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Abstract
Purpose of Review The purpose of this review was to educate
the reader of the multiple roles undertaken by the human epi-
dermal lipidome and the experimental techniques of measur-
ing them.
Recent Findings Damage to skin elicits a wound healing pro-
cess that is capped by the recreation of the lipid barrier. In
addition to barrier function, lipids also undertake an active
signaling role during wound healing. Achievement of these
multiple functions necessitates a significant complexity and
diversity in the lipidome resulting in a composition that is
unique to the human skin. As such, any attempts to delineate
the function of the lipidome during the wound healing process
in humans need to be addressed via studies undertaken in
humans.

Summary The human cutaneous lipidome is unique and plays
a functionally significant role in maintaining barrier and reg-
ulating wound healing. Modern mass spectrometry and
Raman spectroscopy-based methods enable the investigation
of epidermal lipidome with respect to those functions.

Keywords Wound healing . Bioactive lipids . Analytical
methods . Sampling techniques . Human

Introduction

Skin, the largest organ in the body, is protected by a continu-
ous barrier of lipids that face the external environment. These
lipids are a combination of those secreted by the sebaceous
glands as well as those generated by the cells of the stratum
corneum. The composition and distribution of lipids on the
skin are unique to humans. Furthermore, skin lipids are often
unique compared to lipids of internal tissues. In fact, the two
key words used to characterize the human skin lipidome are
Bcomplexity and perversity ,̂ where complexity is manifested
by a large number of diverse lipid species and perversity is
demonstrated by the uniqueness of skin lipids [1]. This is
exampled by the fact that skin lipids contain significant
amounts of both odd chain and branch chained lipids, a feature
that is unique to the skin lipidome [1]. While there is signifi-
cant spatial variability in the same person, the lipidome is also
significantly altered during different stages of growth [2] and
is also affected by environmental factors such as the different
seasons, the skin microbiome, and exposure to the elements
[3, 4•, 5, 6]. Furthermore, significant variations exist between
the skin lipidome of the different ethnic groups such as the
Asian, African American, and Caucasians [3]. This particular
compositional spatial and temporal distribution of the
lipidome found among humans are highly unique in the
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animal kingdom and cannot be replicated faithfully in any of
the model organisms available for study. As such, any studies
that investigate the human dermal lipidome necessitate that
those studies be undertaken using humans themselves as the
model of choice. However, this requirement needs to be bal-
anced with the potential for discomfort to subjects and mini-
mizing invasive procedures wherever possible. In this regards,
techniques such as micro sampling demonstrate significant
advantages in the application towards studies investigating
the human dermal lipidome. Furthermore, until recently, such
detailed investigations of the human skin lipidome have not
been feasible due to technological limitations. Technological
advances in modern mass spectrometry-based analytical
methods have enabled micro sampling methods containing
very small amounts of material to be used in the investigation
of the variations in the human dermal lipidome during the
wound healing process. Using these methods, as well as tra-
ditional techniques, a significant body of information has been
derived with respect to the human skin lipidome.

Skin Surface Lipids

The primary sources of the human epidermal lipidome are the
sebum and the cells of the stratum corneum. Triglycerides,
free fatty acids, wax esters, squalene cholesterol esters, and
cholesterol constitute the primary human dermal lipids that are
synthesized by the sebaceous glands [7]. The human sebum
lipidome is especially unique in the fact that some of the lipids
such as squalene and wax esters are only found in the sebum
secretions and nowhere else. Furthermore, the sebum derived
in skin lipidome is also unique in the presence of odd chain
length and branched chain free fatty acids. An additional
unique feature in the sebum derived human skin lipidome is
the presence ofΔ6 desaturase derived free fatty acids, namely
sapienic acid (16:1 Δ6) which constitute almost 25 % of the
total fatty acids and demonstrate a significant level of antimi-
crobial activity [8, 9]. Additional elongation and desaturation
also give rise to unique sebaleic acid (18:2 Δ5,8) which has
recently been described as being important in neutrophil re-
cruitment following transcellular conversion to 5-
oxo-[6E,8Z]-octadecadienoic acid [10]. The primary func-
tions of the human sebum lipidome include photoprotection,
antimicrobial activity (e.g., sapinic acid), and delivery of fat
soluble antioxidants to the skin surface as well as lipid specific
pro- and anti-inflammatory activity [7]. Alterations to the se-
bum lipidome has been implicated in multiple dermal human
dermal health complications including acne, asteatosis, com-
edone, furuncles, comedones, carbuncles, sebaceous hyper-
plasia, seborrhea, seborrheic dermatitis, and steatomas [7,
11]. As such detailed investigation into changes of the sebum
lipidome associated with such disease states has the potential

towards novel treatment options that specifically target the
lipid balance of the sebum derived skin lipidome.

