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Abstract We consider a new hierarchy of semidefinite relaxations for the general
polynomial optimization problem (P) : f ∗ = min{ f (x) : x ∈ K } on a compact basic
semi-algebraic set K ⊂ R

n . This hierarchy combines some advantages of the standard
LP-relaxations associated with Krivine’s positivity certificate and some advantages of
the standard SOS-hierarchy. In particular it has the following attractive features: (a) in
contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of
the matrix associated with the semidefinite constraint is the same and fixed in advance
by the user; (b) in contrast to theLP-hierarchy, finite convergence occurs at the first step
of the hierarchy for an important class of convex problems; and (c) some important
techniques related to the use of point evaluations for declaring a polynomial to be
zero and to the use of rank-one matrices make an efficient implementation possible.
Preliminary results on a sample of non convex problems are encouraging.
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1 Introduction

We consider the polynomial optimization problem:

(P) : f ∗ = min
x

{ f (x) : x ∈ K }, (1)

where f ∈ R[x] is a polynomial and K ⊂ R
n is the basic semi-algebraic set

K = { x ∈ R
n : g j (x) ≥ 0, j = 1, . . . ,m}, (2)

for some polynomials g j ∈ R[x], j = 1, . . . ,m. In order to approximate (and some-
times solve exactly) (P) one may instead solve a hierarchy of convex relaxations of
(P) of increasing sizes, namely for instance,

• Semidefinite relaxations defined in Lasserre (2001) and based on Putinar’s cer-
tificate of positivity on K Putinar (1993), where the d-th convex relaxation of the
hierarchy is a semidefinite program given by

γd = max
t,σ j

⎧
⎨

⎩
t : f − t = σ0 +

m∑

j=1

σ j g j

⎫
⎬

⎭
. (3)

The unknowns σ j are sums of squares (SOS) polynomials with the degree bound
constraint, degree(σ j g j ) ≤ 2d, j = 0, . . . ,m, and the expression in (3) is a certificate
of positivity on K for the polynomial x �→ f (x) − t .

• LP-relaxations based on Krivine-Stengle’s certificate of positivity on K Krivine
(1964), Stengle (1974), where the d-th convex relaxation of the hierarchy is a linear
program given by

θd = max
λ≥0,t

⎧
⎪⎨

⎪⎩
t : f − t =

∑

(α,β)∈N2m
d

λαβ

m∏

j=1

(
g

α j
j (1 − g j )

β j
)

⎫
⎪⎬

⎪⎭
, (4)

whereN2m
d = {(α, β) ∈ N

2m :∑ j α j +β j ≤ d}. The unknown are t and the nonnega-
tive scalars λ = (λαβ), and it is assumed that 0 ≤ g j ≤ 1 onK (possibly after scaling)
and the family {1, g j } generates the algebra R[x] of polynomials. Problem (4) is an
LP because stating that the two polynomials in both sides of “=” are equal yields lin-
ear constraints on the λαβ ’s. For instance, the LP-hierarchy from Sherali–Adams RLT
Sherali andAdams (1990) and their variants Sherali andAdams (1999) are of this form.

In both cases, (γd) and (θd),d ∈ N, provide twomonotonenondecreasing sequences
of lower bounds on f ∗ and if K is compact, then both converge to f ∗ as one lets d
increases. For more details as well as a comparison of such relaxations, the reader
is referred to, e.g., Lasserre (2009, 2002) and Laurent (2003), as well as Chlamtac
and Tulsiani (2012) for the impact of LP- and SOS-hierarchies on approximation
algorithms in combinatorial optimization.

Of course, in principle, one would much prefer to solve LP-relaxations rather than
semidefinite relaxations (i.e. compute θd rather than γd ) because present LP-software
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packages can solve sparse problems with millions of variables and constraints, which
is far from being the case for today’s semidefinite solvers. Therefore the hierarchy (3)
applies to problems ofmodest size only.However if some sparsity or symmetry is taken
into account then specialized variants as in Waki et al. (2006) can handle problems
of much larger size. However, on the other hand, the LP-relaxations (4) suffer from
several serious theoretical and practical drawbacks. For instance, it has been shown
in Lasserre (2002, 2009) that the LP-relaxations cannot be exact for most convex
problems, i.e., the sequence of the associated optimal values converges to the global
optimum only asymptotically, and not in finitely many steps. Moreover, the LPs of
the hierarchy are numerically ill-conditioned. This is in contrast with the semidefinite
relaxations (3) for which finite convergence takes place for convex problems where
∇2 f (x∗) is positive definite at every minimizer x∗ ∈ K (see de Klerk and Laurent
2011, Corollary 3.3) and occurs at the first relaxation for SOS-convex1 problems
(Lasserre 2009, Theorem 3.3). In fact, as demonstrated in recent works of Marshall
(2009) and Nie (2014), finite convergence is generic even for non convex problems.

1.1 Contribution

This paper is in the vein of recent attempts in Lasserre (2013) and Ahmadi and
Majumdar (2014) to overcome the important computational burden associated with
the standard SOS-hierarchy (3). In particular, in Lasserre (2013) we have suggested
another hierarchy of convex relaxations which combines some of the advantages of
the SOS- and LP- hierarchies (3) and (4). In the present paper we take advantage of
attractive features of the SDPT3 solver Toh et al. (1999, 2003) to provide an effective
implementation of this new hierarchy. First preliminary tests on a sample of non con-
vex problems are encouraging and suggest that this new hierarchy might be efficient.
This new hierarchy is another type of SOS-hierarchy labelled BSOS (for hierarchy
with bounded degree SOS) with the following attractive features:

• In contrast to the standard SOS-hierarchy (3), for each semidefinite program

in the hierarchy, the size
(n + k

n

)
of the semidefinite matrix variable is now fixed,

parametrized by an integer k that one fixes in advance. This integer k determines the
degree of a certain SOS polynomial (for instance one may fix k = 2), whence the
label BSOS (for “bounded”-SOS). Recall that in the standard SOS-hierarchy (3) the

size of the semidefinite matrix variable is
( n + d

n

)
with rank d in the hierarchy.

• In contrast to the LP-hierarchy (4), finite convergence occurs at the first step in
the hierarchy for a large class of convex problems: typically convex problems defined
with convex quadratic polynomials or SOS-convex polynomials of degree at most k.
Recall that such finite convergence is impossible for the LP-hierarchy (4).

• Just as in the standard SOS-hierarchy (3), there also exists a sufficient condition
for finite convergence of the hierarchy. Namely, it suffices to check whether at an

1 An SOS-convex polynomial is a convex polynomial whose Hessian factors as L(x)L(x)T for some
rectangular matrix polynomial L . For instance, separable convex polynomials are SOS-convex.
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optimal solution of the corresponding SDP some associated moment matrix is rank-
one.

• Last but not least, to implement this hierarchy one uses important techniques that
dramatically alleviate the computational burden associated with a standard (careless)
implementation. Namely, to declare that two polynomials are identical one uses that
their values are equal on finitely many randomly chosen points (instead of equating
their coefficients). In addition, the SDP solver SDPT3 Toh et al. (1999, 2003) can be
used to handle efficiently some types of matrices used in our positivity certificate.

Preliminary computational experimentsFirst, we have compared our resultswith those
obtained with the GloptiPoly software Henrion et al. (2009) (devoted to solving the
SOS-hierarchy (3)) on a sample of non convex problems with up to 20 variables. For
problems with low degree (in the initial data) and/or low dimension we obtain the
global optimum, whereas good lower bounds are always obtained for problems with
high degree or higher dimension (e.g. problems with degree 4 and up to 20 variables).

Next, we have also tested the LP-hierarchy (4) on a sample of convex problems and
as expected the convergence is very poor and the resulting LPs become ill conditioned.
In addition, the LP can be expensive to solve as the LP data are typically dense. In
contrast, the new hierarchy (with smallest value k = 1 of its parameter) converges
at the first step even though some of the problems are defined with polynomials of
degree larger than 2.

We have also considered a sample of non convex quadratic problems of the form
inf{xT Ax : x ∈ �}, where � ⊂ R

n is the canonical simplex, and A is a randomly
generated real symmetric matrix with r negative eigenvalues and n−r positive eigen-
values. For all problems that could be solved with GloptiPoly (up to n = 20 variables)
we obtain the optimal values. For the other problems with n = 40, 50, 100 variables,
only the first (dense) relaxation of GloptiPoly can be implemented and yields only
a lower bound on the global optimum. For those problems, a better lower bound is
obtained in a reasonable amount of time by running the BSOS hierarchy.

