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Abstract
Purpose of Review  Because the fetus expresses paternally-derived foreign antigens, pregnancy poses unique immune chal-
lenges. The maternal immune system must balance protecting the semi-allogeneic fetus from immune rejection with defending 
the mother and fetus from pathogens. Fetally-derived trophoblast cells of the placenta serve as the immunologic interface with 
soluble and cellular maternal immune effectors and are thereby essential partners in supporting these tightly regulated interac-
tions. While there are multiple ways that the maternal–fetal immune interface is controlled in a healthy pregnancy, this review 
highlights several of the immune checkpoint regulators thought to be centrally involved in maternal–fetal immunoregulation.
Recent Findings  Reproductive immunologists have shown that those fetal trophoblast cells that directly encounter maternal 
immune cells share many common features with cancer cells, shifting the paradigm of placental immunology away from 
transplantation biology and toward our extensive understanding of tumorigenesis. Both the post-implantation placenta and 
the growing neoplasm have many shared goals, including invasion, robust cellular proliferation, angiogenesis, and modula-
tion of host immunity. One way in which both the human placenta and cancer cells protect themselves from immune attack 
is through the loss of, or neoexpression of, several important cell surface regulators of specific immune interactions known 
as immune checkpoints. Here, we will discuss several ways that tumors and the placenta utilize immune checkpoint pathways 
and inhibitors, including the loss of most classical major histocompatibility complex (MHC) molecules and neoexpression 
of several nonclassical MHC molecules, expression of novel immunosuppressive B7 family members and cell adhesion 
molecules, such as CD47, and modulation of indoleamine 2,3-dioxygenase (IDO) enzyme activity.
Summary  Finely tuned immune adaptation is fundamental to a successful reproduction. Failure to implement such adap-
tations can result in a variety of disorders, including pregnancy loss, abnormal placental invasion (e.g., placenta accreta/
percreta), preeclampsia, and intrauterine growth restriction. Improved understanding of complex maternal-fetal immune 
interactions will be crucial to discover mechanisms underpinning these pregnancy complications, which, in turn, will help 
inform preventative and/or therapeutic clinical interventions.

Keywords  Pregnancy · Immune checkpoint molecules · Maternal–fetal immunity · Reproductive immunology · Immune 
tolerance · Maternal–fetal interface

Introduction

A successful pregnancy requires tight regulatory control 
of the maternal immune system. Tasked with tolerance of 
the semi-allogeneic fetus, the maternal immune system 

must simultaneously retain the ability to respond to harm-
ful pathogens while allowing for the placental growth and 
invasion [1]. This balance is especially important in early 
pregnancy during the placentation process, a series of events 
with remarkable similarity to tumorigenesis. Both the devel-
oping placenta and the invading tumor require robust cell 
proliferation, establishment of a vasculature via angiogen-
esis, and, most pertinent to this discussion, invasion of host 
tissues and modulation of host immune responses. These 
processes are all tightly linked. Invasion of the maternal 
decidua basalis by extravillous cytotrophoblasts (EVTs) 
allows for the remodeling of the uterine spiral arteries to 
optimize nutrient and oxygen exchange between the mother 
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and her developing fetus [2]. Alterations in this invasion 
process have been proposed to be etiologic in several preg-
nancy derangements, including recurrent pregnancy loss, 
preeclampsia, fetal growth restriction, and preterm labor [3]. 

Immune checkpoints include enzymatic pathways and 
cell surface molecules that regulate immune interactions. 
They have been shown to be central in balancing immune 
responses in a way that enables robust response to exogenous 
insults without risking over-response to native antigens or to 
pregnancy [4, 5]. In this review, we describe the regulation, 
often inhibitory, of several immune checkpoint mechanisms 
that are thought to be important to pregnancy maintenance 
and normal fetal development and make comparisons to their 
similar role in neoplastic growth.

