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Abstract
Purpose of Review Skin cancers account for more than 40% of all cancers in the USA and continue to rise in incidence. It is
prudent to understand the current burden and pathogenesis of photocarcinogenesis and preventive measures.
Recent Findings Insights into recently discovered mechanisms have paved way for potential targets for prevention and thera-
peutics. Nicotinamide has shown promising results as an oral chemopreventive agent. UVB affects the DHODH pathway of
pyrimidine synthesis via STAT 3. DHODH inhibition by leflunomide may be a potential targeted chemoprevention strategy. A
photolyase containing sunscreen, which repairs UV-damaged DNA, effectively reduced new precancerous lesions. Several
antioxidants and anti-inflammatory agents including many phytochemicals ameliorate the process of photocarcinogenesis in
preclinical and clinical studies, e.g., green tea polyphenols, Polypodium leucotomos extract, and Timosaponin A III. Diet can
potentially affect skin cancer risk by its ability to modify oxidative stress and cell signaling pathways.
Summary Photocarcinogenesis is a multi-step process. An in-depth understanding is instrumental in development of novel
agents for prevention and treatment of skin cancers.
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Introduction

In an era in which the incidence of most forms of cancer has
either stabilized or is decreasing, the incidence of basal cell
and cutaneous squamous cell carcinoma, grouped together
under the term keratinocyte carcinoma (KC), is increasing
globally. Predictions are that, in the USA alone, over 5 million
KCs are diagnosed each year [1]. This is greater than the
incidence of cancers in all other organs combined. It is pre-
dicted that one in five Americans will develop at least one KC
in their lifetime [2]. Although once considered to be a disease
of seniors, BCCs and SCCs are being diagnosed with increas-
ing frequency in younger and younger ages [3]. It is not un-
usual for people in their 20s and 30s to be treated for one or
more KCs.

The mortality rate of KCs is small with an estimated age-
adjusted mortality rate of 0.12 and 0.3 per 100,000 for BCC

and SCC respectively [1, 4]. The risk of metastases in squa-
mous cell carcinoma ranges from 0.5 to 3.3%. Basal cell car-
cinomas have significantly lower mortality and risk of gener-
alized dissemination (< 0.1%); however, there have been oc-
casional reports of metastases to the lymph nodes, lungs, liver,
and bone. Although the mortality is low, these tumors can
produce extensive local tissue damage and thereby cause con-
siderable morbidity. KCs are located primarily on exposed
areas of skin; treatment is mostly surgical and this often leads
to significant scarring in cosmetically sensitive areas. In addi-
tion, UV-induced skin cancer and its precursors are an esca-
lating economic burden [1]. The direct cost of medical care
and indirect cost resulting from potential loss of productivity
amount to a considerable financial burden. In the USA alone,
the estimated annual medical expenditure on KC diagnosis
and treatment exceeds $8 billion per year.

Solar ultraviolet radiation is the major environmental agent
responsible for cutaneous squamous cell carcinomas, basal
cell carcinomas, and pre-malignant actinic (solar) keratoses.
It also is an important etiologic agent for melanomas and
Merkel cell carcinoma Thus, because of the importance of
the problem and because of the need for better methods for
their prevention and treatment, there has been considerable
interest in identifying the mechanisms by which UV-induced
malignancies and pre-malignancies are produced.
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Mechanisms of Photocarcinogenesis

Studies over the past several decades have carefully defined
the steps by which sunlight and artificial UV radiation sources
cause KCs, a discipline called photocarcinogenesis. As a re-
sult of these studies, it is now known that cutaneous BCCs and
SCCs develop through a systematic sequence of events in
which molecular and biochemical changes accumulate in tar-
get keratinocytes over prolonged intervals. These phases have
been termed initiation, promotion, and progression (see
Fig. 1). The changes correlate exceedingly well with the pro-
gression of clinical and histological features from UV damage
to invasive carcinomas. Although grouped together under a
common term, it is important to note that BCCs and SCCs are
individual neoplasms with their own clinical and histological
features, different cells of origin, distinct mutations, and sep-
arate behaviors. For example, while intermittent and recrea-
tional sunlight exposure early in life is a risk factor for BCCs,
chronic long-term solar damage is more strongly associated
with SCC [5].