Finally, we have considered the minimization of quadratic and quartic polynomials
(with up to 40 variables) on the Euclidean unit ball intersected with the positive
orthant. Again in those examples only the first SDP-relaxation of GloptiPoly can be
implemented, providing only a lower bound. In contrast, BSOS solves all problems at
step 2 of the hierarchy in a reasonable amount of time.

Of course this new hierarchy of semidefinite relaxations also has its drawbacks (at
least in its present version). Namely, some submatrix (of the matrix used to describe
the linear equality constraints of the resulting SDP) is fully dense and many of these
linear constraints are nearly dependent, which yields a lack of accuracy in the optimal
solution when the order of relaxation d is increased.

2 Main result

2.1 Notation and definitions

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn). Denote by
R[x]d ⊂ R[x] the vector space of polynomials of degree at most d, which forms a
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vector space of dimension s(d) = ( n + d
d

)
, with, e.g., the usual canonical basis (xα)

of monomials. Also, denote by 	[x] ⊂ R[x] (resp. 	[x]d ⊂ R[x]2d ) the space of
sums of squares (SOS) polynomials (resp. SOS polynomials of degree at most 2d).
If f ∈ R[x]d , we write f (x) = ∑

α∈Nn
d
fαxα in the canonical basis and denote by

f = ( fα) ∈ R
s(d) its vector of coefficients. Finally, let Sn denote the space of n × n

real symmetric matrices, with inner product 〈A,B〉 = traceAB. We use the notation
A � 0 (resp. A  0) to denote that A is positive semidefinite (definite). With g0 := 1,
the quadratic module Q(g1, . . . , gm) ⊂ R[x] generated by polynomials g1, . . . , gm ,
is defined by

Q(g1, . . . , gm) :=
⎧
⎨

⎩

m∑

j=0

σ j g j : σ j ∈ 	[x]
⎫
⎬

⎭
.

Webriefly recall two important theoremsbyPutinar (1993) andKrivine (1964), Stengle
(1974) respectively, on the representation of polynomials that are positive on K.

Theorem 1 Let g0 = 1 and K in (2) be compact.
(a) If the quadratic polynomial x �→ M − ‖x‖2 belongs to Q(g1, . . . , gm) and if

f ∈ R[x] is strictly positive on K, then f ∈ Q(g1, . . . , gm).
(b) Assume that 0 ≤ g j ≤ 1 on K for every j , and the family {1, g j } generates

R[x]. If f is strictly positive on K, then

f =
∑

α,β∈Nm

cαβ

∏

j

(
g

α j
j (1 − g j )

β j
)

,

for some (finitely many) nonnegative scalars (cαβ).

2.2 The bounded-SOS-hierarchy (BSOS)

Consider the problem

(P) : f ∗ = min{ f (x) | x ∈ K}

where K ⊂ R
n is the basic semi-algebraic set defined in (2), assumed to be compact.

Moreover we also assume that g j (x) ≤ 1 for all x ∈ K and j = 1, . . . ,m, and {1, g j }
generates the ring of polynomialsR[x]. For every fixed d ∈ N and λ = (λα), α ∈ N

2m
d ,

let Ld(·, λ) ∈ R[x] be the “Lagrangian” polynomial:

x �→ Ld(x, λ) := f (x) −
∑

(α,β)∈N2m
d

λαβ

m∏

j=1

g j (x)
α j (1 − g j (x))

β j . (5)
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With k ∈ N fixed, consider the family of optimization problems indexed by d ∈ N:

qkd := sup
λ,t

{ t | Ld(x, λ) − t ∈ 	[x]k, λ ≥ 0 }, d ∈ N. (6)

Observe that when k is fixed, then for each d ∈ N

• computing qkd in (6) reduces to solving a semidefinite program and therefore (6)
defines a hierarchy of semidefinite programs because qkd+1 ≥ qkd for all d ∈ N.

• The semidefinite constraint is associated with the constraint Ld(x, λ) − t ∈ 	[x]k
and the associated matrix has fixed size

( n + k
n

)
, independent of d ∈ N, a crucial

feature for computational efficiency of the approach.
• If k = 0 then (6) is the linear program (4) and so θd = q0d ≤ qkd for all d, k.

Interpretation For any fixed d ≥ 1, problem (P) is easily seen to be equivalent to the
following problem by adding redundant constraints:

(P̃) : f ∗ = min{ f (x) | hαβ(x) ≥ 0 ∀ (α, β) ∈ N
2m
d },

where N2m
d = {(α, β) ∈ N

2m | |α| + |β| ≤ d} and hαβ ∈ R[x] is the polynomial

x �→ hαβ(x) :=
m∏

j=1

g j (x)
α j (1 − g j (x))

β j , x ∈ R
n .

The Lagrangian dual of (P̃) is given by

(P̃∗
d ) : sup

λ

{Gd(λ) : λ ≥ 0 }

where the function Gd(·) is given by

λ �→ Gd(λ) := inf
x∈Rn

{ Ld(x, λ)}, λ ≥ 0,

and Ld(·, λ) is the Lagrangian function defined in (5).
Now for a fixed λ, the evaluation of Gd(λ) is computational intractable. However,

let k ∈ N be fixed and observe that

Gd(λ) = inf
x∈Rn

Ld(x, λ) = sup
t

{ t | Ld(x, λ) − t ≥ 0, ∀ x }
≥ sup

t
{ t | Ld(x, λ) − t ∈ 	[x]k },

where recall that 	[x]k is the space of SOS polynomials of degree at most 2k. More-
over,

f ∗ ≥ sup
λ≥0

Gd(λ) ≥ qkd , ∀ d ∈ N.
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So the semidefinite program (6) can be seen as a tractable simplification of the
intractable problem: supλ≥0 G(λ). The linear program (4) (which is (6) with k = 0)
is an even more brutal simplification so that qkd ≥ q0d = θd for all d, k. As a matter of
fact we have the more precise and interesting result.

Theorem 2 (Lasserre 2013) Let K ⊂ R
n in (2) be compact with nonempty interior

and g j (x) ≤ 1 for x ∈ K and j = 1, . . . ,m. Assume further that the family {1, g j }
generates the algebra R[x]. Let k ∈ N be fixed and for each d ∈ N, let qkd be as in (6).
Then

(a) The sequence (qkd ), d ∈ N, is monotone nondecreasing and qkd → f ∗ as
d → ∞.

(b) Moreover, assume that Slater’s condition holds, i.e., there exists x0 ∈ K such
that g j (x0) > 0 for all j = 1, . . . ,m. If f and −g j , j = 1, . . . ,m are SOS-convex2

polynomials of degree at most 2k then qk1 = f ∗, i.e., finite convergence takes places at
the first relaxation in the hierarchy. In particular when f,−g j are convex quadratic
polynomials then q11 = f ∗.

Proof The first result is a direct application of Theorem 1(b) since for any integer
d, k, f ∗ ≥ qkd ≥ q0d = θd , and by Theorem 1, θd → f ∗ as d → ∞. Next, if
Slater’s condition holds and f and −g j are SOS-convex, j = 1, . . . ,m, then there
exist nonnegative Lagrange-KKT multipliers λ ∈ R

m+ such that

∇ f (x∗) −
∑

j

λ j ∇g j (x
∗) = 0; λ j g j (x

∗) = 0, j = 1, . . . ,m.

In otherwords, theLagrangian x �→ L(x) := f (x)− f ∗−∑ j λ j g j (x) is SOS-convex
and satisfies L(x∗) = 0 and ∇L(x∗) = 0. By Helton and Nie (2010, Lemma 8, p. 33),
L is SOS (of degree at most 2k), and thus qk1 = f ∗. ��

2.3 The SDP formulation of (6)

To formulate (6) as a semidefinite program one has at least two possibilities depending
on how we state that two polynomials p, q ∈ R[x]d are identical. Either by equating
their coefficients (e.g. in the monomial basis), i.e., pα = qα for all α ∈ N

n
d , or by

equating their values on
( n + d

n

)
generic points (e.g. randomly generated on the box

[−1, 1]n). In the present context of (6) we prefer the latter option since expanding the
polynomial hαβ(x) symbolically to get the coefficients with respect to the monomial
basis can be expensive and memory intensive.