MHC Molecules

The major histocompatibility complex (MHC), also known 
in humans as the human leukocyte antigen (HLA) com-
plex, is the most polymorphous set of genes in the human 
genome [6]. The HLA genes code for surface glycoproteins 
that function through the presentation of both endogenous 
and foreign antigens to the host immune system, largely to 
distinguish between self and non-self or altered-self (e.g., 
pathogen or neoplasm) antigens [7].

There are 3 main classes of HLA molecules: HLA class 
I, HLA class II, and HLA class III [8]. HLA class I is 
expressed on the surface of almost every somatic cell, with 
differing levels of expression based on tissue type. Playing 
an essential role in defending against intracellular patho-
gens, there is further division of MHC class I molecules 
into Class IA (classical) and Class IB (non-classical). The 
classical HLA molecules include HLA-A, HLA-B, and 
HLA-C. These gene products present antigens to cytotoxic 
CD8 + T cells, and their presence or absence regulates the 
function of natural killer (NK) cells and natural killer T 
(NKT) cells. The nonclassical HLA gene products include 
HLA-E, HLA-F, and HLA-G. These glycoproteins have a 
more limited variation in the antigens that they can present 
to leukocytes due to limited gene polymorphism [3, 6]. Their 
role in true antigen presentation is much more limited than 
that of HLA-A and -B, and their expression is limited to a 
much smaller group of cell types.

Important and characteristic MHC molecule expression 
patterns are essential to immune interactions at the develop-
ing maternal fetal interface [9]. Many trophoblast cells in 
the human placenta have very low to no expression of the 
classical HLA-A and -B molecules, and no trophoblast cell 
expresses MHC class II molecules [10]. This loss of expres-
sion is also seen in many tumors [11] and is a good exam-
ple of the loss of a major cell surface immune molecules 
that may be considered immune checkpoints. In contrast, 

the classical MHC molecule, HLA-C, and the non-classical 
MHC products, HLA-E, HLA-G, and possibly HLA-F, are 
expressed on the surface of the most invasive of the tropho-
blast cell types, the EVTs [3]. This fairly unusual overall 
pattern of MHC expression is not uncommon in tumor cell 
types [12], and the expression of HLA-G, -E, and, to a lesser 
extent, -F, is quite limited to the placenta and to tumor cells.

HLA‑G

HLA-G has seven different transcript isoforms, some cod-
ing for membrane-bound proteins (HLA-G1, G2, G3, and 
G4) and others for soluble proteins (G5, G6, G7; also known 
as sHLA-G). HLA-G is a ligand for three main receptors: 
immunoglobulin-like transcript 2/leukocyte immunoglobu-
lin–like receptor subfamily B member 1/CD85 antigen-like 
family member J (ILT2 /LILRB1/ CD85j) found on T cells, 
NK cells, and B cells; immunoglobulin-like transcript 4/
leukocyte immunoglobulin–like receptor subfamily B mem-
ber 1/CD85 antigen-like family member B (ILT4/LILRB2/ 
CD85d) found on myeloid cells; and killer cell immunoglob-
ulin-like receptor 2DL4 (KIR2DL4/CD158d) found on NK 
cells [13–16]. The KIR2DL4 receptor is a type of killer cell 
immunoglobulin–like receptor (KIR) that has both stimu-
latory and inhibitory functions. Residing primarily within 
endosomes, this receptor interacts with sHLA-G released by 
trophoblast cells, downregulating the cytotoxicity of decidual 
NK cells while stimulating the release of proinflammatory 
and pro-angiogenic cytokines, including interleukin-1β (IL-
1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ 
(IFN-γ), and tumor necrosis factor α (TNF-α) [17–19]. This 
proinflammatory response is essential for the promotion of 
decidual remodeling by invading EVTs. ILT2 and ILT4 are 
the primary inhibitory receptors for HLA-G. ILT2, in par-
ticular, plays a major role in suppressing NK and CD8 + T 
cell cytotoxicity and induces a more tolerogenic phenotype 
among dendritic cells and macrophages [20]. These receptors 
also promote IFN-γ release which, in turn, drives spiral artery 
remodeling within the basalis decidua [10].