Stratum Corneum Lipids

The second and equally important source of the skin lipidome
is derived from the stratum corneum (SC) and is primarily
involved in the maintenance of epidermal permeability barrier
and prevention of transepidermal water loss (TEWL) [12–14].
These SC derived lipids are primarily composed of ceramides
(50 % by mass) with the remainder made up of free fatty acids
and cholesterol [14–16]. These lipids fill in the gaps between
the spaces of the keratinocytes in a Bbrick and mortar^ type of
structure where the dead and terminally differentiated
keratinocytes acting as the bricks and the SC derived lipids
act as the mortar [16]. As in the case of the sebum lipidome,
human SC lipidome is unique in that a significant fraction of
this lipidome is only found on the skin. In this regards, SC
barrier lipidome composed of four different sphingoid bases
N-acylated to three different fatty acyls creating a combination
of 12 classes of ceramides (numbered CER1-12). The
sphingoid bases are primarily composed of 18 carbons and
include sphingosine, sphingenine, phytosphingosine, and 4-
hydroxy-sphingosine (Table 1). The fatty acyls include non-
hydroxy, omega-hydroxy, and esterified-Omega hydroxyl fat-
ty acids (Table 1). A majority of the sphingoid bases demon-
strated antibacterial activity [8].

Signaling Lipids

In addition to the structural functions performed by the skin
lipidome, a significant amount of signaling events is also me-
diated by the lipidome. We have demonstrated the importance
of the sphingolipid ceramide-1-phosphate in the migration and
proliferation of skin fibroblasts and demonstrated that this
lipid species follow a temporal change during cutaneous
wound healing in humans [17]. Additional studies by us and
others have demonstrated the importance of eicosanoids in the
mediating the signaling events during the wound healing pro-
cess [17, 18•]. Furthermore, we and others have demonstrated
roles for sphingosine-1-phosphate in many of the aspects of
wound healing biology [19]. Other lipids of relevance to the
human de rma l wound hea l i ng p roces s i nc lude
sphingophosphorylcholine [20], lysophosphatidic acid [21],
protectins, and resolvins [22].

Diseases Associated with Dysregulated Skin Lipid
Metabolism

Dermatological research undertaken in the past few years has
demonstrated a major role for the human dermal lipidome in
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the pathological conditions of the skin. In this regards, the role
of ceramide metabolismwith respect to atopic dermatitis is the
most intensively investigated [15, 23–26]. For example,
Yamato et al. demonstrated that while the relative amounts
of the major stratum corneum lipids remained unchanged,
significant changes were observed within the ceramide class
and the squalene, wax esters, and triglycerides [24]. For ex-
ample, the proportions of ceramides were demonstrated to be
lower in the AD patients compared to their controls [24]. On
the other hand, the sebaceous lipids were observed to be ele-
vated in the AD patients compared to their controls [24]. The
decrease in the ceramide content of the SC of the AD patients
can be explained in part by the increased expression of
sphingomyelin/glucosylceramide deacylase in the SC of AD
patients [27]. This enzyme was demonstrated to hydrolyze
sphingomyelin and glucosyl ceramides at the acyl site to lib-
erate sphingophosphoroylcholine and glucosyl sphingosine
which in turn lead to decreased production of SC ceramides
[27]. In addition to the abnormalities in ceramides, significant
changes were also observed in the cell membrane phospho-
lipids in the epidermis of AD patients compared to their con-
trols with a significant reduction observed in the phospholipid
content of the epidermis of the AD patient [25]. These pub-
lished studies demonstrate a close relationship between hu-
man skin lipid metabolism and AD. Psoriasis is another skin
disorder that is due in part to lipid dysbiosis of the SC. In this
regards, the generation of an abnormal skin ceramide compo-
sition leads to a disruption in the skin barrier function and
elevated transepidermal water loss (TEWL) [12]. While the
total ceramide content was demonstrated to remain un-
changed, long chain ceramides containing ester linked fatty
acids and those containing phytosphingoid backbones were
demonstrated as being lower in psoriatic skin compared to
normal skin [28]. These changes are attributed at least in part
to decreased expression of the sphingolipid activation protein
saposin [29, 30] which is a non-enzymatic component

required for the hydrolysis of glucosyl ceramides. An
inherited lipid-related genetic disorder that leads to skin dis-
ease via dysregulated lipid metabolism is Gaucher disease.
The disease is caused by a decrease in β-glucocerebrosidase
and varies in clinical severity from asymptomatic to severe
[31]. The decreased incidence of this enzyme manifests as
an increase in the glucosyl ceramide and a decrease in the
ceramide content [32] with a concomitant increase in the epi-
dermal barrier function. Dry skin or xerosis that often end up
impairing barrier function is characterized by a deficiency
primarily in the 6-hydroxy and 4-hydroxy backbone contain-
ing ceramides [33]. The fact that there is seasonal variation in
skin ceramide content and the incidence in increases xerosis in
cooler seasons have been causally linked to each other [2].
Finally, the most common of skin lipid-mediated disorders
would be acne. Alterations to the sebum lipidome have been
heavily implicated in the outbreak of acne [11, 34–36].
Specifically, altered ratios between saturated and unsaturated
fatty acids as well as altered amounts of specific fatty acids
such as linoleic acid and the formation of squalene peroxides
have all been linked to outbreaks of acne [37].

