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Abstract
Purpose of Review Current clinical efforts to predict and prevent preterm birth are primarily focused on the mother and have
made minimal progress in improving outcomes. However, recent data indicate that paternal factors can also influence timing of
birth. Herein, we will review recent human and murine data examining the contribution of the father to pregnancy outcomes with
an emphasis on environmental exposures that can negatively impact fertility and the timing of birth.
Recent Findings Human epidemiology studies now clearly indicate that a variety of paternal factors (age, race, weight, smoking
status) can influence sperm quality, birth timing and, in some studies, offspring health. Utilizing a mouse model, our data have
demonstrated that developmental exposure of the male to the environmental toxicant TCDD (2,3,7,8-tetrachlorodibenzo-p-
dioxin) is associated with a transgenerational reduction in sperm number and quality and an increased risk of preterm birth in
an unexposed partner.
Summary Toxicant exposure history can clearly influence sperm quality in men and mice. Murine data further indicate that
exposures which negatively affect sperm quality also impair placental function, potentially leading to preterm birth and other
adverse outcomes. Of particular concern, these changes have been linked to epigenetic alterations within the male germ cell
which can then be transmitted across multiple generations. Since it is not possible to prevent an ancestral toxicant exposure in a
human population, identifying lifestyle modifications that can be implemented during the preconception period to improve sperm
quality should be explored for the therapeutic potential to reduce the incidence of PTB and its sequelae.
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Introduction

Preterm birth (PTB), defined as spontaneous delivery
prior to 37-weeks gestation, is a major health concern
and, globally, impacts millions of babies and their

families. Collectively, complications associated with pre-
maturity are the leading cause of death in children less
than 5 years of age. Furthermore, surviving infants often
face life-long disability, including visual deficits, cere-
bral palsy, and diminished mental capacity [1].
Although infection during pregnancy can increase the
risk of PTB, in many cases, the underlying cause of
early parturition is unknown. Therefore, developing a
better understanding of the factors that contribute to
PTB is imperative if we are to make major strides in
reducing this outcome.

Each year, the March of Dimes releases its Preterm Birth
Report Card, detailing current statistics across the USA. The
most recent report indicates that 9.93% of babies in the USA
are born preterm, an increase over the previous 2 years [2].
The report also details the persistence of racial and geographic
disparities in the incidence of PTB but offered little insight
with regard to possible mechanisms. Shortly after the March
of Dimes report was published, another study presented
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evidence of the continued decline in human sperm counts and
suggested that exposure to environmental toxicants was a like-
ly contributing factor [3•]. At first glance, these two reports
appear to be unrelated. But are they? As will be discussed
herein, our data, using a mouse model, have demonstrated that
poor sperm quality due to a history of direct or ancestral ex-
posure to the environmental toxicant TCDD (2,3,7,8-
tetrachlorodibenzo-p-dioxin) can be directly linked to PTB
in his unexposed partner [4, 5].

For decades, environmental toxicants have been known to
contaminate industrial environments and to have a potentially
negative effect on human and animal populations. TCDD and
related organochlorines represent just one family of toxicants
among thousands of manmade chemicals present within our
environment. Current regulations do not require rigorous safe-
ty testing [6]; thus, human health effects are identified subse-
quent to their introduction into the environment. Over the last
several decades, a number of these manmade environmental
contaminants have been identified as endocrine disruptors
(EDCs). Exposure to EDCs, especially during development,
alters tissue response to sex steroids and can compromise not
only adult reproductive health but can also promote numerous
diseases including cancer (reviewed in [7]). In our laboratory,
we have used TCDD as a representative EDC to explore the
potential contribution of developmental exposure to the risk of
PTB in adulthood.

Our murine studies demonstrated that developmental
TCDD exposure of either males or females led to a significant
risk of a subsequent adult pregnancy ending in PTB [5].
Interestingly, pups sired by a father with a history of TCDD
exposure also exhibited intrauterine growth restriction
(IUGR), which was linked to placental dysfunction and alter-
ations in expression of Igf2 [8, 9]. Placental dysfunction, pre-
maturity, and offspring IUGR persisted across several gener-
ations without additional TCDD exposure, suggesting
toxicant-associated epigenetic changes occurred within the
male germline.

