existence of
temporal dependencies, this observation provides useful information about the future.
The obtained costs for the reference schedule (i.e. x) are also slightly lower than those
for the probabilistically constrained and robust optimization solution, which again
can be explained by the availability of recourse decisions, which are not present in the
former models.

The results for the full 2-stage robust optimization approach are given in Table 8.
One canobserve that the computational burden is rather similar to the 2-stage stochastic
approach, as can be expected. Indeed the employed algorithm differs only in the
subgradient and function value computed during the model enrichment step explained
in Sect. 2.3. Rather surprisingly, the obtained solutions are even less robust than those
that one would obtain when using a 2-stage stochastic optimization approach. The
obtained costs related to the first-stage decision x are also above those obtained with
the probabilistically constrained solution.

Finally, Tables 9 and 10 provide the in- and out-sample recourse cost evaluated on
each of the obtained solutions. The in-sample evaluation is related to the actually seen
second-stage objective function. We have not presented the evaluation of the 2-stage
robust solution in the expected recourse cost function as this solution did worse than
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Table 8 Characteristics of the solutions with the 2-stage robust approach (9) using an uncertainty set
consisting of 50 scenarios

Instance Primal value Duality gap % Stop gap % P # It. # Or. (1st). # Or. (2nd). CPU (s)

1 2.79846e7 0.98 0.01 0.085 6 230 692 6176

2 1.12717e7 1.78 0.05 0.085 12 588 1305 32160

3 6.19538e6 1.32 0.05 0.084 7 329 682 12934

4 3.25917e6 10.6 0.01 0.084 12 498 1709 36424

5 4.13115e6 1.94 0.05 0.083 16 627 1489 23774

6 1.91428e7 2.16 0.01 0.084 8 417 1221 16043

Stopping criteria δtol = 0.05 %

Table 9 Recourse costs obtained with each approach

Instance Expected recourse cost Worst-case recourse cost

2-stage stochastic ccp rob 2-stage robust ccp rob

1 2.71700e7 2.91192e7 4.37984e7 2.85564e7 3.01098e7 4.49801e7

2 1.08317e7 1.49400e7 1.54511e7 1.14763e7 1.53260e7 1.58225e7

3 6.00571e6 6.22994e6 6.29292e6 6.35631e6 6.47817e6 6.47230e6

4 3.01836e6 3.41765e6 – 3.37643e6 3.54545e6 –

5 3.82574e6 4.27767e6 4.26898e6 4.29860e6 4.45282e6 4.44699e6

6 1.81980e7 3.72008e7 3.95870e7 1.92693e7 3.82183e7 4.04473e7

This table involves the actually used recourse function
We report both the worst-case and expected recourse cost

that obtained from the 2-stage stochastic approach. The similar symmetric observation
was also made. Note that Tables 9 and 10 show that the 2-stage solutions provides the
lower recourse cost (expected or worst case), which obviously makes sense since this
is (partially) part of the optimization criterium for this approach. Both the probabilis-
tically constrained and robust optimization solution provide a higher recourse cost.
However, with a significant advantage for the probabilistically constrained solution
which seems to preserve more flexibility than the robust optimization approach. We
have also observed that if one computes the 2-stage solutions with a too small sam-
ple size, the out-sample costs become very high. The 2-stage stochastic solution was
found to be more sensitive. For the same “insufficient” optimization sample size (here
40 samples), the 2-stage robust optimization solution still obtained correct out-sample
values (both expected and worst case), whereas the stochastic solution performed
worst than all other methods.

3.3 On scenario selection

From a Monte-Carlo viewpoint, considering only 50 scenarios may seem inappropri-
ate. Yet, this corresponds to the size of interest in practice. Météo France provides
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Fig. 3 An illustration of 50 quantized scenarios (black-dashed lines) representative of 50,000 (only 5000
shown, grey lines)

EDF with a set of 51 scenarios of temperature that can be used to derive 51 likely
scenarios of load. Being able to exploit this size in number of scenarios would there-
fore already be of interest. Secondly, both the first stage and second stage are full
large-scale unit-commitment problems. This also limits the total number of scenarios
quite below what is common in Monte-Carlo “computations”. In order to capture the
essential of the distribution, we suggest to employ methods from quantization Pagès
and Printems (2003). We have therefore generated a total of 50,000 load scenarios
following the underlying distribution and employed a variant of Lloyd’s algorithm
Lloyd (1982), Gersho and Gray (1992) implemented in Matlab’s VQDtool to obtain
a selection of 50 representative scenarios. Figure 3 shows how the obtained scenarios
overlay with the original set.