2 A polynomial f ∈ R[x] is SOS-convex if its Hessian∇2 f is an SOSmatrix, i.e.,∇2 f (x) = L(x) L(x)T

for some matrix polynomial L ∈ R[x]n×p and some p ∈ N.

123



94 J. B. Lasserre et al.

Let τ = max{deg( f ), 2k, d max j {deg(g j )}}. Then for k fixed and for each d, we
get

qkd = sup
{
t | f (x) − t −

∑

(α,β)∈N2m
d

λαβ hαβ(x) = 〈Q, vk(x)vk(x)
T 〉;

Q ∈ Ss(k)
+ , λ ≥ 0

}
(7)

= sup

⎧
⎪⎨

⎪⎩
t
∣
∣
∣

f (x (p)) = t +
∑

(α,β)∈N2m
d

λαβ hαβ(x (p)) + 〈Q, vk(x
(p))vk(x

(p))T 〉,

p = 1, . . . , L , Q ∈ Ss(k)
+ , λ ≥ 0, t ∈ R

⎫
⎪⎬

⎪⎭

(8)

where L := |Nn
τ | =

(
n + τ

n

)
and {x (p) ∈ R

n | p = 1, . . . , L} form a set of generic

points in [−1, 1]n , and vk(x) is the vector of the monomial basis of R[x]k , the vector
space of polynomials of degree at most k

(
whose dimension is s(k) =

(
n + k
k

))
.

Therefore, if the optimal value qkd of (7) is finite then every optimal solution
(qkd , λ

∗, Q∗) of (7) is also an optimal solution of (8).

Remark 1 To get a set of generic points one may first start with a set � of L points
randomly generated, e.g., according to the uniform distribution on [0, 1]n . Then it is
well known that with probability one, the resulting collection of equality constraints
in (8) is equivalent to the polynomial identity in (7). In principle, once such a set �

has been generated, the equivalence is guaranteed if the matrix

R(�) := [ vτ (x (1)), . . . , vτ (x (L))
]

is nonsingular. In the unlikely event that R(�) is singular, one can generate another
sample � of random points and check again whether the new corresponding matrix
R(�) is singular or not. If not, the procedure is repeated until a non-singular matrix
R(�) is obtained. However, in practice there is little need to do so since the above
matrix R(�) is nonsingular with probability one.

2.4 Sufficient conditions for finite convergence

By looking at the dual of the semidefinite program (8) one obtains sufficient conditions
for finite convergence. To describe the dual of the semidefinite program (8) we need
to introduce some notation.

For every p = 1, . . . , L , denote by δx (p) the Dirac measure at the point x (p) ∈ R

and let 〈q, δx (p)〉 = q(x (p)) for all p = 1, . . . , L , and all q ∈ R[x].
With a real sequence y = (yα), α ∈ N

n
2, denote by M(y) the moment matrix

associated with y. It is a real symmetric matrix with rows and columns indexed byNn
 ,

and with entries

M(y)(α, β) = yα+β, ∀α, β ∈ N
n
 .
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Similarly, for j = 1, . . . ,m, letting g j (x) = ∑
γ g jγ xγ , denote by M(g j y) the

localizing matrix associated with y and gi ∈ R[x]. Its rows and columns are also
indexed by N

n
 , and with entries

M(g j y)(α, β) =
∑

γ∈Nn

g jγ yα+β+γ , ∀α, β ∈ N
n
 .

Moment and localizing matrices play an important role in semidefinite relaxations of
polynomial optimization problems. For more details the interested reader is referred
to Lasserre (2009).

The dual of the semidefinite program (8) reads

q̃kd := inf
θ∈RL

L∑

p=1

θp 〈 f, δx (p)〉

s.t.
L∑

p=1

θp (vk(x
(p)) vk(x

(p))T ) � 0

L∑

p=1

θp 〈hαβ, δx (p)〉 ≥ 0, (α, β) ∈ N
2m
d

L∑

p=1

θp = 1.

(9)

(Notice that the weights θp are not required to be nonnegative.) By standard weak
duality in convex optimization, and for every fixed k ∈ N, one has

f ∗ ≥ q̃kd ≥ qkd , ∀d ∈ N.

Next, we have the following verification lemma.

Lemma 1 Let K in (2) be compact with nonempty interior and assume that there
exists x0 ∈ K such that 0 < g j (x0) < 1 for all j = 1, . . . ,m.

(a) For every fixed d sufficiently large (say d ≥ d0), the semidefinite program (7)
(and thus (8) as well) has an optimal solution.

(b) Let s ∈ N be the smallest integer such that 2s ≥ max[deg( f ); deg(g j )], and
let r := max j�deg(g j )/2�. Let θ∗ ∈ R

L be an optimal solution of (9) (whenever it
exists) and let y∗ = (y∗

α), α ∈ N
n
2s , with

y∗
α :=

L∑

p=1

θ∗
p (x (p))α, α ∈ N

n
2s . (10)

• If rankMs(y∗) = 1 then q̃kd = f ∗ and x∗ = (y∗
α), |α| = 1, i.e., x∗ =

∑L
p=1 θ∗

p x
(p), is an optimal solution of problem (P).
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96 J. B. Lasserre et al.

• If Ms(y∗) � 0, Ms−r (g j y∗) � 0, j = 1, . . . ,m, and rankMs(y∗) =
rankMs−r (y∗), then q̃kd = f ∗, and problem (P) has rankMs(y∗) global minimiz-
ers that can be extracted by a linear algebra procedure.

The proof is postponed to the Appendix. Notice that we do not claim that problem
(9) has always an optimal solution. Lemma 1 is a verification lemma (or a stopping
criterion) based on some sufficient rank condition onMs(y∗) andMs−r (y∗), provided
that an optimal solution y∗ exists. When the latter condition holds true then f ∗ = q̃kd
and we can stop as at least one global optimal solution x∗ ∈ K has been identified.

2.5 On the rank-one matrices of (6) and SDPT3

Note that in the SDP (8), the constraint matrices associated with Q are all dense rank-1
matrices of the form Ap = vk(x (p))vk(x (p))T . Thus if we let v p = vk(x (p)), then the
linear maps involved in the equality constraints of the SDP can be evaluated cheaply
based on the following formulas:

A(X) :=
[
〈Ap, X〉

]L

p=1
=
[
〈v p, Xv p〉

]L

p=1
, A∗y :=

L∑

y=1

yp Ap = V Diag(y)V T ,

where X ∈ Ss(k), y ∈ R
L , V = [v1, . . . , vL ] ∈ R

s(k)×L . Moreover, one need
not store the dense constraint matrices {Ap | p = 1, . . . , L} but only the vectors
{v p | p = 1, . . . , L}. To solve the SDP (8) efficiently, we need to exploit the rank-
1 structure of the constraint matrices during the iterations. Fortunately, the SDPT3
solver Toh et al. (1999, 2003) based on interior point methods has already been
designed to exploit such a rank-1 structure to minimize the memory needed to store
the constraint matrices, as well as to minimize the computational cost required to
compute the Schur complement matrix arising in each interior-point iteration. More
precisely, in each iteration where a positive definite matrix W ∈ Ss(k) is given, one
needs to compute the Schur complement matrix S whose (p, q) element is given
by

Spq = 〈Ap,W AqW 〉 = 〈v pv
T
p ,Wvqv

T
q W 〉 = 〈v p,Wvq〉2, p, q = 1, . . . , L .

It is the combination of these two implementation techniques (point evaluation in
the formulation and exploiting rank-one structure in the interior point algorithm) that
makes our implementation of the SOS-hierarchy (6) efficient.

3 Computational issues

Given f ∈ R[x]d , to efficiently evaluate the vector f (x (p)), p = 1, . . . , L , we need
a convenient representation of the polynomial f (x). In our implementation of BSOS,
we use the following data format to input a polynomial:

F(i, 1 : n + 1) = [αT , fα]
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A bounded degree SOS hierarchy for polynomial optimization 97

where fα is the i th coefficient corresponding to the monomial xα . Note that the enu-
meration of the coefficients of f (x) is not important. For a given point z ∈ R

n such
that zi �= 0 for all i = 1, . . . , n, we evaluate f (z) via the following procedure written
inMatlab syntax:

Step 1: Set P = F(:, 1 : n), f = F(:, n + 1), and s = (s1, . . . , sn)T , where si = 1
if zi < 0, and si = 0 if zi ≥ 0.