Epigenetic marking of DNA is a mechanism bywhich gene
expression can be altered without a change in the DNA se-
quence (rev by [7, 10, 11]. Epigenetic marking of DNA is an
important process by which fetal cells are directed to differen-
tiate into the different organ systems despite each cell
possessing identical DNA. Lifestyle choices, diet, and envi-
ronmental exposures can also contribute to epigenetic alter-
ations which accumulate over time and contribute to age-
related changes and disease susceptibility. Although these
marks are stable, epigenetic changes to somatic cells are not
inherited by the next generation. In contrast, epigenetic marks
occurring within the germ cell can be inherited and can impact
offspring health [11].

Although several studies in rodents and humans demon-
strate alterations to the sperm epigenome can negatively im-
pact pregnancy outcomes and offspring health [9, 12–15],

currently, clinical efforts to prevent adverse pregnancy out-
comes focus nearly exclusively on the mother. However, stud-
ies described herein suggest that initiating preventive mea-
sures in mid-gestation is inadequate because this approach
cannot impact development of the placenta, which is heavily
influenced by paternal genes [16–18]. Furthermore, we and
others have identified inflammation as an important mediator
of placental function related to parturition (both term and pre-
term) [5, 19]. Specifically, inflammation promotes breakdown
of the fetal membranes, an early event associated with timing
of delivery [20]. Using our murine model, we have demon-
strated that the paternal-derived risk of toxicant-associated
PTB could be eliminated when male mice were provided an
anti-inflammatory preconception diet containing fish oil.
Although numerous studies have examined the ability of fish
oil supplementation to increase gestation length in women at
risk of PTB, results have not consistently demonstrated a clear
benefit [21–23]. However, none of these studies initiated treat-
ments prior to pregnancy or included both parents. Although
additional laboratory-based and clinical studies are needed,
current data indicate that inclusion of the father in efforts to
improve pregnancy outcomes is warranted.

Paternal Factors and Adverse Pregnancy
Outcomes in Humans

Multiple maternal factors, including age, smoking status, and
race have long been known to contribute to the risk of PTB
and other adverse outcomes; however, women with no known
risk factors can also deliver early [2]. Recent epidemiological
studies now suggest that these same maternal-derived clinical
parameters, arising on the paternal side, can also negatively
influence pregnancy outcomes in their partners (reviewed in
[24•, 25] Table 1). Specifically, both younger (< 25) and older
(40+ years) fathers confer an increased risk of PTB and low
birthweight to their children [26, 27] while the latter group had
partners that more frequently developed gestational diabetes
[27]. More than a decade ago, Muglia and colleagues were the
first to report an increased risk of PTB associated with a Black
paternal partner [28]. Although an unexpected finding at that
time, numerous studies have since confirmed and expanded
Muglia’s original report [29, 30]. For example, Li et al. [31]
correlated the birth outcomes of singleton babies born in the
USA between 1989 and 2013 with the race and ethnicity of
both parents. This broad ethnicity study found that compared
to all other races/ethnicities, non-Hispanic black fathers con-
ferred the greatest risk of PTB to their partners. Significantly,
the contribution of a non-Hispanic black father to risk of PTB
was even greater when his partner was also non-Hispanic
black.

Paternal lifestyle factors have also recently been examined
for the potential to influence timing of delivery and child
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health (for example, [25, 32, 42]). Multiple studies indicate
that paternal obesity impairs fertility, with some studies addi-
tionally finding that reproductively successful obese men have
children with compromised health (reviewed by [33, 34•]).
For example, Soubry and colleagues identified hypomethyla-
tion of IGF2 in infants born to obese fathers, an epigenetic
modification previously linked to intrauterine growth restric-
tion (IUGR) [37–39]. Furthermore, paternal obesity has also
been found to increase the risk of PTB, preeclampsia, and
small for gestational age, independent of whether or not the
mother was also obese [35, 36, 40, 41, 45]. Like obesity,
paternal smoking is known to negatively affect fetal growth
[46], potentially leading to IUGR [47, 48], however the influ-
ence of paternal smoking on gestation length is less clear.
Although several studies examining the impact of paternal
smoking on gestation length identified only a synergistic ef-
fect with maternal risk factors [49, 50], a recent meta-analysis
of 24 studies examining “passive” smoking revealed a signif-
icant influence of exposure to second hand smoke on PTB risk
[51]. Interestingly, a large study from researchers in China
found that the risk of spontaneous miscarriage was also sig-
nificantly increased in association with paternal smoking [52].

