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Abstract
Purpose To review recent developments in artificial intelligence for skin cancer diagnosis.
Recent Findings Major breakthroughs in recent years are likely related to advancements in utilization of convolutional neural
networks (CNNs) for dermatologic image analysis, especially dermoscopy. Recent studies have shown that CNN-based ap-
proaches perform as well as or even better than human raters in diagnosing close-up and dermoscopic images of skin lesions in a
simulated static environment. Several limitations for the development of AI include the need for large data pipelines and ground
truth diagnoses, lack of metadata, and lack of rigorous widely accepted standards.
Summary Despite recent breakthroughs, adoption of AI in clinical settings for dermatology is in early stages. Close collaboration
between researchers and clinicians may provide the opportunity to investigate implementation of AI in clinical settings to provide
real benefit for both clinicians and patients.
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Introduction

Skin Cancer Diagnosis

With over 5 million new cases of cutaneous malignancies
reported every year [1], automated methods for diagnosing
skin cancer are a huge area of clinical need and research effort.

In the past, the diagnosis of skin cancer relied on a clinical
examination by a dermatologist. In recent years, dermoscopy
has gained in popularity and is currently being used by 81% of
US dermatologists. The rate is even higher among young der-
matologists at 98% [2]. The added value of dermoscopy over
the naked eye examination was demonstrated in several meta-
analyses. For the diagnosis of melanoma, dermoscopy in-
creased the diagnostic accuracy of naked eye examination with
a relative diagnostic odds ratio of 4.7–5.6 [3]. For basal cell

carcinoma (BCC), sensitivity increased from 67 to 85% and
specificity from 97 to 98% [4]. However, dermoscopy is an
operator-dependent test and requires training and experience.

Newer technologies, such as reflectance confocal micros-
copy (RCM) and optical coherence tomography (OCT), are
used as add-on tests to supplement dermoscopy in certain
specialized centers and may further increase diagnostic accu-
racy [5, 6]. However, these tests are still not widely imple-
mented, mainly due to the high costs and need for specific
training.

Artificial Intelligence

Artificial intelligence (AI) is the notion of developing intelligent
machines that can automatically carry on a task. This idea dates
back to the 1930s. The first landmark article on machines that
“think” was published in 1950 by Allan Turing, who also sug-
gested that a machine that passes the “Turing test”, meaning it
could hold a conversation in a way that is indistinguishable
from a human, can be considered “thinking” [7].

Machine learning (ML) is a subfield of AI that studies how
computers can learn tasks without being explicitly pro-
grammed to conduct them [8]. ML is mathematically model-
ing the relation between the data (e.g., dermoscopy images)
and the task (e.g., diagnosis) while optimizing a given penalty
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(e.g., accuracy of diagnosis). Among several methods avail-
able in the literature, deep neural networks have gained pop-
ularity in recent years due to their high representation and
classification power. Neural networks as a ML technique
was first proposed in the 1940s, but it wasn’t until the early
2010s when the idea began to be implemented regularly
among the machine learning community, following the semi-
nal work of Krizhevsky [9]. The main reasons were (i) neural
network models with high recognition capabilities are hard to
train due to their computational complexity and (ii) they do
not perform well (overfit to the training examples by memo-
rizing them) in the lack of a large set of training data [10].
Advances in computing hardware (e.g., graphical processing
units (GPU), tensor processing units (TPU)), parallel comput-
ing techniques, and availability of vast amount of digital data
enabled investigators to train neural networks that can model
complex relations between given training data and tasks. In
particular, diagnostic analysis of medical images provides an
incredible opportunity for machine learning to impact clinical
care. In recent years, there has been an incredible increase in
research directed at automated analysis of clinical and
dermoscopic images for the purpose of diagnosing skin can-
cers, particularly melanoma.