Step 2: Compute s̄ = rem(Ps, 2) and z = exp(P log |z|).
Step 3: Compute f (z) = 〈 f (a), z(a)〉−〈 f (b), z(b)〉,where f (a) = f (find(s̄ == 0))

and f (b) = f (find(s̄ == 1)).

(The above procedure can bemodified slightly to handle the casewhen z has some zero
components.)Note that in the above procedure, 〈 f (a), z(a)〉 and 〈 f (b), z(b)〉 correspond
to the sum of positive terms and sum of negative terms in the evaluation of f (z). By
separating the summation of the positive and negative terms in the evaluation of f (z),
it is hoped that cancellation errors can be minimized.

We should mention that some of the equality constraints in (8) may be redundant.
For the sake of reducing the computational cost and improve the numerical stability, we
remove these redundant constraints before solving the SDP. However, as d increases,
the linear constraints would become more and more nearly dependent, and typically
the SDP problem cannot be solved accurately by either SDPT3 or SEDUMI.

Another numerical issue which we should point out is that the constraint matrix

⎡

⎢
⎢
⎣

(
hαβ(x (1))

)

(α,β)∈N2m
d

...(
hαβ(x (L))

)

(α,β)∈N2m
d

⎤

⎥
⎥
⎦

associated with the nonnegative vector (λαβ) is typically fully dense. Such a matrix
would consume too much memory and also computational cost when d increases or
when m is large.

4 Numerical experiments

We call our approach BSOS (for hierarchy with bounded degree SOS). As mentioned
in the Introduction, we conduct experiments on three classes of problems which will
be described in the ensuing subsections.

4.1 Comparison of BSOS with gloptiploy

We construct a set of test functions with 5 constraints. The test functions are mainly
generated based on the following two problems:
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(P1) f = x21 −x22 +x23 −x24 +x1 −x2
s.t. 0 ≤ g1 = 2x21 + 3x22 + 2x1x2 + 2x23 + 3x24 + 2x3x4 ≤ 1

0 ≤ g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 ≤ 1
0 ≤ g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 ≤ 1
0 ≤ g4 = x21 + 4x22 − 3x1x2 + x23 + 4x24 − 3x3x4 ≤ 1
0 ≤ g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 ≤ 1
0 ≤ x .

The optimal value of (P1) is f (x∗) = −0.57491, as computed by GloptiPoly3. For
BSOS, we get the result qk=1

d=1 = −0.57491, which is the exact result.
The second problem is

(P2) f = x41 x
2
2 + x21 x

4
2 − x21 x

2
2

s.t. 0 ≤ g1 = x21 + x22 ≤ 1
0 ≤ g2 = 3x21 + 2x22 − 4x1x2 ≤ 1
0 ≤ g3 = x21 + 6x42 −8x1x2 + 2.5 ≤ 1
0 ≤ g4 = x41 + 3x42 ≤ 1
0 ≤ g5 = x21 + x32 ≤ 1

0 ≤ x1, 0 ≤ x2.

The optimal value of (P2) is f (x∗) = −0.037037, as computed by GloptiPoly3. The
results obtained by BSOS are

qk=3
d=1 = −0.041855, qk=3

d=2 = −0.037139, qk=3
d=3 = −0.037087

qk=3
d=4 = −0.037073, qk=3

d=5 = −0.037046
qk=4
d=1 = −0.038596, qk=4

d=2 = −0.037046, qk=4
d=3 = −0.037040

qk=4
d=4 = −0.037038, qk=4

d=5 = −0.037037.

Based on the above two problems, we increase the degree of the objective function
and constraint functions to generate other test instances which are given explicitly in
the Appendix.

Table 1 compares the results obtained by BSOS and GloptiPoly3 for the tested
instances. We observe that BSOS can give the exact result for those problems with
either low degree or low dimension, while also providing a good lower bound for high-
degree and high-dimensional problems. In particular on this sample of problems, k

is chosen so that the size of the semidefinite constraint

(

which is

(
n + k
n

))

is the

same as the one needed in GloptiPoly, to certify global optimality. Then notice that
BSOS succeeds in finding the optimal value even though the positivity certificate used
in (8) is not Putinar’s certificate (3) used in GloptiPoly. In addition, for most of test
problems, BSOS can usually get better bounds as d increases, and in most cases, the
bound is good enough for small d = 2, 3.

In Table 1, we also use the sufficient condition stated in Lemma 1 to check whether
the generated lower bound is indeed optimal. For quite a number of instances, the
moment matrix M(y∗) associated with the optimal solution θ∗ of (9) indeed has
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numerical rank equal to one (we declare that thematrix has numerical rank equal to one
if the largest eigenvalue is at least 104 times larger than the second largest eigenvalue),
which certifies that the lower bound is actually the optimal value. We should note that
for some of the instances, although the lower bound is actually the optimal value (as
declared by GloptiPoly), but the rank of the moment matrixM(y∗) is larger than one.

4.2 Comparison of BSOS with the LP relaxations of Krivine-Stengle on convex
problems

Here we compare the performance of BSOS with the LP relaxations of Krivine-
Stengle on convex problems where each test problem has 5 constraint functions
in addition to the nonnegative constraint x ≥ 0. Note that the LP relaxation
problem has exactly the same form as in (8), except that the positive semidef-
inite matrix variable Q is set to 0. We should mention that even though the
Krivine-Stengle scheme generates LP problems instead of SDP problems, the
size of the corresponding LP problems also increases rapidly with d, like for
the BSOS scheme. In particular, in both LP- and BSOS-relaxations, the dimen-

sion of the nonnegative variable λ is
(
2m + d

d

)
, and the constraint matrix is fully

dense.
(
The BSOS-relaxations include an additional semidefinite constraint with fixed

matrix size
(
n + k
k

)
.
)
The following example illustrates the performance of LP relax-

ation method:

(C1) min f = x41 + x42 +2x21 x
2
2 − x1 − x2

s.t. 0 ≤ g1 = −x41 −2x42 +1
0 ≤ g2 = −2x41 −x42 +1
0 ≤ g3 = −x41 − 4x22 +1.25
0 ≤ g4 = −4x41 −x42 +1.25
0 ≤ g5 = −2x41 −3x22 +1.1
0 ≤ x1
0 ≤ x2.

For this problem, the functions f and −gi ’s are all convex. The optimal value for
this problem is f (x∗) = −0.7500, as computed by GloptiPoly3. For BSOS, we get
qk=2
d=1 = −0.7500, and we obtained the exact result by just choosing d = 1. This
observation is consistent with Theorem 4.1 in Lasserre (2013). For the LP relaxation
method, we get the following values for various choices of d:

qLP
d=1 = infeasible, qLP

d=2 = −1.2200,

qLP
d=3 = −1.0944, qLP

d=4 = −0.9696, qLP
d=5 = fail.

Observe that when d increases, we could get a better lower bound for the exact optimal
value. However, as d increases, the LP relaxation problem would become increasing
ill-posed and the solver has difficulty in solving LP problem accurately. In particular,
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Table 1 Comparison of BSOS and GloptiPoly3

Problem BSOS GloptiPoly3

(d, k) Result Time (s) Rank(M(y∗)) Result Time (s) Order,
optimal

P4_2 1, 1 −6.7747e−001 0.3 1 −6.7747e−001 0.2 1, yes

2, 1 −6.7747e−001 0.5 1

P4_4 1, 2 −2.9812e−001 0.5 7 −3.3539e−002 0.3 2, yes

2, 2 −3.3539e−002 0.6 4

P4_6 1, 3 −6.2500e−002 0.8 31 −6.0693e−002 0.5 3, yes

2, 3 −6.0937e−002 0.9 7

3, 3 −6.0693e−002 1.8 4

P4_8 1, 4 −9.3354e−002∗ 3.2 >10 −8.5813e−002 2.6 4, yes

2, 4 −8.5813e−002 3.7 9

3, 4 −8.5813e−002 5.1 4

P6_2 1, 1 −5.7491e−001 0.3 1 −5.7491e−001 0.2 1, yes

2, 1 −5.7491e−001 0.8 1

P6_4 1, 2 −5.7716e−001 1.1 10 −5.7696e−001 0.3 2, yes

2, 2 −5.7696e−001 1.1 4

3, 2 −5.7696e−001 4.3 1

P6_6 1, 3 −6.5972e−001 7.1 >10 −4.1288e−001 6.4 3, yes

2, 3 −6.5972e−001 10.2 >10

3, 3 −4.1288e−001 32.0 1

P6_8 1, 4 −6.5973e−001 74.2 >10 −4.0902e−001 207.2 4, yes

2, 4 −6.5973e−001 168.6 >10

3, 4 −6.5973e−001 264.1 >10

4, 4 −4.0928e−001∗ 1656.0 1∗
8 var, deg 2 1, 1 −5.7491e−001 0.5 1 −5.7491e−001 0.3 1, yes