Consequences of Human Exposure to TCDD

Studies described above taken with other recent findings dem-
onstrate the important role of the father in contributing to not
only pregnancy establishment and maintenance but also fetal
development and future health. In addition to these lifestyle
factors, unintentional paternal toxicant exposure may also in-
fluence pregnancy outcomes. Unfortunately, humans and

other animals are exposed to a wide array of manmade envi-
ronmental toxicants, many of which act as endocrine
disrupting compounds (EDCs, [53]). Indeed, the US
National Toxicology Program estimates that more than
80,000 manmade chemicals are present within our environ-
ment, most of which have not undergone testing to determine
their potential risk to human health. Furthermore, many envi-
ronmental toxicants are slow to degrade, enter our food chain,
and accumulate in human adipose tissues. Not surprisingly,
ingestion of contaminated food is the primary source of expo-
sure for most human and animal populations [54, 55].
Although epidemiological evidence supports a role for expo-
sure to environmental EDCs in increasing a woman’s risk of
delivering preterm (reviewed in [56]), examination of the pa-
ternal partner has largely been neglected. For example, a sig-
nificant increased risk for PTB was observed in women living
within 4 km of a municipal solid waste incinerator [57], sug-
gesting exposure to airborne toxicants adversely affected
pregnancy outcomes. It is likely that the male partners of these
women also resided near the incinerator; yet, the potential
influence of his exposure to pregnancy outcome was not
considered.

Of the numerous toxicants produced by combustion and/or
manufacturing processes, compounds that bind the aryl hydro-
carbon receptor (AhR) are of particular concern. When acti-
vated by endogenous and dietary ligands, the AhR is an im-
portant regulator of the normal immune and reproductive re-
sponses in both males and females [58–60]. However, binding
of the AhR to environmental toxicants such as 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) can have significant,
and multi-generational adverse consequences. TCDD, which
has frequently been described as the most toxic manmade

Table 1 Paternal factors influencing human pregnancy and/or child health

Paternal characteristic Impact on pregnancy Impact on child health Comment Reference(s)

Age [24–27]

< 25 PTB

> 40 PTB, preeclampsia, gestational diabetes IUGR

Black race PTB Both synergistic with and independent
of maternal black race

[28–31]

Obesity PTB
preeclampsia

IUGR [32–36]

Smoking Miscarriage
PTB

CHD
IUGR, SGA
Orofacial Clefts

Both synergistic with and independent
of maternal smoking

[25, 33, 37–40]

Sugar intake PTB
preeclampsia

[41]

Malnutrition Obesity; metabolic disease Multi-generational effect [32]

Exposure

Operation ranch hand PTB Neonatal Death Biphasic dose effect [42–44]

Welding fumes PTB

Other occupational PTB and very PTB

PTB preterm birth, IUGR intrauterine growth restriction, CHD congenital heart disease
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compound, has no commercial value, but is produced as an
unwanted by-product of numerous manufacturing processes.
Additionally, TCDD and other environmental are present in
cigarette smoke, car exhaust, medical waste incinerators and
smoke arising from forest fires [4]. Thus, chronic, low-dose
exposure to TCDD and related compounds is common and
difficult to completely avoid. Murkerjee [61] reported that
within the general North American population, levels of
TCDD average 5–10 ppt; however, women in industrialized
countries exhibit higher levels (20–27 ppt). Adverse human
health effects have been observed at < 68 ppt; however,
Edmond et al. [62] state, “epidemiologic data suggest that
there is little or no margin of exposure for humans” with
regard to the adverse effects of developmental exposures.