History of AI and Skin Cancer

Dermatoscopy allows for imaging skin surface and subsurface
morphological structures of lesions. It demonstrates a con-
trolled environment for imaging of skin lesions with
predefined features of lighting conditions, camera distance,
angle, etc. Having such a controlled imaging environment, it
provides reasonably “clean” datasets for AI development pur-
poses. The consistency of dermoscopy combined with its
common use in dermatology clinics has made it the optimal
training ground for AI investigation of dermatology problems.

At the initial stages of ML, research for skin lesion diag-
noses mostly focused on the classic workflow of machine
learning: preprocessing, color- or texture-based segmentation
(marking the borders of the lesion), feature extraction, and
classification [11, 12]. In this setting, ML algorithms were
trained to diagnose skin lesions using features that are model-
ing the human-generated criteria (such as the 7-point
checklist).

The first report of the ML application in the diagnosis of
dermoscopic images of nevi and melanoma was by Binder
et al. in 1994. The authors used artificial neural networks
and reported similar diagnostic accuracy compared with hu-
man investigators [13]. However, over the next two decades,
progress in this field was slow. This was likely due to a lack of
systematically collected large image datasets that represent the
general cohort as well as limited computational and algorith-
mic capabilities to digest and analyze the available data.

Recent Breakthroughs in the Field of AI and Skin
Cancer

In the past few years, the developments in the capability of
training neural network models with larger sizes and higher
representation power allowed for significant progress.
Particularly, a specialized type of neural networks called
convolutional neural networks (CNNs) has shown great suc-
cess in image analysis and recognition applications, including
dermoscopic image analysis. CNNs are a stack of filters op-
erating on local regions of interest (e.g., filters calculate rela-
tionship among a group of pixels within a certain neighbor-
hood) at a time. They are specialized in learning the relation-
ship between the input (e.g., image) and the classification task
(e.g., diagnosis) by analyzing the local relations between a
certain neighborhood of samples (e.g., pixels). As mentioned
earlier, feature extraction is an integral part of the machine
learning process and CNNs no longer require a separate
user-defined feature extraction phase. CNNs work through
several layers, where the first layer is the input (raw pixel data)
and the last layer is the output, which includes the
classification/diagnosis of the image/lesion. The first and the
last layers are the only two layers that are accessible by the
user. However, there are multiple hidden layers between them
that can be indirectly accessible through the input and output
layers. These hidden layers are the part of the network that
models the relation between the input and the output tasks.
The network does this by mapping the input lesion image into
a distinctive and potentially unique mathematical/numerical
description of its interpixel relations called feature representa-
tion, which can then be reliably classified using the output
layer of the network.

There are two major advantages of CNNs: Unlike previous
image analysis pipelines, where the user needs to define the
best feature representation to perform the aimed task, CNN-
based algorithms are capable of learning the feature represen-
tation and solve the classification/recognition task directly
from the data in a joint manner without the need for user
guidance. Moreover, as the analysis is conducted with convo-
lution operations, which can be computed in a very efficient
way by parallel processing over graphical processing units
(GPUs), large amounts of data can be easily utilized to achieve
successful and highly robust models. CNNs have been shown
to perform much better in image analysis compared with pre-
vious technologies [14].

While CNNs have dramatically improved the land-
scape of AI research for skin cancer diagnosis, they
suffer from large data requirements and lack of inter-
pretability. As these models have a large number of
tunable parameters, they require large image datasets to
train [15]. Moreover, in many cases, the analysis that is
performed over the hidden layers, as well as the features
that are used to generate the diagnosis, cannot be
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fully interpreted by the users. Therefore, it can be chal-
lenging to understand how the algorithms reach their
“conclusions”.

AI Diagnostic Accuracy for Skin Lesions

In 2017, a landmark research letter was published in Nature by
Esteva et al. [16••]. The authors trained a CNN with 129,450
clinical images including 3000 dermoscopic images and com-
pared its ability to differentiate between keratinocyte carcino-
mas and seborrheic keratosis and between melanomas and nevi
to that of human experts. The CNN achieved performance on
par with all tested experts. As opposed to previous work, in this
study, the CNN was not restricted to man-made segmentation
criteria but rather was only images with respective diagnosis
and it created its own diagnostic rules (classification model).