Studies have shown that, in addition to direct inhibition 
of NK and CD8 + T cell cytotoxic activities, the presence of 
HLA-G on fetal trophoblast cells indirectly protects them 
from immune destruction through the actions of regula-
tory T cells (Tregs). Tregs maintain the pro-inflammatory/
anti-inflammatory equilibrium in immune responses. At 
the maternal fetal interface, these cells are activated by 
fetal antigens presented by MHC class II molecules [3]. 
It is hypothesized that the Treg response to pregnancy is 
largely dependent on the recognition that fetal tissue is allo-
geneic. To this point, when fetal/maternal HLA mismatch-
ing increases, so too does the production and conversion of 
T cells into Tregs in order to inhibit an alloreactive T cell 
response [21]. HLA-G has been specifically shown to induce 
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differentiation of CD4 + T cells into Tregs [22]. Clinically, 
abnormalities in HLA-G expression and activities have been 
implicated in several pregnancy-related disease processes, 
including recurrent pregnancy loss and preeclampsia [3].

HLA‑F

HLA-F is a Class Ib HLA molecule that can be found on 
EVT cells. The two main receptors for this ligand are killer 
cell immunoglobulin–like receptor 3DL1 (KIR3DL1) and 
killer cell immunoglobulin–like receptor, three Ig domains 
and long cytoplasmic tail 2 (KIR3DL2), which are both 
inhibitory receptors expressed on decidual NK cells [5]. 
HLA-F binds longer peptides for antigen presentation than 
other MHC class I molecules. In its open conformation form, 
antigenic peptide and the typical binding partner for MHC 
class I molecules, beta 2-microglobulin, are absent. This 
open conformation allows for interactions between HLA-F 
heavy chains and other HLA molecules, including HLA-E. 
Such interactions are believed to help to stabilize ligand-
receptor pairing between decidual NK cells and EVTs [16, 
23], relegating HLA-F to a largely “assistant” role for other 
placental MHC I interactions.

HLA‑E

HLA-E is an MHC class IB protein expressed both in the 
cytoplasm and on the surface of EVTs [24]. The main 
receptors for HLA-E are natural killer cell receptor 2C 
(NKG2C) on decidual NK cells, natural killer cell receptor 
2A (NKG2A) on decidual NK cells, and CD8 + on T cells. 
Cell surface expression of HLA-E helps to protect cells from 
cytotoxic damage by presenting peptides derived from other 
HLA class I molecules to NK and CD8 + T cells. In particu-
lar, it protects HLA-G-containing cells through the pres-
entation of HLA-G signal peptides to inhibitory receptors 
on otherwise cytotoxic immune cells, allowing HLA-G to 
indirectly promote immune tolerance through HLA-E [16].

HLA‑C

As the only HLA Class IA protein expressed by fetal EVTs, 
maternally derived HLA-C plays an important role in alert-
ing the maternal immune system to potential pathogens 
through typical antigen presentation to maternal CD8 + T 
cells. However, the polymorphic nature of HLA-C often 
leads to dissimilarity between the trophoblast-expressed 
paternally derived HLA-C alleles and the maternal HLA-C 
phenotype. This allele mismatch has the potential to increase 
cytotoxic/cytolytic activation of decidual T cells and NK 
cells toward fetal tissue [25]. Although studies have been 
mixed regarding the exact role of HLA-C mismatch in preg-
nancy complications, evidence of HLA-C specific antibodies 

in patients with recurrent miscarriage highlights the poten-
tial role that HLA-C allele mismatch may play in unex-
plained recurrent pregnancy loss [26, 27].