Spectrum of Wavelength and Sources of UV Exposure

For photocarcinogenesis to proceed, epidermal keratinocytes
must be damaged by exposure to the appropriate wavelengths
and doses of electromagnetic radiation. Blumwas first to dem-
onstrate that wavelengths within the UVB range (290–
320 nm) were the most effective at the production of skin
cancer [6]. He showed that interposition of plate glass, which

filters out most UVB (but not UVA [320–400 nm]), between
the artificial broadband UV light source and the mice being
irradiated was sufficient to block the carcinogenic effect of the
light source. In other studies, Setlow showed that wavelengths
within the UVB range were 100–1000 times more mutagenic
than UVA [7]. This was further confirmed by Freeman, who
found that the same wavelengths that caused DNA damage
also caused skin cancers in mice [8]. Although UVA in the
absence of photosensitizers is capable of producing skin can-
cer in animal models, it requires a much higher dose and a
longer duration of exposure [9]. Despite the fact that UVA is
less potent than UVB, there is growing concern about the
contribution of UVA to the development of skin cancers.
First, although UVB wavelengths are primarily responsible
for BCC and SCC, the wavelengths necessary for production
of melanomas are not as well defined. Evidence from epide-
miologic and preclinical studies suggests that UVA and even
visible wavelengths may contribute in a significant way to
melanoma development [10–12]. Second, tanning beds, pop-
ularly used to achieve an artificial tan, emit 10 times the
amount of UVA compared with solar radiation. The odds ratio
for developing melanoma in tanning bed users (highest tertile
of use vs. never use) is 1.32 (95% confidence interval (CI):
1.08, 1.63) [13•]. The relative risk in tanning bed users (ever
vs. never use) of developing BCC and SCC is 1.29 (95%CI =
1.08–1.53) and 1.67 (95% CI = 1.29–2.17) respectively [14].
Finally, chronic use of selected medications which absorb
UVA wavelengths increases the risk of BCCs and SCCs.
Stern et al. found an increased risk of SCCs (30×) and BCCs

Fig. 1 Summary of the three stages of photocarcinogenesis and agents targeting different steps. (GTPs, green tea polyphenols; DFMO,
difluoromethylornithine; COX-2, cycloxygenase-2; PDT, photodynamic therapy)
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(5×) in those treated with PUVA (Psoralen and UVA), which
was proportional to the total number of treatment sessions
[15]. Voriconazole is another photosensitizing drug that has
been associated with cutaneous squamous cell carcinomas
[16]. Epidemiological studies on the use of other
photosensitizing medications and an increased risk of cancer
have been conflicting [17–19]. Diets rich in furocoumarins,
naturally occurring chemicals in citrus products, can enhance
UVA absorption [20]. Alcohol consumption also can increase
the risk of BCCs by direct mutagenic and immunosuppressive
mechanisms [21].

Initiation Stage of Photocarcinogenesis

UV-induced DNA mutations in keratinocytes are the most
important event that occurs during the initiation stage of
photocarcinogenesis. Although UV radiation alters the struc-
ture of many molecules within the cell, including proteins and
lipids, it is photochemical changes in DNA that are the most
important for initiation of photocarcinogenesis [22]. UV radi-
ation produces distinctive mutations that distinguishes it from
other forms of DNA damage. The UV signature mutations are
characterized by C→ T or CC→ TT mutations. They are
useful experimental markers for research. The photoproducts
that result include cyclobutane pyrimidine dimers (CPDs), 6-4
pyrimidine-pyrimidone photoproducts (6-4PPs), and Dewar
isomers. Of these, CPDs are the most important and the most
abundant, comprising 80% of all photoproduct mutations.
Their abundance is due in part to the fact that they are repaired
more slowly than 6-4PPs. 6-4PPs can also photoisomerize to
Dewar isomers which are less mutagenic. The UV signature
mutations elude DNA repair enzymes as they resemble newly
synthesized DNA, thereby making the initiation phase
irreversible.

UVB has been shown to upregulate dihydroorotate dehy-
drogenase (DHODH), an enzyme located in the inner mito-
chondrial membrane which is important for synthesis of py-
rimidine and its derivatives. Hosseini et al. showed that UVB
irradiation results in DHODH upregulation via STAT3 signal-
ing. Mice treated with the DHODH inhibitor leflunomide
have reduced UVB-induced tumor formation, an effect which
is reversed by pyrimidine supplementation. This could be a
promising target for chemoprevention of skin cancers [23••].