Pharmaceutical Modulation of the Skin Lipidome

Considering the primary roles played by the lipidome in the
structure and function of the human skin, development of lipid
formulations for both therapeutic and cosmetic purposes is a
highly active pharmaceutical industry [38, 39]. As such, sev-
eral formulations include the use of ceramides or their precur-
sors. Primary among those are formulations containing
hydroxypalmitoyl sphingenine (Cetaphil, RestoraDerm Skin
restoring Moisturizer), ceramide 1, ceramide 3 (Eucerin,
CeraVe), and pseudo ceramides. Additionally, lipid blends
such as epicerum [13] consisting of a blend of ceramides,

Table 1 Human skin ceramide structural variants identified to date. The different structural isomers of ceramides are depicted together with their
commonly used names demonstrating the diversity of the human skein ceramides
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cholesterols, and free fatty acids are also used as cosmetic and
barrier repair agents.

Sampling Methods for the Investigation of the Skin
Lipidome

In order to explore different lipid components involved in
human skin wound healing, a variety of skin sampling tech-
niques have been developed. The least invasive technique is
called tape stripping [40]. One such process utilizes D-
Squame® tape (CuDerm Corporation, Dallas, TX, USA)
where the adhesive discs are applied to the skin using a set
force and then ten or more successively samples are removed.
The attached cells and lipid material on the disc are placed in
an appropriate lipid extraction buffer followed by analysis of
the lipids of interest [41]. Wound dressings are also a rich
source of sampling material for research analyses of human
wounds especially with respect to the signaling lipidome. A
recent review by Widgerow et al. describes the usefulness of
collecting wound fluids under film dressings as well as ana-
lyzing components obtained from the discarded primary
dressing [42]. This technique is especially useful for the study
and progression of the healing of human chronic and burn
wounds. The wound fluids and contents of the dressing can
be extracted, and the specific target analyte can be isolated and
analyzed. Another useful technique is the suction blister mod-
el of wound healing to obtain interstitial fluid as well as the
epithelial Broof^ layer for analyses [18•]. One useful instru-
ment to create suction blisters on the inner forearm is the
negative pressure instrument (Electronic Diversities,
Finksburg MD). Alternatively, a simple chamber attached to
a standard vacuum pump can be used as well (350 mmHg for
1 to 2 h). The procedure is relatively painless and does not
leave a scar. Creation of partial-thickness skin wounds using a
variety of dermatomes has also been used to study human skin
reepithelization [43]. The Bdonor site^ type of wound can be
photographed over time to quantify the process of
reepithelization with or without the topical application of test
materials. The wound surface can also be sampled using a
sterile swab or Whatman filter paper and then analytes can
be isolated and analyzed [44]. Punch biopsy is the classical
procedure to obtain epidermal and dermal tissues for analyses.
The recent review by Yang and Kampp provides a complete
Bhow to^ procedure to obtain skin biopsies for research and
analyses [45]. The various layers in the full thickness speci-
men can be isolated and analyzed by histology as well as
specific biochemical techniques to quantify proteins and bio-
active lipids. In addition, the open wound created by the tissue
punch can be covered with an occlusive dressing such as
Opsite® (Smith and Nephew, Fort Worth, TX) and the wound
fluid can be collected over time for analyses [46].
Furthermore, the process of wound contraction can be

measured by using standardized photography and image anal-
ysis. One of the more recent and highly valuable techniques to
study human wound healing has been the development of
i m p l a n t a b l e a n d r e t r i e v a b l e h i g h - p o r o s i t y
polytetrafluoroethylene tubes (012-01-2 PTFE; International
Polymer Engineering, Tempe AZ) [47–51]. Typically, the
PTFE tubes can be implanted using an 18 g, 3.5 in. spinal
needle in an anesthetized area in the inner aspect of the sub-
ject’s upper arm [17]. The implants can be retrieved at sequen-
tial times such as 3, 5, 7, and 14 days after implantation and
cut segments can be analyzed with respect to variations in the
lipidome during the wound healing process (Fig. 1). Using
this technique, we have demonstrated that the sphingolipid
ceramide-1-phosphate has a distinct variation during the hu-
man wound healing process and that it is likely acting as a
master switch for the regulation of eicosanoid signaling [17].
Additional and concurrent information can be gained by pro-
cessing sections for histology, immunostaining, matrix con-
tent, and with the use of an entropy-based automatic image
analyzer system, specific cells and collagen deposition can
also be quantified [52] as well as other signaling proteins that
take part in the wound healing process [17].