B7 Immune Checkpoint Molecules

The B7 family of molecules, a group of immune checkpoint 
proteins, is one of the best-characterized and widely-distrib-
uted signaling molecule superfamilies; their primary role 
is to serve as signaling mechanisms that modulate T cell 
activation [28–30]. The 11 known members of the B7 family 
are B7-1 (CD80), B7-2 (CD86), B7-H1 (programmed cell 
death ligand 1, PD-L1, CD274), B7-DC (PD-L2, CD273, 
PDCD1LG2), B7-H2 (ICOS-L), B7-H3, B7-H4 (VTCN1), 
B7-H5 (VISTA), BTNL2 (butyrophilin-like 2, BTL-II), 
B7-H6, and B7-H7 (HHLA2). Members of this superfamily 
can exert both stimulatory and inhibitory signals that depend 
on the cell type- and location-specific B7 family member 
ligand pairing [31].

B7 and Human Trophoblast

B7-H1, B7-H2, B7-DC, B7-H3, and B7-H4 are expressed in 
the human placenta, and their levels fluctuate during differ-
ent stages of pregnancy [32, 33]. B7-H1 is highly expressed 
in the syncytiotrophoblast (STB) in early and term normal 
human placenta [32], while B7-DC and B7-H4 are promi-
nent on the surface of STB during early pregnancy but are 
not present in human trophoblast at term [33]. B7-DC is 
abundant in first trimester STB, but absent in term STB, 
when localization has largely switched to placental endothe-
lial cells [33]. B7-DC exhibits a higher affinity for pro-
grammed cell death protein 1 (PD-1; see below) than B7-H1, 
but its expression in the placenta is, comparatively, much 
more limited. Still, its interactions with PD-1 profoundly 
inhibit B7-CD28 signals at relatively low antigen concen-
trations and can thereby play an important role in promot-
ing T cell proliferation and inflammatory cytokine produc-
tion in the placenta [34, 35]. B7-H4 is expressed at high 
levels on early gestation STB [36], as well as on decidual 
macrophages [37]. B7-H4 plays an important role in early 
placental development by inhibiting the expression of clas-
sical MHC Class I molecules, shifting the differentiation of 
cytotrophoblast cells from invasion to syncytialization and 
inducing changes in peripheral natural killer cells that make 
them more closely mimic a decidual NK cell phenotype [38].

B7-H2 is expressed on EVT cells, macrophages, and 
Tregs in the first trimester and term placenta [33]. B7-H2 
expression is associated with largely protolerogenic T 
helper 2 (Th2) cell effector function in terms of cell surface 
marker expression, differentiation, and cytokine production 
[39–41]. Similar to B7-H2, B7-H3 is narrowly expressed on 
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the surface of EVTs and macrophages in the first trimester 
and term placenta [33]. Here, it is considered a coinhibitory 
molecule for T cells [42, 43]. In addition to its role in immu-
nological pathways, B7-H3 has nonimmunologic, protumo-
rigenic activities, including the promotion of cell migration 
and invasion, inhibition of apoptosis, and enhancement of 
cell viability, chemoresistance, and endothelial-to-mes-
enchymal (EMT) transition [44]. B7-H5, also known as 
VISTA, is well known for immune checkpoint inhibition, 
regulating host T cell and myeloid functions in the tumor 
microenvironment [45–47]. However, high B7-H5 expres-
sion levels have also been detected in trophoblast cells, 
including STB, EVT, and CTB (cytotrophoblast cells) from 
term human placentas [48, 49]. Its role in placental function 
and dysfunction remains to be determined.

B7 and Decidual Immune Cells

The expression of B7-1 and B7-2 is largely restricted to 
lymphoid cells, mainly class II human leukocyte antigen 
(HLA) + cells, including decidual dendritic cells (DCs) 
and macrophages at the maternal–fetal interface [28]. B7-1 
and B7-2 assist decidual DCs in maintaining a largely 
protolerogenic, Th2-dominant state that is thought to be 
beneficial to gestational outcomes. Engagement of B7-1 
or B7-2 with its ligand, cytotoxic T-lymphocyte–asso-
ciated protein 4 (CTLA-4), leads to the production of 
indoleamine 2,3-dioxygenase (IDO), an enzyme that is 
highly expressed at the human maternal–fetal interface 
and is capable of influencing T cell-related fetal rejection 
(see below) [50, 51]. Levels of B7-1 and B7-2 expression 
are higher in decidual macrophages isolated from early/
mid-pregnancy than from those isolated at term [52], sug-
gesting their involvement in human placental development 
and implantation.