For decades, CPDs were considered to be caused solely by
UVB. CPDs are also the most important photoproduct of
UVA radiation as well [24]. Even thoughUVA is significantly
less effective than UVB in causing direct DNA damage, its
relative abundance in sunlight and its use for therapeutic and
recreational purposes make it an important offender. UVA is
also responsible for oxidative damage by formation of reactive
oxygen species which react with guanine. The result is forma-
tion of oxidation products (8-hydroxy-deoxyguanosine

adducts) which cause transversion (G→ T or T→ G).
However, these are less abundant than CPDs.

When DNA is damaged in keratinocytes, there is an active
attempt to repair it by many different mechanisms. DNA re-
pair processes are very efficient with only a small fraction
going unrepaired. The repair process includes nucleotide ex-
cision repair (for bulky CPDs and 6-4PPs) and base excision
repair (non-bulky oxidative DNA changes) [25]. A number of
enzymes facilitate this process. A defect in any of these en-
zymes can result in an increased risk of skin cancers and/or
photosensitivity. The importance of DNA repair processes in
protection from skin cancer is exemplified by the disease
xeroderma pigmentosum (XP). XP is an autosomal recessive
genodermatosis in which individuals are predisposed to UV-
induced photodamage and the development of early-onset
BCC, SCC, and melanoma [26]. There are several comple-
mentation groups, XPA-XPG, each of which is caused by a
defect in one of the enzymes in the global genome nucleotide
excision repair pathway. A bypass mechanism for unrepaired
photoproducts utilizes DNA polymerase η which is deficient
in XP variant.

Although DNA repair processes work exceedingly well,
they do not work perfectly. Mutations in p53 and the sonic
hedgehog pathway (SHH) are most relevant with respect to
photocarcinogenesis. PTCH1, suppressor of fused (SUFU),
and smoothened (SMO) proteins are all protein participants
in the SHH pathway [27]. During embryogenesis, this path-
way regulates cell growth and differentiation but is not typi-
cally active after birth [28]. Postnatal activation causes BCCs
in basal cell nevus syndrome and chronic UV radiation [29].
BCNS is caused by a mutation in the PTCH1 gene which
results in unrestricted activation of the hedgehog pathway
and, among other clinical manifestations, the development
of large numbers of BCC [29]. Mutations in the SHH pathway
are required for BCC, but do not contribute to SCCs.

The p53 protein is instrumental in directing repair of DNA
damage or, if the damage is too severe, guiding the cell to-
wards apoptosis. Mutations in p53 have been identified in
50% of BCCs and 90% of SCCs [30].

Promotion Stage of Photocarcinogenesis

Upon repeated UV exposure, mutant keratinocytes that devel-
op during the initiation stage have a selective proliferative
advantage over normal keratinocytes. When chronically sun-
damaged skin is examined with immunohistochemistry, mu-
tant clones of cells are present [31]. Another characteristic of
the promotion stage is the presence of inflammation. The end
result of promotion is the presence of small foci of clinically
apparent pre-malignant actinic keratoses.

The generation of reactive oxygen intermediates is in-
volved in the process and efforts to inhibit their activity have
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proved to be helpful in preventing the development of UV-
induced skin cancers in animal models [32, 33]. Another ef-
fect of UV radiation is activation of protein kinase C. PKC
actually refers to a family of molecules [34]. Of particular
interest to skin carcinogenesis are the PKCα and PKCε iso-
forms [35, 36]. PKCs have a number of biological effects on
keratinocytes, including stimulation of the inflammatory re-
sponse and augmentation of cell proliferation. This is particu-
larly true of mutant keratinocytes, since they have a prolifer-
ative advantage.

Another biochemical feature that has been associated with
the promotion stage is increased activity of the enzyme orni-
thine decarboxylase (ODC) [37]. ODC is the rate-limiting
enzyme in the polyamine biosynthetic pathway. Polyamines
increase keratinocyte proliferation. Eflornithine (also known
as difluoromethylornithine [DFMO]) is an inhibitor of ODC,
and when this compound is administered to animals receiving
chronic UV exposure, fewer tumors develop [38].

Progression Stage of Photocarcinogenesis

During the progression stage, UV radiation produces addition-
al genetic and biochemical changes which allow pre-
malignant actinic keratoses to become invasive squamous cell
carcinomas. Among the activities associated with the progres-
sion stage are epithelial-mesenchymal transition (EMT) [39]
and activation of cyclooxygenase-2 (COX-2) [40–42, 43••].
EMT is the process by which cells in pre-malignant AKs and
KCs lose expression of E-cadherin, a surface molecule neces-
sary for cell-to-cell adhesion. As a result, there is an increase
in the migratory activity and invasiveness of the mutant
keratinocytes [44].