Another landmark publication was that of Han et al. in 2018
[17•• ]. In this article, the authors trained a CNN with several
private image datasets that included 12 different skin diseases
(BCC, squamous cell carcinoma [SCC], Bowen’s disease, ac-
tinic keratosis, seborrheic keratosis, melanoma, nevus, lentigo,
pyogenic granuloma, hemangioma, dermatofibroma, and
warts). They reported that the CNN’s performance was similar
to that of 16 dermatologists and had an area under the curve
(AUC) of receiver operator characteristic (ROC) curve of 0.90–
0.96 for BCC, 0.83–0.91 for SCC, and 0.82–0.88 for melano-
ma. As a novel method for testing, the group has allowed any-
one to test their algorithms and has made results public, which
can transform the field forward.

After several studies have shown that CNNs can be used to
diagnose pigmented skin lesions, Tschandl et al. tested their
performance on non-pigmented skin lesions [18]. They
trained their model on almost 13,724 images of excised le-
sions. They then tested its performance on 2000 images and
compared it with the performance of 95 human raters. The
AUC ROC curve of the CNN was 0.742 compared with
0.695 for the human raters. When specificity was fixed to
the mean level of human raters (51.3%), the CNN’s sensitivity
(80.5%) was higher than that of the human raters (77.6%). The
authors concluded that the CNN achieved a higher rate of
correct specific diagnoses compared with the novice raters,
but not compared with dermoscopy experts.

Several systematic reviews and meta-analyses have been
published in the past 2 years summarizing the available data
on the diagnostic accuracy of AI for skin lesions. A Cochrane
review summarizing the data available up until August 2016
included a meta-analysis of 22 studies that used dermoscopy-
based AI. They found that the sensitivity for the diagnosis of
melanoma was 90.1% and specificity was 74.3%. The authors
commented that the studies had high variability and high risk
of bias and included only specific populations [19].

Marka et al. published a systematic review about AI and
non-melanoma skin cancers (NMSC) that included studies

published up until 2018. They reported a diagnostic accuracy
of 72–100% and AUC of 0.832 to 1.0. Again, the studies
included had a high risk of bias and methodological limita-
tions [20].

In two recent studies fromGermany, the ability of CNNs to
correctly diagnose skin lesions was further demonstrated. In
the first study, CNN was trained and tested on dermoscopic
images of pigmented nevi andmelanomas and its performance
was compared with 58 international dermatologists. Adjusted
to the dermatologists’ sensitivity, the CNN had a higher spec-
ificity. Interestingly, this was true even when the investigators
provided the dermatologists with additional non-dermoscopic
close-up images and clinical data [21].

In the second study, the authors trained a CNN solely on
dermoscopic images and then tested its performance on clin-
ical images and compared it with 145 dermatologists.
Adjusted to the mean sensitivity of the dermatologists
(89.4%), the CNN showed a slightly higher specificity
(68.2% vs. 64.4%), even though it was never trained on clin-
ical images [22].

International Skin Imaging Collaboration

Sponsored by the International Society for Digital Imaging of
the Skin, International Skin Imaging Collaboration (ISIC) is
an academia and industry collaboration aimed at improving
melanoma diagnoses and reducing its mortality rates through
the use of digital imaging technologies. It provides a public
database that is used to benchmark machine learning algo-
rithms and host public challenges.

In general, the activity of ISIC can be divided to two major
parts:

1. ISIC working groups—These groups of experts are work-
ing on developing standards for skin imaging in different
aspects, including imaging technologies, imaging tech-
niques, terminology, and metadata standards (standards
for the technical and clinical data that should be stored
with the image).

2. ISIC archive [23]—ISIC has developed and currently
maintains the largest publicly available image database
of skin lesions. The images are collected from leading
centers around the world. Currently, the archive consists
of more than 40,000 images (mostly dermoscopic but also
clinical) of ~ 30 different skin lesions tagged with their
diagnosis.