2, 1 −5.7491e−001 0.9 1

8 var, deg 4 1, 2 −6.5946e−001 2.8 >10 −4.3603e−001 1.5 2, yes

2, 2 −4.3603e−001 4.8 1

8 var, deg 6 1, 3 −6.5973e−001 127.1 >10 −4.1288e−001 161.3 3, yes

2, 3 −6.5973e−001 126.6 >10

3, 3 −4.1322e−001* 258.7 1∗
10 var, deg 2 1, 1 −5.7491e−001 0.4 1 −5.7491e−001 0.2 1, yes

2, 1 −5.7491e−001 1.0 1

10 var, deg 4 1, 2 −6.5951e−001 7.8 1 −4.3603e−001 5.3 2, yes

2, 2 −4.3603e−001 20.0 1

3, 2 −4.3603e−001∗ 66.7 1∗
20 var, deg 2 1, 1 −5.7491e−001 1.2 1 −5.7491e−001 0.4 1, yes

2, 1 −5.7491e−001 3.0 1

20 var, deg 4 1, 2 Infeasible 302.1 - −4.3603e−001 5600.8 2, yes

2, 2 −4.3602e−001* 1942.2 1∗

An entry marked with “∗” means that the corresponding SDP was not solved to high accuracy
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for d = 5, both the solvers SeDuMi and SDPT3 fail to compute an accurate enough
solution for the LP to generate a sensible lower bound for f (x∗).

In Table 2, we observe that BSOS can achieve the exact result with d = 1 for all
the test instances. In contrast, the LP relaxation method of Krivine-Stengle does not
perform very well even though the test instances are convex problems. In particular,
observe that for the last instance C20_2, the LP relaxation method cannot produce
a good lower bound even when we choose d = 3, and the time taken to solve the
correspond LP is about 40 minutes.

4.3 Performance of BSOS on quadratic problems with polyhedral constraints

Here consider the following problem:

min xT Ax
s.t. eT x ≤ 1, x ≥ 0, x ∈ R

n,
(11)

where A is a given n×n symmetric matrix. In our numerical experiments, we generate
random instances such as Qn10_r2 for which n = 10 and A is randomly generated
so that it has r = 2 negative eigenvalues and n − r positive eigenvalues as follows:

rng(’default’)
A1 = randn(n); A2 = A1*A1’; perm=randperm(n);
[V,D] = eig(A); eigval=diag(D); idx1=perm(1:r); idx2=perm

(r+1:n);
V1=V(:,idx1); V2=V(:,idx2); d1=eigval(idx1); d2=eigval(idx2);
A =V2*diag(d2)*V2’ - V1*diag(d1)*V1’;

Table 3 compares the performance of BSOS and GloptiPoly3. From the numerical
results, we can see that BSOS is far more efficient than GloptiPoly3 in solving the
problems (11). For example, for the problem Qn20_r2with n = 20, BSOS took only
1.9 seconds to generate the lower bound −2.0356e3 for the problem, but GloptiPoly3
took more than 1 hour to generate the same bound. The disparity in the efficiency
between BSOS and GloptiPoly3 is expected to become even wider for other instances
with n larger than 20.

In Table 3, we again use the sufficient condition stated in Lemma 1 to checkwhether
the generated lower bound is indeed optimal. For each of the first eight instances, the
moment matrix M(y∗) associated with the optimal solution θ∗ of (9) has numerical
rank equal to one (we declare that the matrix has numerical rank equal to one if the
largest eigenvalue is at least 104 times larger than the second largest eigenvalue), which
certifies that the lower bound is actually the optimal value.

4.4 Performance of BSOS on higher order problems with more variables

Here we consider the following problem:
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min
∑

|α|≤ cα xα

s.t. xi ≥ 0, i = 1, . . . n
n∑

i=1
x2i ≤ 1

(12)

where  = 2 or  = 4 and cα are randomly generated in [−1, 1]. In our numerical
experiments, we generated instances such as Hn20_4 for which n = 20 and the
degree of the polynomial is 4. The problem is find the minimal value of a polynomial
on the Euclidean unit ball intersected with the positive orthant.

Table 4 displays the respective performance of BSOS and GloptiPoly3. From the
numerical results, we can see that BSOS is far more efficient than GloptiPoly3 in
solving problems (12). For example, for problem Hn20_4 (with n = 20 variables and
degree  = 4), BSOS took about 250s to generate the first lower bound −2.1860, and
took nearly 300s to generate a better lower bound of −1.5943, which is also the exact
optimal value for the problem. But GloptiPoly3 got out of memory when solving the
same problem. Similarly for problem Hn40_2, it took BSOS and GloptiPoly3 very
little time to generate the first lower bound of −2.3789. To get a better lower bound, it
took BSOS 29s to generate the optimal value of the problem. In contrast GloptiPoly3
got out of memory for improving the bound. From our observations, the disparity in
efficiency between BSOS and GloptiPoly will become wider for instances with larger
n and/or of higher degree.

5 Conclusion

We have described and tested a new hierarchy of semidefinite relaxations for global
polynomial optimization. It tries to combine some advantages of previously defined
LP- and SOS-hierarchies. Essentially, it uses a positivity certificate already used in
the LP-hierarchy but with an additional semidefinite constraint which thus makes it an
SOS-hierarchy. However the main and crucial point is that the size of this additional
semidefinite constraint is fixed in advance and decided by the user (in contrast to the
standard SOS-hierarchy inwhich the size of the semidefinite constraint increases in the
hierarchy). Preliminary results are encouraging especially for non convex problems
on convex polytopes where problems with up to 100 variables have been solved in a
reasonable amount of time (whereas the standard SOS-hierarchy of GloptiPoly cannot
be implemented).

For problems of larger size one needs to consider some serious numerical issues due
to the presence of some fully dense submatrix and some nearly dependent linear con-
straints. In addition, to be able to handle large-scale problems one also needs to provide
a “sparse version” of this hierarchy, an analogue of the sparse version of the SOS-
hierarchy defined in Waki et al. (2006). Both issues (a topic of further investigation)
are certainly non trivial, in particular the latter issue because the positivity certificate
used in this new hierarchy involves products of initial polynomial constraints, which
destroys the sparsity pattern considered in Waki et al. (2006).

Acknowledgements The work of the first author is partially supported by a PGMO grant from Fondation
Mathématique Jacques Hadamard, and an ERC-ADG grant from the European Research Council (ERC):
grant agreement 666981 TAMING.
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Appendix

Before proving Lemma 1 we need introduce some notation. Given k ∈ N fixed,
let τ = max{deg( f ), 2k, d max j {deg(g j )}}. For a sequence y = (yα) ∈ N

n
τ , let

Ly : R[x]τ → R be the Riesz functional:

f

⎛

⎝:=
∑

α∈Nn
τ

fα xα

⎞

⎠ �→ Ly( f ) :=
∑

α∈Nn
τ

fα yα, f ∈ R[x]τ ,

and let Mk(y) be the moment matrix of order k, associated with y. If q ∈ R[x]k with
coefficient vector q = (qα), then 〈q,Mk(y)q〉 = Ly(q2) and if y is the (truncated)
moment sequence of a measure μ,

〈q,Mk(y)q〉 = Ly(q
2) =

∫

q(x)2 dμ(x).

Proof of Lemma 1

(a) We first prove that the dual of (7) which is the semidefinite program:

ρk
d := inf

y∈RL
{ Ly( f ) : Mk(y) � 0; Ly(1) = 1; Ly(hαβ) ≥ 0, (α, β) ∈ N

2m
d }
(13)

satisfies Slater’s condition. Recall that K has nonempty interior; so let y be the
sequence of moments of the Lebesgue measure μ on K, scaled to be a probability
measure, so that Ly(1) = 1. Necessarily Mk(y)  0. Otherwise there would exists
0 �= q ∈ R[x]k such that

〈q,Mk(y)q〉 =
∫

K
q(x)2 dμ(x) = 0.