COX-2 is the rate-limiting enzyme in prostaglandin syn-
thesis. Prostaglandins contribute to photocarcinogenesis
through many actions, not only in the progression stage but
also at other points in UV-induced skin cancer development.
Among its actions are to promote EMT, augment the inflam-
matory response, inhibit immunity to tumor antigens, and
stimulate angiogenesis [45].

The Immune System and Photocarcinogenesis

There is ample evidence that UV-induced photocarcinogenesis
and immunosuppression are closely related. The experimental
basis for this conclusion comes from observations made by
Kripke in mice [46]. Mice that were chronically irradiated
had their tumors excised. The tumors were then transplanted
to genetically identical recipients. The tumors initially
engrafted but within a few weeks were destroyed by the host’s
immune response. However, when the same tumors were
placed on mice that had been given subcarcinogenic UV doses,
the tumors were not immunologically rejected, grew progres-
sively, and ultimately killed their host. Thus, among the various

actions of UV radiation is suppression of host immune re-
sponses that destroy mutant keratinocytes before they become
invasive tumors.

Clinical observations also support the concept that UV-
induced tumors are highly immunogenic and that evading
the immune response is instrumental for their development.
(1) KCs occur more frequently in people who receive immu-
nosuppressive medications. Up to 70% of allogeneic kidney
transplant recipients, who require immunosuppressive therapy
to prevent organ rejection, will develop at least one non-
melanoma skin cancer within 20 years [47]. Lymphoma and
chronic lymphocytic leukemia patients, who, because of their
disease, are immunosuppressed, also are at greater risk of
being diagnosed with BCCs and SCCs [48]. (2) Skin cancer
patients who have no underlying condition have been ob-
served to have diminished reactions to skin test antigens and
have a decreased likelihood of developing immunity to the
contact allergen dinitrochlorobenzene (DNCB) [49]. (3)
Microscopic examination reveals an increased number of reg-
ulatory T cells in the inflammatory infiltrate of BCCs [50]. (4)
Patients treated with psoralen plus UVA photochemotherapy
(PUVA) have reduced sensitization rates to contact allergens
like mustine [51, 52].

Natural History of AKS and Non-melanoma
Skin Cancers

A number of studies have investigated the natural history of
pre-malignant actinic keratoses and their likelihood of devel-
oping into squamous cell carcinomas. The majority of AKs
never progress to become invasiv+e squamous cell carcinoma.
The relative risk of this occurrence increases proportionately
with the burden of AKs, with the relative risk being < 1% for 5
or fewer lesions and 20% for > 20 AKs [53]. In studies in
which AKs have been followed over several months, 30–
40% of AKs regress and the same ones that have regressed
can recur [54••]. Regression of AKs was associated with a loss
of mutant p53 and an increase in E-cadherin expression.
Conversely, progression from sun-exposed skin to AKs cor-
related with an increase in p53 and a loss of E-cadherin. These
observations provide evidence that photocarcinogenesis is a
dynamic process in which progression or regression can oc-
cur. This indicates that it is possible to intervene to prevent
photocarcinogenesis from proceeding to the point of invasive
malignancy.

Prevention and Treatment

One of the goals of a thorough investigation of the pathogen-
esis of UV-induced skin cancer is to devise better methods for
its prevention and treatment. Based on the research into the
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various stages of photocarcinogenesis, several treatments have
entered clinical trials and have been shown to be effective
preventive agents in humans.

Agents that Target the Initiation Stage of
Photocarcinogenesis

Several agents that target the DNA damage and its repair have
been identified and show efficacy in human clinical trials.
These include T4 endonuclease V (dimericine), photolyase,
nicotinamide, and vismodegib.

T4 Endonuclease V (Dimericine)

T4 endonuclease V, also known as dimericine, is a bacterial
enzyme that removes cyclobutane pyrimidine dimers from
DNA by base excision repair. When incorporated into lipo-
somes and applied to the skin, this DNA repair enzyme is
readily absorbed by keratinocytes and Langerhans cells,
quickly exerting its effect without any significant toxicities
[55]. As was mentioned previously, xeroderma pigmentosum
(XP) is a disease in which DNA repair is defective and this
predisposes patients to large numbers of UV-induced skin
cancers [56]. In XP patients treated with dimericine lotion,
there was a 68% reduction in new AKs and a 30% reduction
in BCCs compared with placebo [57].