Relevant to the current review, several large-scale popula-
tion exposures to TCDD have occurred and demonstrate nu-
merous long-term consequences of such exposure (reviewed
in [63]). For example, in July of 1976, an explosion at the
Icmesa chemical company, located near Seveso, Italy, resulted
in the release of a toxic cloud heavily contaminated with
TCDD. Within the 17,000 residents of Seveso itself, numer-
ous people fell ill and there was a notable change in the
male/female ratio in children conceived immediately after
the explosion [64]. In the years since the accident, the health
of the Seveso population, as well as the approximately
100,000 residents in neighboring towns, has been closely
monitored (rev by [65]). Among the numerous studies arising
from this population, Mocarelli and colleagues examined the
sperm quality of young men born in Seveso shortly after the
explosion compared to an age-matched, unexposed cohort
[66]. Their analysis revealed that men in the exposed group
exhibited lower sperm numbers, reduced progressive motility
as well as a reduction in total motile count compared to the
unexposed controls. They concluded that developmental ex-
posure of males to TCDD permanently reduces sperm quality
[66, 67]; however, to date, fertility and pregnancy outcomes
have not been assessed in this group. Nevertheless, based on
the epidemiology data described above, pregnant partners of
these men should be carefully monitored for PTB and other
adverse outcomes.

Although accidental industrial exposures of large popula-
tions to high levels of TCDD are rare, toxicant exposures are
commonly associatedwithmilitary service. For example, burn
pits are frequently used to destroy military refuse, a process
that produces abundant TCDD and numerous other EDCs
[68]. Furthermore, current military personnel deployed to
Afghanistan or Iraq can be exposed to these toxicants due to
smoke arising from oil fires, which often occur in these coun-
tries [69–71]. Although the potential long-term reproductive
consequences of these exposures have yet to be definitively
determined, there is increased awareness of potential chemical
toxicity. For this reason, the US Veteran’s Administration has
developed a “Burn Pit” registry to attempt to identify and track

potential adverse effects of exposures associated with military
service [72].

In addition to current exposure threats to our military
forces, during the American War in Vietnam, numerous
American military personnel were exposed to TCDD as a
consequence of “Operation Ranch Hand”. From 1962 to
1971, the US Air Force sprayed at least 11 million gallons
of the herbicide Agent Orange, which was known to be con-
taminated with TCDD, over large areas of central and South
Vietnam in an effort to destroy the dense vegetation enemy
forces used for cover [73]. It is estimated that up to 1.5 million
American servicemen were exposed to high doses of TCDD
as a consequence of Operation Ranch Hand. Unfortunately,
numerous long-term health effects have been attributed to this
exposure, withmanyRanch Hand veterans developing serious
health problems, including cancer. Although no study has
conclusively demonstrated an increase in infertility or PTB
risk in this exposed population, Michalek et al. [43] described
a significant increase in the incidence of PTB in partners of
Ranch Hand Veterans compared to the partners of an unex-
posed Veteran population. For this study, serum TCDD was
measured inmen approximately 20 years after military service
and body burden at the time of conception (during or shortly
after service in Southeast Asia) estimated based on the known
pharmacokinetics of this toxicant. Analysis revealed that the
PTB risk was significantly increased in partners of Ranch
Hand Veterans with estimated body burdens consistent with
either “background” levels or estimated high dose exposure
compared to partners of unexposed men. Interestingly,
Veterans with a moderate estimated body burden of TCDD
exhibited a PTB rate below that of the unexposed Veterans,
which was also lower than the incidence observed in the back-
ground and high exposure groups. These results led the au-
thors to surmise that PTB riskwas not associated with paternal
TCDD exposure. However, TCDD and numerous other EDCs
exhibit a biphasic effect, in which both high and low dose
exposures are damaging, while a modest dose is less impactful
[44], mirroring the results obtained in the Ranch Hand retro-
spective study. A biphasic effect of TCDD exposure associat-
ed with Operation Ranch Hand is also suggested by the oc-
currence of infant death, which was highest in the background
and high exposure categories, but lower in the moderate ex-
posure group [43]. However, the percent of infant deaths was
higher in all Ranch Hand Veterans compared to the unexposed
exposure group. Alternatively, as suggested by the authors, it
is also possible that extrapolation of TCDD body burden at
conception was imprecise, since elimination of TCDD from
the body varies with body type and is dose-dependent. Thus,
reassessment of the Ranch Hand/PTB data may be of value
[62].