ISIC has been a major driver in the development of AI
technologies in the field of skin cancer. First, the ISIC archive
is an open access website and the images are available for
everyone to download and use for training AI software.
Second, ISIC has been hosting annual challenges to further
engage the tech community. The challenges consist of a
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training set and a test set, and participants are invited to submit
their algorithms and to compete for the most accurate algo-
rithm. The challenges include three steps: (1) segmentation of
the lesion from the background of the images; (2) detection of
different dermoscopic features; and (3) classification of the
lesion in the image.

Each participant is provided with a training set (images +
respective classification and segmentation information) to de-
velop ML algorithms that carry on the tasks defined in each
phase. The performance of the developed methods is assessed
over an independent test set (only images are available to the
participants). The participant can upload their processing re-
sults over the test set to the challenge web portal, at which the
results are evaluated in almost real-time and published on the
challenge score boards. In this way, the participants can com-
pete the methods and assess their performance against other
participants.

Each year, the challenges have become more complicated
with more images and more diagnoses that are included. The
2016 challenge included 900 images in the training set and
350 images in the test set. Two diagnoses were included: mel-
anomas and nevi. Two dermoscopic features were
examined—streaks and globules. The performance of AI al-
gorithms was compared with that of 8 dermatologists. The
dermatologists’ performance was similar to the top individual
algorithm (sensitivity of 82% and specificity of 59%), but not
as good as a fusion algorithm that combined 16 individual-
automated predictions (specificity of 76% when sensitivity
was set to the dermatologists’ level at 82%) [24••].

The 2017 challenge included 2000 images in the train-
ing set and 600 images in the test set. Three diagnoses
were included: melanomas, nevi, and seborrheic keratosis.
Four dermoscopic features were examined: pigment net-
work, negative network, streaks, and milia-like cysts. The
top algorithm reached an AUC of 0.91 across all disease
categories [25].

The most recent ISIC challenge of 2018 used the
HAM10000 dataset [26], which included more than 10,000
dermoscopic images of 7 disease categories (melanoma, nevi,
seborrheic keratosis, BCC, Bowen’s disease and actinic kera-
tosis, vascular lesions, and dermatofibromas). Five
dermoscopic features were examined: pigment network, neg-
ative network, streaks, milia-like cysts, and globules (includ-
ing dots). The best performing algorithms achieved an average
sensitivity of 88.5% in diagnosing all disease categories. The
algorithms’ performance was compared with the performance
of over 500 human participants, but these results have not
been published yet.

ISIC challenges have helped dramatically to increase the
amount of research and publications related to AI and skin
lesion diagnosis. Dozens of papers describing the different
algorithms that were used in the challenges were published
following each challenge.

New Developments and Technologies

Most major breakthroughs in the implementation of AI in skin
cancer diagnosis so far have involved creating predictions for
the classification of dermoscopic images of skin lesions.
However, there are other new and exciting fields of research
that have been published in recent years.

1. Use of metadata—As mentioned before, metadata is text-
based data that provides additional non-visual information
to the rater/AI system. Classically, metadata consists of
two components: (a) clinical metadata that includes pa-
tient demographics, medical history, and lesion evolution;
and (b) technical metadata that includes information about
the image acquisition, and technology. Yap et al. exam-
ined the use of a classifier that combines imaging modal-
ities with patient metadata and compared it with the per-
formance of a baseline classifier that only used a single
macroscopic image. They found that the combined clas-
sifier performed better than the baseline classifier in de-
tecting melanoma as well as other lesions such as BCC
and SCC [27]. Roffman et al. trained a CNN to predict the
risk of NMSC. They were able to reach a sensitivity of
88.5% and a specificity of 62.2% solely based on a ques-
tionnaire, which did not even include ultraviolet exposure
[28].