Photolyase

In plants and algae, the enzyme photolyase is particularly
important in the repairing of UV-induced damage.
Preliminary clinical trials have shown that treatment with a
photolyase containing sunscreen produced > 75% reduction
in new AKs without any serious adverse effects [58•, 59].

Nicotinamide

Nicotinamide is a derivative of vitamin B3 (also known as
niacin) in which an amide group has been added. Niacin is a
component of nicotinamide adenine dinucleotide (NAD),
which increases cellular ATP and enhances DNA repair [60,
61] while simultaneously reducing UV-induced immunosup-
pression [62]. A double-blind randomized clinical trial of nic-
otinamide 500 mg twice daily for 12 months in 386 partici-
pants with at least two non-melanoma skin cancers in the
previous 5 years resulted in a 23% reduction in non-
melanoma skin cancers compared with placebo (95% CI, 4–
38; P = 0.02) [63••]. There were statistically significant reduc-
tions in SCC (30% reduction; 95% CI, 0–51; P = 0.05) and in
AKs (P ≤ 0.01). There were no significant differences for
BCC (20% reduction; 95% CI, − 6–39; P = 0.12). There were
no serious toxicities [63••].

Vismodegib and Sonidegib

Vismodegib and sonidegib are competitive inhibitors of the
smoothened protein (SMO), one of the major proteins in the
SHH pathway. They, thus, inhibit the biological effects of the
SHH pathway. Vismodegib and sonidegib are effective treat-
ments for advanced and metastatic BCCs [64, 65, 66••]. In a
multicenter, double-blind trial comparing two different doses
of sonidegib, both 200 and 800 mg daily produced an objec-
tive response in over one-third of individuals with locally
advanced or metastatic BCC [67]. Similarly, in a multination-
al, phase II trial in which patients with inoperable locally
invasive or metastatic BCC received vismodegib 150 mg per
day, objective response rate was 33.3% in patients with met-
astatic disease, and 47.6% in patients with the locally ad-
vanced form 12 months after primary analysis, demonstrating
durability of response [68••]. Vismodegib has also been used
to prevent new skin cancers in patients with basal cell nevus
syndrome [69]. In a randomized, double-blind, controlled trial
of 41 patients that received vismodegib for 8 months, subjects
treated with vismodegib had > 90% reduction in new BCCs
compared with controls (2 vs 29; P < 0.001). However, vis-
modegib and sonidegib have a number of side effects (loss of
taste, muscle cramps, alopecia, and weight loss), which limit
their widespread use as therapeutic and chemopreventive
agents.

Agents that Target the Promotion Stage of
Photocarcinogenesis

Low-Fat Diet

There is substantial evidence that a high-fat diet contributes to
the development of several different types of cancer. Its role in
NMSC was investigated in a randomized, controlled clinical
trial in which dietary fat intake was restricted to 20% of total
calories [70]. These individuals were compared with those on
an unrestricted diet in which the fat content was estimated to
be 37–40% of total calories. After 24 months, those on the
low-fat diet developed significantly fewer AKs and NMSCs
than those with an unrestricted diet. The mechanism by which
a low-fat diet inhibits skin cancer development has been eval-
uated in animal models. Animals on a high-fat diet exhibited
augmented levels of COX-2, prostaglandin E2, and NF-κB
compared with controls [71].

Retinoids

Retinoids, chemical derivatives of vitamin A, limit cell growth
and enhance differentiation. Preclinical studies which showed
retinoid inhibition of skin cancer development were the impe-
tus for clinical trials examining topical and systemic retinoids
for skin cancer prevention. An 8-month trial of high-dose
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isotretinoin (average 3.1 mg/kg/day) markedly reduced new
skin cancers in some patients while on treatment. Patients only
benefitted while they were taking the oral retinoids, and there
was a rebound once they discontinued them [72]. Treatment at
this dose was associated with intolerable side effects, includ-
ing mucocutaneous toxicity and hypertriglyceridemia. Lower
doses of retinoids have not been effective at lowering skin
cancer rates in otherwise healthy individuals [73]. On the oth-
er hand, oral retinoids, acitretin in particular, are effective at
preventing skin cancer in selected patient populations. They
reduce SCCs in psoriatic patients previously treated with
PUVA, in organ transplant recipients, and in patients with
xeroderma pigmentosum [74–77]. Retinoids do not signifi-
cantly reduce BCC or melanomas, however.