The increased surface expression of B7-H1 on healthy, 
human decidual CD4 + T cell, Treg, NKT-like, and 
CD56 + NK cell subsets is accompanied by an increase in 
expression of the PD-1 immune checkpoint molecule in 
decidual immune cells. This strongly suggests that B7-H1/
PD-1 interactions maintain a protolerogenic local immuno-
logical environment at the maternal–fetal interface by inter-
acting with a variety of decidual immune cells.

Human BTNL2 has been identified as a B7-like molecule 
within the butyrophilin (BTN) gene family that is encoded 
by the MHC locus in humans [53]. BTNL2 may play an 
important role in inflammation and immune response by 
controlling T cell responses and promoting the generation 
of Tregs [54, 55]. Recombinant BTNL-2-Ig is now being 
studied as a potential treatment for graft-versus-host disease 
[56], suggesting it could also serve as a modulator of mater-
nal–fetal immune interactions, either endogenously or as an 

exogenous therapy. To date there are no published reports 
on BTNL2 in the human placenta.

B7 Family Tumor Markers

Currently, there is not data to support the expression of the 
well-known tumor markers, B7-H6 and B7-H7, in preg-
nancy-related tissues [57, 58]. Their roles in tumorigenesis, 
however, suggest they could exert immunomodulatory activ-
ities that could support placental development. B7-H6 is 
selectively expressed by tumor cells, and its downregulation 
makes tumor cells vulnerable to NK-mediated tumor lysis 
[58]. B7-H7 (H long terminal repeat-associating 2, HHLA2) 
is expressed on monocytes and stimulated B cells and inhib-
its cytokine production by, and proliferation of, CD4 + and 
CD8 + T cells [59].

Soluble and Exosomal B7 Molecules

In addition to their cellular expression in trophoblast cell 
subtypes and decidual immune cells, alterations have been 
observed in the soluble forms of certain B7 molecules, 
such as B7-H1 and B7-H4, in pregnant women. Soluble 
B7-H1 levels were reported to be higher in the sera of preg-
nant women than in non-pregnant and postpartum women 
[60]. During early pregnancy, elevated levels of soluble 
B7-H4 (sB7-H4) are observed in women who experience 
preterm premature rupture of the amniotic membranes [61, 
62], as well as in women at an increased risk for preec-
lampsia [63], when compared to women with uncompli-
cated pregnancies. Changes in the soluble forms of B7 
molecules have been implicated in immunological altera-
tions associated with maintenance of a healthy pregnancy 
and the development of preeclampsia [63, 64]. sB7-H1 and 
sB7-H4 have been detected in the sera of cancer patients, 
and their expression levels are closely linked to progression 
and prognosis [65–67].

Both early and term placental trophoblast cells have been 
shown to secrete B7-H1 and B7-H3 via exosomes [68]; 
these exosomes and similar trophoblast-derived microvesi-
cles can be engulfed by phagocytes and serve as vehicular 
shuttles for paternally-inherited placental antigens that are 
ultimately cross-presented to maternal T cells by a variety 
of antigen-presenting cells [43]. Exosomal B7 molecules are 
also released from cancer cells. Metastatic melanoma cells 
release exosomes carrying PD-L1 on their surface that sup-
press the function of CD8 T cells and facilitate tumor growth 
[69]. Additionally, a high expression of B7-H3 was observed 
in urinary exosomes isolated from colorectal cancer patients 
[70]. Similarities between requirements for growth and 
immune privilege in cancer and pregnancy could lead to a 
better understanding of the maternal–fetal immune response.
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Other Immune Checkpoint Modulators