2. AI in smartphone apps—A quick search on the different
app stores leads to multiple smartphone apps that offer an
“automated diagnosis” of skin lesions. However, a recent
systematic review by the Cochrane library found very
sparse evidence-based information for the efficacy of
these technologies. They were able to identify only two
studies, both with high risk of bias, that tested four auto-
mated diagnosis apps. Sensitivity for the diagnosis of mel-
anoma or “high risk”/“problematic” lesions ranged from 7
to 73% and specificity from 37 to 94%. The authors con-
cluded that smartphone apps have not yet demonstrated
sufficient evidence for accuracy and the data that exists
suggests they are at high risk of missing melanoma [29].

3. Diagnostic tests other than dermoscopy—Dermoscopy is
the most prevalent method used by dermatologists for
skin cancer screening. However, other methods exist.
Several studies investigated the implementation of AI
technologies in these methods. Examples include CNN-
based classification on OCT images of BCC (95.4% sen-
sitivity and specificity) [30], semantic segmentation of
morphological patterns of melanocytic lesion in RCM
mosaics collected at a dermal epidermal junction level
(76% sensitivity and 94% specificity) [31], delineation
of stratum corneum and dermal epidermal junction in
RCM image stacks [32–34], and CNN-based classifica-
tion on hyperspectral imaging of selected nevi and mela-
nomas (100% sensitivity and 36% specificity) [35].
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Limitations and Challenges

After reading this review and the diagnostic accuracy data, one
might think that AI currently outperforms human dermatologists
in the diagnosis of skin cancer. However, this is not the case.
Most of the studies described in this review have been performed
in a controlled experimental environment with a limited number
of diagnoses and on close-up or dermoscopic images. On the
other hand, the clinicians are not trained to diagnose lesions only
from dermoscopy or clinical images. In real clinical settings,
human raters use additional information to reach a diagnosis,
including the patient and the lesion’s clinical data and history,
the combination of the naked eye and dermoscopic appearance
of the lesion, the comparison of the lesion to other lesions on the
patient’s body, and the ability to palpate the lesion. Therefore, the
use of metadata is critical and in most of the studies, no metadata
was included. In this sense, this environment favors AI over
human rates and does not represent true clinical settings. In the
existence of all these metadata, the performance of the human
raters would improve significantly. However, it is still an active
area of research on how much AI can benefit from such side
information.

Challenges in the Development of AI for Skin Cancer
Screening

In addition, there are numerous challenges in the development
and implementation of AI in the field of skin cancer screening.
This section will review the main ones.

1. The need for large data pipelines

The development of clinical level AI requires large data
pipelines to train the algorithms. Aside from the ISIC archive,
most open access image databases of skin lesions currently
include a relatively small number of images. Among other
things, the development of open access databases is limited
by various factors, such as image copyright issues and patient
privacy. In addition, most image databases currently include
primarily dermoscopic images and lack clinical images or full-
body photography images, which limit the use of AI for
screening dermoscopic images and not patients.

2. “Ground truth” diagnosis

For an ML algorithm to train and “learn” the relationship
between pixel data and lesion classification, it requires
“ground truth” diagnosis tagging for the images. In dermatol-
ogy, “ground truth” diagnosis is traditionally considered to be
the histological diagnosis. This poses two major challenges:
first, histology is an operator-dependent test and some cases
are read as different diagnoses by different pathologists [36].
Second, the inclusion of only biopsied lesions creates a bias in

the training sets in favor of malignant lesions and may hamper
the algorithm’s ability to accurately diagnose the most com-
mon benign skin lesions, such as angiomas or benign nevi,
which are not routinely biopsied.

3. Lack of imaging standards

Many different factors may influence the appearance of a
lesion in an image: lighting conditions, camera angle, camera
distance, color calibration, etc., which may change due to
variations in (i) the imaging conditions and/or (ii) the specifi-
cations of imaging device manufactured by different compa-
nies (or evenmodels). For the reproducibility of AI algorithms
using different datasets/clinical settings, it is best if all these
factors are standardized. However, today, most dermatological
image acquisition process is non-standardized. There are at-
tempts at creating standards in dermatological photography,
but they are still complex and not easy to implement [37].