Topical retinoids are not beneficial in preventing skin can-
cer. In a multi-institutional randomized, double-blind placebo-
controlled trial in veterans treated with tretinoin cream 0.1%
or placebo twice daily to the face and ears for 4 weeks, there
was no reduction in skin cancers compared with controls [78].

Difluoromethylornithine

Difluoromethylornithine (DFMO) is an irreversible inhibitor
of the enzyme ODC and thereby prevents activation of the
polyamine biosynthetic pathway, an important step in tumor
promotion. When given orally, it has excellent bioavailability.
In a randomized, double-blind, placebo-controlled trial in
nearly 200 patients who were followed for up to 4 years, there
was a statistically significant 30% reduction in BCCs com-
pared with control [79]. In another clinical trial with 209 sub-
jects at risk for KCs, there was a decrease in new KCs, al-
though it did not reach clinical significance. The reduction
continued for more than 5 years after completion of treatment
[80].

Agents that Target the Progression Stage of
Photocarcinogenesis

Cyclooxygenase 2 Inhibitors

Because celecoxib is a selective COX-2 antagonist that has
received FDA approval for rheumatoid arthritis, osteoarthritis,
and familial adenomatous polyposis of the colon, and due to
the knowledge that COX-2 is involved in UV-induced skin
tumorigenesis, celecoxib was evaluated for its potential to
prevent KCs in a multicenter, double-blind, placebo-con-
trolled, randomized trial involving 240 participants. At a dose
of 200 mg celecoxib twice daily for 9 months, there was a
statistically significant 59% reduction in both BCCs and SCCs
[81]. There was no effect on AKs. Although there was not an
increased incidence of serious adverse effects in the study,
long-term celecoxib treatment is associated with an increased
incidence of cardiovascular side effects. These findings are

supported by studies conducted in patients with the basal cell
nevus syndrome [69]. In a double-blind, placebo-controlled
trial, subjects with fewer than 15 BCCs at baseline developed
significantly fewer new BCCs over a 2-year period when giv-
en celecoxib 200 mg twice daily than placebo-treated
individuals.

Diclofenac is a COX-1 and COX-2 inhibitor. It is commer-
cially available in a topical formulation [82]. A trial of the
topical formulation in organ transplant patients applied topi-
cally over 16 weeks completely prevented invasive SCCs for
2 years [83].

Agents that Stimulate Immunity

Imiquimod

Imiquimod stimulates anti-tumor immune responses in the
skin by binding to Toll-like receptor 7 (TLR7). This leads to
increased production of proinflammatory cytokines such as
IFN-α, IL-6, and TNF-α [84]. When applied topically,
imiquimod activates Langerhans cells and adaptive immunity
[85]. These effects have made imiquimod an effective treat-
ment for AKs and in situ SCCs [86, 87]. A randomized
double-blind study of 42 patients found that a 2-week treat-
ment cycle resulted in nearly 100% reduction in the number of
AKs with sustained clearance after 12 months [88•].
Imiquimod has also been used for the treatment of superficial
BCCs [89].

5-Fluorouracil and Calcipotriol (Calcipotriene)

Topical 5-fluorouracil (5-FU) removes pre-malignant cells be-
fore they can develop into invasive KCs. Its mechanism of
action is to inhibit the enzyme thymidylate synthase. This
impedes DNA synthesis which limits the growth of rapidly
dividing cells [90]. Calcipotriol is a vitamin D analog that
increases the cytokine thymic stromal lymphopoietin (TSLP)
[91••, 92, 93]. TSLP is produced by epidermal keratinocytes.
It promotes immune responses by stimulating the release of
chemokines, activating epidermal Langerhans cell maturation.
When applied to sun-damaged skin for only 4 days, the com-
bination of topical 5-FU and topical calcipotriol effectively
causes regression of pre-malignant AKs [91••].

Other Agents for Skin Cancer Prevention and
Treatment

A number of other agents show promise for the prevention or
treatment of skin cancer. Many are in preclinical trials or are
undergoing early testing in humans. Table 1 provides a list of
chemopreventive agents.
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Conclusions

Research into the mechanisms by which ultraviolet radiation
causes skin cancer has generated new knowledge that is fun-
damental to our understanding of how environmental agents
affect biological processes. These include DNA damage and
repair, the role of oncogenes and tumor suppressor genes,
tumor immunology, and prevention and treatment of cancer.
These findings have implications not only for dermatological
malignancies but also for cancer biology in general. The end
result will be new molecules and pathways that can be
targeted for prevention and treatment of cancer.
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