Using this set of 50 quantized scenarios, we have solved problems (8) and (9) to
obtain alternative (with respect to 50 randomly drawn scenarios) 2-stage solutions.
The computational results have been found to differ little from the results reported in
Tables 6 and 8 except for the a priori robustness obtained with the 2-stage stochastic
solution that now aligns more with the level obtained from the 2-stage robust solution
(i.e. levels of around 0.08 are observed). We have performed an in- and out-sample
evaluation of the respective recourse functions, the results of which are presented in
Table 11. It is very interesting to see that the in- and out-sample values almost per-
fectly match. This observation holds both for the worst-case and expected recourse
cost functions. This contrasts when comparing the results presented in Tables 9 and
10 where the out-sample costs are seen to be significantly higher than the in-sample
costs. This argues in favour of a scenario preprocessing step in the form of quantiza-
tion to keep the overall number of scenarios low, while still capturing many features
of the underlying distribution. When comparing the “out-sample” recourse values for
the probabilistically constrained and robust optimization solution presented in Table
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10 with the values presented in Table 11, one observes that the earlier drawn conclu-
sions regarding the classification are not altered by the quantization procedure (which
only influences the 2-stage methods as they are the only methods that are scenario
dependent).

4 Conclusions and perspectives

We have investigated four different approaches for taking uncertainty into account
in the unit-commitment problem: robust optimization, probabilistically constrained
optimization and 2-stage stochastic and robust approaches.

These approaches can be classed as follows when looking at computation times:
robust optimization, probabilistically constrained optimization and 2-stage methods.
However, it is important to highlight that the robust optimization approach is difficult
to set up. Indeed, we have empirically fine tuned the uncertainty set in order to have
a reasonable solution, yet this parametrization did not work on one of the datasets.

When examining the a priori robustness the approaches can be classified as follows:
2-stage methods, probabilistically constrained optimization and robust optimization.
Even though the uncertainty set for robust optimization was tuned in such a way as
to make these solutions comparable with the ones resulting from the probabilistically
constrained method, in practice we have observed significant over-robustness. The
2-stage solution provides even less a priori robustness than the solution meeting up
with average load. This shows that the potential for recourse is very important. Indeed
it allows one to relax the constraints (on robustness) because we observe uncertainty
in a later stage. If we take the recourse cost function as a measure of flexibility, the
methods are classed as 2-stage method, probabilistically constrained optimization and
robust optimization. These conclusions lead to the insight that 2-stage flexibility and
robustness can be (practically) orthogonal concepts.

We can therefore conclude that the probabilistically constrained solution allows
us to preserve an equilibrium between a priori robustness, computation times and
flexibility. Obviously the 2-stage approach also requires further investigation. One
could for instance add a request of a priori robustness in the second stage. Algorithmic
improvements also need to be investigated in order to smooth up the resolution of these
approaches. Early tests with a regularized supporting hyperplane method suggest that
the resolution times of the probabilistically constrained approach can be reduced on
average by 33% and sometimes even 66 %. Likewise in the 2-stage approach first-
stage regularization should bring down the number of “first stage” oracle calls and
the number of total iterations. We also suggest considering further improvements to
the 2-stage approach, on the one hand, by integrating other risk-related criteria, on the
other hand, by adding additional recourse stages.

Acknowledgements The author would like to thank three anonymous referees for their comments that
helped improve this paper.
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Appendix: Didactic toy example

In this appendix we present a small example that may help the reader visualize the
difference and similarities between the suggested models.

The set of assets consists of two thermal plants, subject to power limits and ramping
rates. There are only two stages and time steps in the problem and only the load in the
second time step, i.e. second stage, is uncertain (see Table 12 for further data).

The deterministic load is equal to d = (0.75, 0.75), and the second-stage load
varies uniformly in the interval (0.25, 1.25). The bounds in (1) are sd = (0.0,−0.1),
su = (0.0, 0.5). In what follows p1 = (p11, p

1
2) will denote the production level of

the first unit and p2 = (p21, p
2
2) that of the second.

The deterministic approach

One can readily observe that the optimal solution is to use unit 1 only and produce
(0.75, 0.5) for a total cost of 13.75. Note that the minimal stable generation of 0.5
prevents this unit from decreasing its production in the second stage further. Unit 2
remains offline.