4. Lack of metadata

Two similarly appearing lesions can have different clinical
significance in different clinical settings (e.g., a new Spitzoid
lesion on a young child vs an elderly individual). However,
today, most imaging databases that are used to train AI do not
include any metadata, and algorithms are trained based on
pixel data alone. Including metadata along with images in
the future could enhance AI’s ability to obtain a more accurate
diagnosis, as demonstrated already by Yap et al. [27].

5. Lack of generalization

While there are thousands of different disease entities in
dermatology, most image databases include large numbers of
images on a limited number of diagnoses. A ML algorithm
that is trained on only a few types of lesions will not perform
well in a clinical environment where there are dozens of dif-
ferent lesions. In addition, imaging archives have been criti-
cized for not including the entire spectrum of skin types, eth-
nicities, and geographies, and have a disproportional represen-
tation of lighter skin types. Algorithms trained with these da-
tabases may not perform well in clinical settings that include
all skin types [38].

6. Lack of prospective studies in a clinical setting.

As mentioned above, all previous studies of ML technologies
in the diagnosis of skin cancer have been performed in a con-
trolled experimental environment on dermoscopic and/or close-
up images that does not accurately represent the clinical settings.
To create ML algorithms that will be relevant for real clinical
settings, there is a need for prospective studies that will be per-
formed in the same settings.
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Future Considerations

With the development of CNNs in recent years, AI no longer
depends on predefined features and is capable of learning
them from the raw pixel data to generate classifications. This
process includes multiple “hidden” layers that are unknown to
the operator and lack clinical meaning. As for the approaches
of future AIs, we expect the literature to move towards more
transparent and clinically relevant diagnostic methods, which
would be more relevant to the physician in clinical settings.

In addition, we expect the future to bring larger and better
organized image databases, which will make it possible to
train more accurate and comprehensive ML algorithms. This
can be attributed to several trends—first, more physicians and
medical centers use photography [39], generating a large pool
of skin disease images. Second, images are expected to be
standardized and coupled with metadata as efforts in creating
these standards are increasing. Third, resolving regulatory and
legal issues will make more images available from diverse
geographical, ethnic, and cultural backgrounds.

Finally, many efforts and resources are invested in the de-
velopment of AI, but the best way to implement AI in a clin-
ical setting is still unclear. Will the end users be patients or
physicians? How will the predictions be delivered to them?
And what will the AI’s role be in guiding diagnosis and man-
agement? For example, it is not clear how an unexperienced
clinician or a patient should deal with the result of 2% prob-
ability for melanoma [40]. It is the authors’ opinion that AI
will not replace physicians in the near future. Rather, it will be
a tool in their hands. Even if all the challenges mentioned
above are overcome, there is still the issue of human nature:
humans prefer to interact with humans, especially in medicine
and even more so in the case of cancer diagnosis [41]. A
potential way to implement AI in a clinical setting can be
found in a study by Tschandl et al. [42]. The authors reported
a neural network that presents the clinician with visually sim-
ilar images based on features from the image in question. This
type of models can be used as a tool to help enhance the
clinician’s diagnostic accuracy.

Conclusions

The past 2 years have seen a dramatic progress in the devel-
opment of AI for the diagnosis of skin lesions, mainly of
pigmented skin lesions through dermoscopic images.
However, these breakthroughs have all been in a controlled
experimental environment with the exclusion of very critical
metadata. In this sense, the adoption of AI-based diagnostic in
the real dermatology clinical setting still is in its early stages
and limited. Overall, the foremost issue is to establish a syn-
ergistic research environment between the dermatologists and
computer scientists, where each side understands the needs

and constraints of both fields. Dermatologists should lead
the discussion as to where AI should be integrated into skin
cancer screening in a clinical setting in order to provide a real
benefit to both the clinician and patient and to avoid any con-
fusion or unnecessary stress and biopsies. On the other hand,
computer scientists should lead the discussions on the data
wise needs to achieve these aims and on providing new ways
of analyzing and presenting the data to make the clinical prac-
tice more efficient.
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