Indoleamine 2,3‑Dioxygenase

Indoleamine 2,3-dioxygenase (IDO) is the initial and rate-
limiting enzyme that breaks down tryptophan into kynurenine 
[71, 72]. Since tryptophan is necessary for T cell proliferation 
and activation, IDO-induced tryptophan degradation functions 
to promote T cell suppression. T cells are further differenti-
ated into immunosuppressive Foxp3+ T regulatory cells via 

kynurenine-mediated hydrocarbon receptor (AhR) activa-
tion [73, 74]. Following stimulation with proinflammatory 
mediators such as IFN-γ, IDO is widely expressed in various 
tissues of mammals. IDO exhibits particularly high endog-
enous activity in cells present at the maternal–fetal interface, 
including trophoblast cells, decidual stromal cells, decidual 
immune cells, and vascular endothelial cells of the chorion and 
decidua [75]. Emerging evidence has shown that the expres-
sion and activity of IDO differ not only among non-pregnant, 
normal pregnant, and pathological pregnancy conditions, but 

Table 1   Immune checkpoint inhibitors

MHC major histocompatibility complex, HLA human leukocyte antigen, EVT extravillous trophoblast, CTB cytotrophoblast, STB syncytiotroph-
oblast, PD-1 programmed cell death protein 1, NK natural killer, CD cluster of differentiation, IDO indoleamine 23-dioxygenase, SIRPα signal 
regulatory protein alpha, ILT Immunoglobulin (Ig)-like transcript, KIR killer Ig-like receptor, NKG natural killer group

Immune checkpoint molecules Cellular expression Binding partner or mediator Major impact on immune tolerance

MHC class 
I mol-
ecules

HLA-G EVT cells • ILT2 on T cells, NK cells, and 
B-cells

• ILT4 on myeloid cells
• KIR2DL4 on NK cells

Inhibition of cytotoxic activity of 
the decidual immune cells

HLA-F EVT cells KIR3DL1/2 on NK cells
HLA-E EVT cells • NKG2A on NK cells and 

CD8 + T cells
• NKG2C on NK cells

HLA-C Most nucleated cells except for 
CTB and STB

• HLA-C1: KIR2DL2/3 on NK 
cells

• HLA-C2: KIR2DL1 on NK 
cells

B7 family B7-1, CD80 Decidual DCs and macrophages CD28, CTLA-4 Maintains tolerance during preg-
nancyB7-2, CD86

B7-H1, PD-L1, CD274 decidual CD4 + T cell, Treg, 
NKT-like, and CD56 + NK cell 
subsets

PD-1 Maintains a protolerogenic local 
immunological environment at 
the maternal–fetal interface

B7-H2, ICOS-L EVT, macrophages, and Tregs in 
first trimester and term placenta

ICOS Induces Th2 cell effector function

B7-DC, PD-L2, 
CD273, PDCD1LG2

Human placenta STB during 
early pregnancy; placental 
endothelial cells in term

PD-1 Promotes T cell proliferation and 
inflammatory cytokine produc-
tion in the placenta

B7-H3 EVT and macrophages in first 
trimester and term placenta

Unknown Promotes T cell proliferation

B7-H4, VTCN1 Early gestation STB, decidual 
macrophages

Unknown Inhibits the expression of MHC- I 
and alters the pNK cell pheno-
type

B7-H5, VISTA STB, EVT, and CTB in term 
placenta

CD28H Unknown in placental function

B7-H6 Tumor cells NKp30 Increases tumor cell vulnerability 
to NK-mediated tumor lysis

B7-H7, HHLA2 Monocytes and stimulated B 
cells

CD28H Inhibits CD4 + and CD8 + T cell 
cytokine production and prolif-
eration

Others IDO Most nucleated cells, especially 
high in trophoblasts, decidual 
stromal cells, decidual immune 
cells, and vascular endothelial 
cells of the chorion and decidua