Qualitative and Quantitative Analysis of the Human
Skin Lipidome

Considering the fact that the lipidome is integrally involved in
the function of the skin, its ability to heal, and its various
pathologies, the ability to quantitatively investigate its chang-
es is highly describable. Furthermore, a majority of cosmetic
products attempt to modulate the skin lipidome, and yet have
ill-defined lipid compositions and is also worth investigating
with respect to their claims in active lipid content [33, 39]. A
significant body of information with respect to the quantita-
tion of the skin lipidome has been obtained via analytical
studies utilizing thin layer chromatography (TLC) [27, 28,
53–58]. While TLC provides an affordable and low technol-
ogy barrier method for analyzing the skin lipidome, it suffers
from the inability to quantify individual lipid species.
Furthermore, the sensitivity of TLC towards determining the
composition of the skin lipidome is also quite limited. Other
analytical methods have been used over the years to obtain a
more comprehensive understanding of the skin lipidome.
These include p-nitrobenzoyl derivatization of skin ceramides
followed by high-performance liquid chromatography with
UV detection (HPLC-UV) [59] as well as gas chromatography
coupled to mass spectrometry (GC-MS) [60–62].While better
at quantitation of individual lipid species compared to TLC,
these methods still suffer from limitations with respect to
quantitatively capturing the full diversity of the skin lipidome.
The most current technology for the analysis of the skin
lipidome is atmospheric pressure ionization tandem mass
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spectrometry coupled to ultra-high performance liquid chro-
matography (UPLC API-MS/MS). Utilizing these methods,
the human skin lipidome is currently being characterized ex-
tensively in many laboratories including ours [6, 17, 18•, 55,
56, 63–66, 67•, 68, 69]. These studies have demonstrated
unique changes in the skin lipidome during wound healing
[17, 18•, 66, 67•, 68, 69]. Application of such UPLC ESI-
MS/MS methods has enabled our group to identify lipids that
stimulate fibroblast growth in the presence of chronic wound
fluid, a key requirement for cutaneous wound healing [19].
While UPLC API-MS/MS methods are ideally suited for the
determination of the overall composition of the skin lipidome,
these methods are not easily amenable for the investigation of
the variations in the microscopic spatial distribution of the
skin lipids. The most informative technique for determining
the surface distribution of lipids of the skin surface is matrix-
associated laser desorption ionization mass spectrometry
(MALDI-MS/MS) [70, 71]. While excellent in determining
the spatial distribution of skin lipids, this method suffers from
the primary drawback of being unable to distinguish between
many of the isobaric lipid species and being limited in sensi-
tivity for low abundant and low ionizing lipids. Furthermore,
the method is only applicable for the investigation of excised
samples. Techniques that enable the investigation of the

spatial distribution of the human skin lipidome in vivo have
great value in point of care diagnostics. In this regards, Raman
spectroscopy-based methods have demonstrated great prom-
ise and have been demonstrated to be applicable for in vivo
investigation of the human skin lipidome [72–74]. In summa-
ry, considering the diversity and variability of the human skin
lipidome, a single analytical technique is insufficient to obtain
a comprehensive understanding. A combination of methods
utilizing UPLC ESI-MS/MS, MALDI MS/MS, and Raman
spectroscopy is needed for the most comprehensive under-
standing of the variations in the human skin lipidome with
respect to cutaneous wound healing and other lipid-related
skin pathologies.

Conclusions

The bioactive lipids in the skin provide a critical function in
protecting the skin and come into play when the skin is dam-
aged to facilitate the repair process. Because of the uniqueness
and complexity of the human skin lipidome, it has not been
possible to investigate it using animal and cell culture model
systems. Now with technological advances employing micro
sampling plus the development of advanced analytical

Fig. 1 Alteration in the NS (Cer 2) ceramide profile during wound
healing in humans. Lipids were extracted from a 1 cm portion of PTFE
implants inserted into the upper arm of healthy volunteers and removed
on days 3, 5, 7, and 14. A 100 mm skin punch biopsy was used as the
baseline (day 0). Lipids were extracted from those samples and subjected

to targeted analysis via LC tandem mass spectrometry. The data shown is
the average lipid content from seven volunteers (n = 7) normalized to total
sphingolipids ± SD. The lipid content is depicted in pmol specific lipid/
pmol total sphingolipids found in 1 cm of PTFE insert
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instrumentation, we can now extensively explore the skin
lipidome in humans. These new avenues of research are en-
abling for a more in-depth understanding of the skin bioactive
lipids and foster the possibilities for new translational research
to help develop broader and multi modal therapeutic strategies
to treat skin disorder and repair.
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