But then q vanishes almost everywhere on K , which implies q = 0, a contradiction.
Next, observe that for each (α, β) ∈ N

2m
d , the polynomial hαβ ∈ R[x]τ is nonnega-

tive on K and since there exists x0 ∈ K such that 0 < g j (x0) < 1 for all j = 1, . . . ,m,
there is an open set O ⊂ K such that hαβ(x) > 0 on O for all (α, β) ∈ N

2m . Therefore

Ly(hαβ) =
∫

K
hαβ dμ ≥

∫

O
hαβ dμ > 0, ∀ (α, β) ∈ N

2m .

Therefore y is a strictly feasible solution of (13), that is, Slater’s condition holds true
for (13). Hence ρk

d = qkd for all d. It remains to prove that qkd > −∞. But this follows
from Theorem 1(b) as soon as d is sufficiently large, say d ≥ d0 for some integer d0.
Indeed then −∞ < θd ≤ qkd ≤ f ∗ for all d ≥ d0 (where θd is defined in (4)). Finally
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108 J. B. Lasserre et al.

for each fixed d, (7) and (8) have same optimal value qkd and an optimal solution
(qkd , λ

∗, Q∗) of (7) is also an optimal solution of (8).
(b) Let θ∗ be an optimal solution of (9) and let y∗ be as in (10).

• If rankMs(y∗) = 1 thenMs(y∗) = vs(x∗) vs(x∗)T for some x∗ ∈ R
n ; this is due to

the Hankel-like structure of the moment matrix combined with the rank-one property.
So by definition of the moment matrix Ms(y∗), y∗ = (y∗

α), α ∈ N
n
2s , is the vector of

moments (up to order 2s) of the Dirac measure δx∗ at the point x∗. That is, y∗
α = (x∗)α

for every α ∈ N
n
2s . But from (10),

(x∗)α = y∗
α =

L∑

p=1

θ∗
p (x (p))α, ∀α ∈ N

n
2s .

In particular, for moments of order 1 we obtain x∗ =∑L
p=1 θ∗

p x
(p). In other words, up

to moments of order 2s, one cannot distinguish the Dirac measure δx∗ at x∗ from the
signed measure μ =∑p θ∗

pδx (p) (recall that the θ∗
p’s are not necessarily nonnegative).

That is, (x∗)α = ∫
xαdδx∗ = ∫

xαdμ for all α ∈ N
n
2s . This in turn implies that for

every q ∈ R[x]2s :

q(x∗) = 〈q, δx∗ 〉 = 〈q, μ〉 =
〈

q,

L∑

p=1

θ∗
p δx (p)

〉

=
L∑

p=1

θ∗
p q(x (p)).

Next, as θ∗ is feasible for (9) and 2s ≥ max[deg( f ); deg(g j )],

0≤
L∑

p=1

θ∗
p 〈hαβ, δx (p)〉=

〈

hαβ,

L∑

p=1

θ∗
p δx (p)

〉

= hαβ(x∗), ∀(α, β) : deg(hαβ) ≤2s.

In particular, choosing (α, β) ∈ N
2m
2s such that hαβ = g j (i.e. β = 0, αi = δi= j ), one

obtains g j (x∗) ≥ 0, j = 1, . . . ,m, which shows that x∗ ∈ K . In addition,

f ∗ ≥ q̃kd =
L∑

p=1

θ∗
p 〈 f, δx (p)〉 =

〈

f,
L∑

p=1

θ∗
p δx (p)

〉

= f (x∗),

which proves that x∗ ∈ K is an optimal solution of problem (P).
• IfMs(y∗) � 0,Ms−r (g j y∗) � 0, j = 1, . . . ,m, and rankMs(y∗) = rankMs−r (y∗)
then by Curto and Fialkow (2000, 2005, Theorem 1.1), y∗ is the vector of moments
up to order 2s, of some atomic-probability measure μ supported on v := rankMs(y∗)
points z(i) ∈ K , i = 1, . . . , v. That is, there exist positive weights (wi ) ⊂ R+ such
that

μ =
v∑

i=1

wi δz(i);
v∑

i=1

wi = 1; wi > 0, i = 1, . . . , v.
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Therefore,

f ∗ ≥ q̃kd =
L∑

p=1

θ∗
p 〈 f, δx(p)〉 =

∑

α∈Nn

fα y∗
α =

∫

K
f dμ ≥ f ∗,

which shows that q̃kd = f ∗. In addition

0 = f ∗ −
∫

K
f dμ =

∫

K
( f ∗ − f ) dμ =

v∑

i=1

wi︸︷︷︸
>0

( f ∗ − f (z(i))
︸ ︷︷ ︸

≤0

,

which implies f (z(i)) = f ∗ for every i = 1, . . . , v. Finally, the v global minimiz-
ers can be extracted from the moment matrix Ms(y∗) by the simple linear algebra
procedure described in Henrion and Lasserre (2005). ��

Test functions for BSOS and GloptiPoly in Table 1

Example P4_2 (4 variables, degree 2):

f = x21 − x22 + x23 − x24 + x1 − x2;
g1 = 2x21 + 3x22 + 2x1x2 + 2x23 + 3x24 + 2x3x4;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4;
g4 = x21 + 4x22 − 3x1x2 + x23 + 4x24 − 3x3x4;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4; x ≥ 0.

Example P4_4 (4 variables, degree 4):

f = x41 − x42 + x43 − x44 ;
g1 = 2x41 + 3x22 + 2x1x2 + 2x43 + 3x24 + 2x3x4;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4;
g4 = x21 + 4x42 − 3x1x2 + x23 + 4x44 − 3x3x4;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4; x ≥ 0.

Example P4_6 (4 variables, degree 6):

f = x41 x
2
2 + x21 x

4
2 − x21 x

2
2 + x43 x

2
4 + x23 x

4
4 − x23 x

2
4 ;

g1 = x21 + x22 + x23 + x24 ;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4;
g3 = x21 + 6x42 − 8x1x2 + x23 + 6x44 − 8x3x4 + 2.5;
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g4 = x41 + 3x42 + x43 + 3x44 ; g5 = x21 + x32 + x23 + x34 ; x ≥ 0.

Example P4_8 (4 variables, degree 8):

f = x41 x
2
2 + x21 x

6
2 − x21 x

2
2 + x43 x

2
4 + x23 x

6
4 − x23 x

2
4 ; g1 = x21 + x22 + x23 + x24 ;

g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4;
g3 = x21 + 6x42 − 8x1x2 + x23 + 6x44 − 8x3x4 + 2.5;
g4 = x41 + 3x42 + x43 + 3x44 ; g5 = x21 + x32 + x23 + x34 ; x ≥ 0.

Example P6_2 (6 variables, degree 2):

f = x21 − x22 + x23 − x24 + x25 − x26 + x1 − x2;
g1 = 2x21 + 3x22 + 2x1x2 + 2x23 + 3x24 + 2x3x4 + 2x25 + 3x26 + 2x5x6;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6;
g4 = x21 + 4x22 − 3x1x2 + x23 + 4x24 − 3x3x4 + x25 + 4x26 − 3x5x6;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6; x ≥ 0.

Example P6_4 (6 variables, degree 4):

f = x41 − x22 + x43 − x24 + x45 − x26 + x1 − x2;
g1 = 2x41 + x22 + 2x1x2 + 2x43 + x24 + 2x3x4 + 2x45 + x26 + 2x5x6;
g2 = 3x21 + x22 − 4x1x2 + 3x23 + x24 − 4x3x4 + 3x25 + x26 − 4x5x6;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6;
g4 = x21 + 3x42 − 3x1x2 + x23 + 3x44 − 3x3x4 + x25 + 3x46 − 3x5x6;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6, x ≥ 0.

Example P6_6 (6 variables, degree 6):

f = x61 − x62 + x63 − x64 + x65 − x66 + x1 − x2;
g1 = 2x61 + 3x22 + 2x1x2 + 2x63 + 3x24 + 2x3x4 + 2x65 + 3x26 + 2x5x6;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6;
g4 = x21 + 4x62 − 3x1x2 + x23 + 4x64 − 3x3x4 + x25 + 4x66 − 3x5x6;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6, x ≥ 0.
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Example P6_8 (6 variables, degree 8):

f = x81 − x82 + x83 − x84 + x85 − x86 + x1 − x2;
g1 = 2x81 + 3x22 + 2x1x2 + 2x83 + 3x24 + 2x3x4 + 2x85 + 3x26 + 2x5x6;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6;
g4 = x21 + 4x82 − 3x1x2 + x23 + 4x84 − 3x3x4 + x25 + 4x86 − 3x5x6;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6, x ≥ 0.