Mediates tryptophan degradation Suppresses immune function of 
T cells

CD47 Most nucleated cells SIRPα on macrophages Inhibits macrophage phagocytosis
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also by gestational age [76–78]. In normal pregnancy, IDO is 
involved in maternal–fetal immune tolerance and protection 
against pathogens. When pregnant mice carrying syngeneic 
or allogeneic fetuses were exposed to 1-methyl-tryptophan 
(1MT), an IDO inhibitor, all of the allogeneic fetuses, but none 
of the syngeneic concepti, were rejected. This rejection phe-
nomenon was mediated by a single paternally inherited MHC 
class I loci and was fully dependent on maternal T cell activity 
[79]. Pregnant mice deficient in recombination activating gene 
1 (RAG-1) expression, and thereby unable to develop lym-
phocytes, were not affected by 1MT treatment. These results 
strongly suggest that IDO plays a crucial role in defense of 
the conceptus against allogenic rejection. Subsequent studies 
have demonstrated that IDO eliminates pathogens through 
nutrient competition via tryptophan depletion [80–82]. IDO 
could also promote trophoblast invasion into the decidual-
ized endometrium and remodeling of maternal spiral arteries, 
both essential to placental perfusion and fetal development 
[83, 84]. A decrease in the expression levels of IDO is associ-
ated with pregnancy complications such as preeclampsia and 
intrauterine growth restriction [77, 85–87]. Considering the 
role of IDO in cancer development, where its high expres-
sion and activity support immune escape for tumor survival 
[88, 89], decreased IDO levels and activity in pregnancy are 
likely implicated in exaggerated inflammatory responses at the 
maternal–fetal interface and adverse alterations in placental 
and fetal growth and function.

CD47

CD47 (also known as integrin-associated protein, IAP) is 
a ubiquitously expressed membrane glycoprotein belong-
ing to the immunoglobulin superfamily. CD47 serves as 
a ligand for signal regulatory protein alpha (SIRPα, also 
known as CD172a), a membrane glycoprotein present 
mainly on macrophages [90]. CD47 − SIRPα interactions 
induce downstream signal activation that inhibits target 
cell phagocytosis. To this point, CD47 has been called a 
“don’t eat me” signaling molecule to characterize its inter-
actions with SIRPα. CD47 has received significant atten-
tion in cancer research as a means for tumor cell immune 
evasion and is also regarded as a key determinant in trans-
plantation success [91–93]. Although only a few studies 
on CD47 have been reported in the reproductive immunol-
ogy literature, these reports suggest that CD47 may play 
an important role in maternal–fetal immune interactions. 
Notably, CD47 has been documented in extracellular vesi-
cles (EVs) extruded from the STB of the placenta into the 
maternal blood [94, 95]. Since placentally-derived EVs 
are important mediators of intercellular communication, 
the presence of CD47 in these EVs could promote tol-
erance to the STB from which they originated and may 
prevent the clearance of these vesicles from maternal 

blood. In addition to inhibition of macrophage phago-
cytosis, CD47 − SIRPα interactions are also involved in 
suppression of adaptive immune responses. In fact, block-
ade of CD47 − SIRPα interactions induces dendritic cell 
activation and T cell priming, suggesting these interac-
tions could help to bridge innate and adaptive immunity 
during pregnancy [96, 97]. Further research into the role 
of CD47 in immune regulation and balance at the mater-
nal–fetal interface is certainly warranted.

Conclusion

Immune checkpoints are essential to tumorigenesis and 
important cancer therapeutics have been introduced that 
specifically target these checkpoints. Many of these same 
immune checkpoints appear to be involved in the immu-
nologic interactions occurring at the human maternal–fetal 
interface. Alterations in the proper functioning of these 
immune checkpoints have been linked to early pregnancy 
loss, disorders of abnormal placentation such as impaired 
fetal growth, and hypertensive disorders of pregnancy 
(Table 1). Although there has been significant interest in 
these molecules and their interactions in human pregnancy, 
much remains to be learned. Their important and expanding 
role in cancer therapy, however, suggests that an improved 
understanding of their function and dysfunction during 
placental growth and development may offer breakthrough 
opportunities in the preventative and therapeutic care of 
women and their babies during pregnancy.
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