The 2-stage approach

The situation is now rather different and partially depends on the possibility for us to
switch off unit 1 in the second time step, when d2 has been observed. If this can be
done, unit 1 can still be online in the first time step. Then a feasible strategy is one
wherein unit 1 produces 0.75 in the first time step and

1. if d2 < 0.4, shutdown unit 1 and use unit 2 to generate 0.25 MW.
2. if d2 ∈ [0.4, 1.0], unit 1 produces at MSG in the second time step
3. if d2 ∈ (1.0, 1.25], unit 1 produces d2 − 0.5 in the second time step.

One can readily compute that this solution leads to an expected cost of 15.3063. A
second feasible solution is to only use unit 2. In this situation unit 2 produces 0.75 in
the first time step and

Table 12 Characteristics of the toy example

Feature Unit 1 Unit 2

Cost/MW 3 5

Minimal stable generation (MSG) (MW) 0.5 0.25

Full load (MW) 1.25 1.25

Ramp rates (MW/h) 1 1

Startup cost 10 10

For simplicity hourly time steps are assumed
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1. if d2 < 0.75, unit 2 generates 0.25 MW in the second time step.
2. if d2 ∈ [0.75, 1.25], unit 2 produces d2 − 0.5 in the second time step.

The expected cost is 15.6250, making this a suboptimal solution.
If unit 1 has to remain online in the second stage, the first strategy described above

leads to an infeasible second-stage problem for several random realizations. Conse-
quently only the second strategy remains feasible and hence optimal.

The probabilistically constrained approach

In this situation the probability constraint (3) becomes P[d2 − 0.5 ≤ p12 + p22 ≤
d2 + 0.1] ≥ p. For a given probability level of say p = 0.55, we can observe that the
probability request can be alternatively cast as the following linear constraint 0.3 ≤
p12 + p22 ≤ 0.8. In this particular situation, the probabilistically constrained model is
more demanding than the deterministicmodel, which requests 0.25 ≤ p12+ p22 ≤ 0.85,
but the difference is not seen on the optimal solution due to the MSG restriction on the
first unit. The optimal solution is therefore to use unit 1 to generate p1 = (0.75, 0.5)
and keep unit 2 offline.

The robust constrained approach

An uncertainty set D consistent with the above probabilistically constrained model
would be D = {

d ∈ R2 : d1 = 0.75, d2 ∈ [d̄, d̄ + 0.55]}. With such an uncertainty
set, the constraint (5) related to the second time step reads d̄+0.05 ≤ p12+p22 ≤ d̄+0.1.

This leads to the following set of solutions:

1. For d̄ ∈ [0.25, 0.4), use unit 2 to produce 0.75 in the first time step and d̄ + 0.05
in the second time step. The cost of this solution lies in the interval [15.25, 16).

2. For d̄ ∈ [0.4, 0.45], use unit 1 to produce 0.75 in the first time step and 0.5 in the
second time step. The cost of this solution is 13.75.

3. For d̄ ∈ (0.45, 0.7], use unit 1 to produce 0.75 in the first time step and d̄ + 0.05
in the second time step. The total cost lies in the interval [13.75, 14.50].

The 2-stage robust approach

Here the situation depends only on the given uncertainty setD and not on the flexibility
of unit 1 as in the stochastic 2-stage approach.

Indeed, assuming that the first unit can be switched off in the second stage, then as
soon as there exists d ∈ D with d2 < 0.4, the worst-case cost of strategy 1 exhibited
in the 2-stage stochastic approach is highly costly as it involves two starting costs (it is
23.5). Consequently only the second solution involving only unit 2 is retained. If unit
1 cannot be switched off, the solution strategy involving unit 1 is not even feasible.

However, as long as any d ∈ D has d2 ≥ 0.4 the first strategy is optimal, indepen-
dently of whether or not unit 1 can be switched off or not.
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A remark on comparing 2-stage and mono-stage approaches

Following the framework laid out in (8) both 2-stage approaches compute an optimal
strategy that depends on various problem characteristics, but also a first-stage vision
of the future (called x in (7)). For, the strategy involving unit 1 this vision would be
p1 = (0.75, 0.5), p2 = (0, 0). The strategy involving unit 2 would provide a first-
stage vision p1 = (0, 0), p2 = (0.75, 0.25). Note that this first-stage vision can be
compared with the solutions obtained from the mono-stage approaches and vice versa.
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