Example P8_2 (8 variables, degree 2):

f = x21 − x22 + x23 − x24 + x25 − x26 + x27 − x28 + x1 − x2;
g1 = 2x21 + 3x22 + 2x1x2 + 2x23 + 3x24 + 2x3x4 + 2x25

+ 3x26 + 2x5x6 + 2x27 + 3x28 + 2x7x8;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25

+ 2x26 − 4x5x6 + 3x27 + 2x28 − 4x7x8;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25

+ 6x26 − 4x5x6 + x27 + 6x28 − 4x7x8;
g4 = x21 + 4x22 − 3x1x2 + x23 + 4x24 − 3x3x4 + x25

+ 4x26 − 3x5x6 + x27 + 4x28 − 3x7x8;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4

+ 2x25 + 5x26 + 3x5x6 + 2x27 + 5x28 + 3x7x8; x ≥ 0.

Example P8_4 (8 variables, degree 4):

f = x41 − x42 + x43 − x44 + x45 − x46 + x47 − x48 + x1 − x2;
g1 = 2x41 + 3x22 + 2x1x2 + 2x43 + 3x24 + 2x3x4 + 2x45

+ 3x26 + 2x5x6 + 2x47 + 3x28 + 2x7x8;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25

+ 2x26 − 4x5x6 + 3x27 + 2x28 − 4x7x8;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25

+ 6x26 − 4x5x6 + x27 + 6x28 − 4x7x8;
g4 = x21 + 4x42 − 3x1x2 + x23 + 4x44 − 3x3x4 + x25

+ 4x46 − 3x5x6 + x27 + 4x48 − 3x7x8;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25

+ 5x26 + 3x5x6 + 2x27 + 5x28 + 3x7x8, x ≥ 0.
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Example P8_6 (8 variables, degree 6):

f = x61 − x62 + x63 − x64 + x65 − x66 + x67 − x68 + x1 − x2;
g1 = 2x61 + 3x22 + 2x1x2 + 2x63 + 3x24 + 2x3x4 + 2x65

+ 3x26 + 2x5x6 + 2x67 + 3x28 + 2x7x8;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25

+ 2x26 − 4x5x6 + 3x27 + 2x28 − 4x7x8;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25

+ 6x26 − 4x5x6 + x27 + 6x28 − 4x7x8;
g4 = x21 + 4x62 − 3x1x2 + x23 + 4x64 − 3x3x4 + x25

+ 4x66 − 3x5x6 + x27 + 4x68 − 3x7x8;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25

+ 5x26 + 3x5x6 + 2x27 + 5x28 + 3x7x8, x ≥ 0.

Example P10_2 (10 variables, degree 2):

f = x21 − x22 + x23 − x24 + x25 − x26 + x27 − x28 + x29 − x210 + x1 − x2;
g1 = 2x21 + 3x22 + 2x1x2 + 2x23 + 3x24 + 2x3x4 + 2x25 + 3x26 + 2x5x6

+ 2x27 + 3x28 + 2x7x8 + 2x29 + 3x210 + 2x9x10;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6

+ 3x27 + 2x28 − 4x7x8 + 3x29 + 2x210 − 4x9x10;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6

+ x27 + 6x28 − 4x7x8 + x29 + 6x210 − 4x9x10;
g4 = x21 + 4x22 − 3x1x2 + x23 + 4x24 − 3x3x4 + x25 + 4x26 − 3x5x6

+ x27 + 4x28 − 3x7x8 + x29 + 4x210 − 3x9x10;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6

+ 2x27 + 5x28 + 3x7x8 + 2x29 + 5x210 + 3x9x10; x ≥ 0.

Example P10_4 (10 variables, degree 4):

f = x41 − x42 + x43 − x44 + x45 − x46 + x47 − x48 + x49 − x410 + x1 − x2;
g1 = 2x41 + 3x22 + 2x1x2 + 2x43 + 3x24 + 2x3x4 + 2x45 + 3x26 + 2x5x6

+ 2x47 + 3x28 + 2x7x8 + 2x49 + 3x211 + 2x9x10;
g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6

+ 3x27 + 2x28 − 4x7x8 + 3x29 + 2x210 − 4x9x10;
g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6

+ x27 + 6x28 − 4x7x8 + x29 + 6x210 − 4x9x10;
g4 = x21 + 4x42 − 3x1x2 + x23 + 4x44 − 3x3x4 + x25 + 4x46 − 3x5x6
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+ x27 + 4x48 − 3x7x8 + x29 + 4x410 − 3x9x10;
g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6

+ 2x27 + 5x28 + 3x7x8 + 2x29 + 5x210 + 3x9x10; x ≥ 0.

Example P20_2 (20 variables, degree 2):

f = x21 − x22 + x23 − x24 + x25 − x26 + x27 − x28 + x29 − x210 + x211 − x212 + x1 − x2

+ x213 − x214 + x215 − x216 + x217 − x218 + x219 − x220;
g1 = 2x21 + 3x22 + 2x1x2 + 2x23 + 3x24 + 2x3x4 + 2x25 + 3x26 + 2x5x6 + 2x27 + 3x28

+ 2x7x8 + 2x29 + 3x210 + 2x9x10 + 2x211 + 3x212 + 2x11x12 + 2x213 + 3x214
+ 2x13x14 + 2x215 + 3x216 + 2x15x16 + 2x217 + 3x218 + 2x17x18 + 2x219 + 3x210
+ 2x20x20;

g2 = 3x21 + 2x22 − 4x1x2 + 3x23 + 2x24 − 4x3x4 + 3x25 + 2x26 − 4x5x6 + 3x27 + 2x28
− 4x7x8 + 3x29 + 2x210 − 4x9x10 + 3x211 + 2x212 − 4x11x12 + 3x213 + 2x214
− 4x13x14 + 3x215 + 2x216 − 4x15x16 + 3x217 + 2x219 − 4x18x18 + 3x219 + 2x220
− 4x19x20;

g3 = x21 + 6x22 − 4x1x2 + x23 + 6x24 − 4x3x4 + x25 + 6x26 − 4x5x6 + x27 + 6x28 − 4x7x8
+ x29 + 6x210 − 4x9x10 + x211 + 6x212 − 4x11x12 + x213 + 6x214 − 4x13x14
+ x215 + 6x217 − 4x16x16 + x217 + 6x218 − 4x17x18 + x219 + 6x220 − 4x19x20;

g4 = x21 + 4x22 − 3x1x2 + x23 + 4x24 − 3x3x4 + x25 + 4x26 − 3x5x6 + x27 + 4x28 − 3x7x8
+ x29 + 4x210 − 3x9x10 + x21 + 4x212 − 3x11x12 + x213 + 4x214 − 3x15x14
+ x215 + 4x216 − 3x15x16 + x217 + 4x218 − 3x17x18 + x219 + 4x220 − 3x19x20;

g5 = 2x21 + 5x22 + 3x1x2 + 2x23 + 5x24 + 3x3x4 + 2x25 + 5x26 + 3x5x6 + 2x27 + 5x28
+ 3x7x8 + 2x29 + 5x210 + 3x9x10 + 2x211 + 5x213 + 3x12x12 + 2x213 + 5x214
+ 3x13x14 + 2x215 + 5x216 + 3x15x16 + 2x217 + 5x218 + 3x17x18 + 2x219 + 5x220
+ 3x19x20; x ≥ 0.

Example P20_4 (20 variables, degree 4): same as P20_2 except that f is replaced
by

f = x41 − x42 + x23 − x24 + x25 − x26 + x27 − x28 + x29 − x210 + x211 − x212 + x1 − x2

+x213 − x214 + x215 − x216 + x217 − x218 + x219 − x220;

Test functions forBSOSversusLP relaxations ofKrivine-Stengle on convex prob-
lems in Table 2

Example C4_2 (4 variables, degree 2):

f = x21 + x22 + x23 + x24 + 2x1x2 − x1 − x2;
g1 = −x21 − 2x22 − x23 − 2x24 + 1;
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g2 = −2x21 − x22 − 2x23 − x24 + 1;
g3 = −x21 − 4x22 − x23 − 4x24 + 1.25;
g4 = −4x21 − x22 − 4x23 − x24 + 1.25;
g5 = −2x21 − 3x22 − 2x23 − 3x24 + 1.1; x ≥ 0.

Example C4_4 (4 variables, degree 4):

f = x41 + x42 + x43 + x44 + 3x21 x
2
2 − x1 − x2;

g1 = −x41 − 2x42 − x43 − 2x44 + 1;
g2 = −2x41 − x42 − 2x43 − x44 + 1;
g3 = −x41 − 4x42 − x43 − 4x44 + 1.25;
g4 = −4x41 − x42 − 4x43 − x44 + 1.25;
g5 = −2x41 − 3x22 − 2x43 − 3x24 + 1.1; x ≥ 0.

Example C4_6 (4 variables, degree 6):

f = x61 + x62 + x63 + x64 + 10

3
x31 x

3
2 − x1 − x2;

g1 = −x61 − 2x62 − x63 − 2x64 + 1;
g2 = −2x61 − x62 − 2x63 − x64 + 1;
g3 = −x61 − 4x22 − x63 − 4x24 + 1.25;
g4 = −4x61 − x22 − 4x63 − x24 + 1.25;
g5 = −2x21 − 3x62 − 2x23 − 3x64 + 1.1; x ≥ 0.

Example C6_2 (6 variables, degree 2):

f = x21 + x22 + x23 + x24 + x25 + x26 + 2x1x2 − x1 − x2;
g1 = −x21 − 2x22 − x23 − 2x24 − x25 − 2x26 + 1;
g2 = −2x21 − x22 − 2x23 − x24 − 2x25 − x26 + 1;
g3 = −x21 − 4x22 − x23 − 4x24 − x25 − 4x26 + 1.25;
g4 = −4x21 − x22 − 4x23 − x24 − 4x25 − x26 + 1.25;
g5 = −2x21 − 3x22 − 2x23 − 3x24 − 2x25 − 3x26 + 1.1; x ≥ 0.

Example C6_4 (6 variables, degree 4):

f = x41 + x42 + x43 + x44 + x45 + x46 + 3x21 x
2
2 − x1 − x2;

g1 = −x41 − 2x42 − x43 − 2x44 − x45 − 2x46 + 1;
g2 = −2x41 − x42 − 2x43 − x44 − 2x45 − x46 + 1;
g3 = −x41 − 4x42 − x43 − 4x44 − x45 − 4x46 + 1.25;
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g4 = −4x41 − x42 − 4x43 − x44 − 4x45 − x46 + 1.25;
g5 = −2x41 − 3x22 − 2x43 − 3x24 − 2x45 − 3x26 + 1.1; x ≥ 0.

Example C6_6 (6 variables, degree 6):

f = x61 + x62 + x63 + x64 + x65 + x66 + 10

3
x21 x

3
2 − x1 − x2;

g1 = −x61 − 2x62 − x63 − 2x64 − x65 − 2x66 + 1;
g2 = −2x61 − x62 − 2x63 − x64 − 2x65 − x66 + 1;
g3 = −x61 − 4x22 − x63 − 4x24 − x65 − 4x26 + 1.25;
g4 = −4x61 − x22 − 4x63 − x24 − 4x65 − x26 + 1.25;
g5 = −2x21 − 3x62 − 2x23 − 3x64 − 2x25 − 3x66 + 1.1; x ≥ 0.

Example C8_2 (8 variables, degree 2):

f = x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + 2x1x2 − x1 − x2;
g1 = −x21 − 2x22 − x23 − 2x24 − x25 − 2x26 − x27 − 2x28 + 1;
g2 = −2x21 − x22 − 2x23 − x24 − 2x25 − x26 − 2x27 − x28 + 1;
g3 = −x21 − 4x22 − x23 − 4x24 − x25 − 4x26 − x27 − 4x28 + 1.25;
g4 = −4x21 − x22 − 4x23 − x24 − 4x25 − x26 − 4x27 − x28 + 1.25;
g5 = −2x21 − 3x22 − 2x23 − 3x24 − 2x25 − 3x26 − 2x27 − 3x28 + 1.1; x ≥ 0.

Example C8_4 (8 variables, degree 4):

f = x41 + x42 + x43 + x44 + x45 + x46 + x47 + x48 + 3x21 x
2
2 − x1 − x2;

g1 = −x41 − 2x42 − x43 − 2x44 − x25 − 2x46 − x47 − 2x48 + 1;
g2 = −2x41 − x42 − 2x43 − x44 − 2x25 − x46 − 2x47 − x48 + 1;
g3 = −x41 − 4x42 − x43 − 4x44 − x45 − 4x46 − x47 − 4x48 + 1.25;
g4 = −4x41 − x42 − 4x43 − x44 − 4x45 − x46 − 4x47 − x48 + 1.25;
g5 = −2x41 − 3x22 − 2x43 − 3x24 − 2x45 − 3x26 − 2x47 − 3x28 + 1.1; x ≥ 0.

Example C10_2 (10 variables, degree 2):

f = x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x210 + 2x1x2 − x1 − x2;
g1 = −x21 − 2x22 − x23 − 2x24 − x25 − 2x26 − x27 − 2x28 − x29 − 2x210 + 1;
g2 = −2x21 − x22 − 2x23 − x24 − 2x25 − x26 − 2x27 − x28 − 2x29 − x210 + 1;
g3 = −x21 − 4x22 − x23 − 4x24 − x25 − 4x26 − x27 − 4x28 − x29 − 4x210 + 1.25;
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g4 = −4x21 − x22 − 4x23 − x24 − 4x25 − x26 − 4x27 − x28 − 4x29 − x210 + 1.25;
g5 = −2x21 − 3x22 − 2x23 − 3x24 − 2x25 − 3x26 − 2x27 − 3x28 − 2x29

−3x210 + 1.1; x ≥ 0.

Example C10_4 (10 variables, degree 4):

f = x41 + x42 + x43 + x44 + x45 + x46 + x47 + x48 + x49 + x410 + 3x21 x
2
2 − x1 − x2;

g1 = −x41 − 2x42 − x43 − 2x44 − x45 − 2x46 − x47 − 2x48 − x49 − 2x410 + 1;
g2 = −2x41 − x42 − 2x43 − x44 − 2x45 − x46 − 2x47 − x48 − 2x49 − x410 + 1;
g3 = −x41 − 4x42 − x43 − 4x44 − x45 − 4x46 − x47 − 4x48 − x49 − 4x410 + 1.25;
g4 = −4x41 − x42 − 4x43 − x44 − 4x45 − x46 − 4x47 − x48 − 4x49 − x410 + 1.25;
g5 = −2x41 − 3x22 − 2x43 − 3x24 − 2x45 − 3x26 − 2x47 − 3x28 − 2x49

−3x210 + 1.1; x ≥ 0.

Example C20_2 (20 variables, degree 2):

f = x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x210 + 2x1x2 − x1 − x2

+ x211 + x212 + x213 + x214 + x215 + x216 + x217 + x218 + x219 + x220;
g1 = −x21 − 2x22 − x23 − 2x24 − x25 − 2x26 − x27 − 2x28 − x29 − 2x210

− x211 − 2x212 − x213 − 2x214 − x215 − 2x216 − x217 − 2x218 − x219 − 2x220 + 1;
g2 = −2x21 − x22 − 2x23 − x24 − 2x25 − x26 − 2x27 − x28 − 2x29 − x210

− 2x211 − x212 − 2x213 − x214 − 2x215 − x216 − 2x217 − x218 − 2x219 − x220 + 1;
g3 = −x21 − 4x22 − x23 − 4x24 − x25 − 4x26 − x27 − 4x28 − x29 − 4x210

− x211 − 4x212 − x213 − 4x214 − x215 − 4x216 − x217 − 4x218 − x219 − 4x220 + 1.25;
g4 = −4x21 − x22 − 4x23 − x24 − 4x25 − x26 − 4x27 − x28 − 4x29 − x210

− 4x211 − x212 − 4x213 − x214 − 4x215 − x216 − 4x217 − x218 − 4x219 − x220 + 1.25;
g5 = −2x21 − 3x22 − 2x23 − 3x24 − 2x25 − 3x26 − 2x27 − 3x28 − 2x29 − 3x210

− 2x211 − 3x212 − 2x213 − 3x214 − 2x215 − 3x216 − 2x217 − 3x218 − 2x219
− 3x220 + 1.1; x ≥ 0.
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