Despite the uncertainty with regard to PTB risk, it is well-
established that children of TCDD exposed Veterans are more
likely to exhibit spina bifida and other neural tube defects
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compared to the general population [74]. Even more
concerning, although there has been no carefully designed
scientific study, there is empirical evidence that even the
grandchildren of Agent Orange Veterans exhibit serious health
problems which may be related to ancestral TCDD exposure
[75–77]. How might it be possible for a man’s TCDD expo-
sure associatedwith Operation RanchHand to impact not only
the health of his child, but also that of his grandchild? As will
be discussed below, toxicant-associated epigenetic alterations
to the germline can be transmitted to future generations and
can influence development of disease. Although epigenetic
modifications are most commonly a consequence of in utero
toxicant exposures, spermatogenesis is a continuous process
from puberty until death [78]. Thus, even an adult exposure
would have the potential to permanently damage the testicular
stem cells that give rise to a man’s sperm, and, therefore, his
progeny [79]. It is also worth noting that the average age of the
American serviceman in Vietnam is estimated at 22, with
some as young as 17 [80]. Since the human male can continue
to mature into his early twenties [78], participation in
Operation Ranch Hand may have resulted in a “late stage”
developmental TCDD exposure for some Veterans.

Of course, it is not just the Americanmilitary that continues
to be impacted by Operation Ranch Hand. Although difficult
to determine precisely, it is estimated that up to 4 million
South Vietnamese residents were also unintentionally exposed
to Agent Orange during the American war [81]. As many as
400,000 Vietnamese died as a direct result of acute TCDD
exposure. Among the surviving Vietnamese population, a
wide range of health issues have been noted and are likely
linked to TCDD exposure, including high rates of early preg-
nancy loss, spontaneous PTB, congenital birth defects and
numerous cancers [82–85]. Unfortunately, the heavy contam-
ination of some areas of Vietnam combined with its tendency
to bioaccumulate and resistance to degradation has resulted in
the persistence of TCDD in parts of the country [86]; thus,
significant human exposure is ongoing. Although we cannot
yet definitively state that an adult man’s exposure to TCDD
and/or other EDCs is a major contributor to the incidence of
PTB, the frequent occurrence of adverse pregnancy outcomes
among human populations with known exposures should not
be ignored.

In Utero Exposure of Males and Adverse
Outcomes Across Multiple Generations

Human studies described above raise significant concerns re-
garding the long-term consequences of exposure to environ-
mental EDCs such as TCDD. However, developing an under-
standing of the mechanisms of these effects is critical if we are
to identify protective measures. Since human exposure

typically starts in utero, as a consequence of maternal environ-
mental exposures, we previously developed an animal model
of developmental TCDD exposure, enabling us to examine
the adult reproductive effects in the offspring. In our model,
pregnant mice are exposed to a single TCDD dose (10 μg/kg)
by gavage on embryonic day 15.5 (E15.5), when organogen-
esis is complete. Although a high dose compared to typical
human exposures, mice are markedly less sensitive to this
toxicant and exhibit a more rapid clearance compared to
humans (days versus years). Furthermore, at this dose during
late pregnancy, TCDD is not teratogenic or abortigenic in
mice and pups are born at term (E20). However, nearly half
of all male and female adult offspring (F1) exhibit infertility
[4, 5, 87] while PTB (parturition <E19) is common in F1females
that are able to become pregnant as well as in pregnancies
arising in partners of F1males. Notably, ~ 25% of “late preterm”
pups (born on E18.5) do not survive to weaning, while pups
born <E18 exhibit 100%mortality within the first week of life
[8]. Incredibly, in the absence of direct TCDD exposure,
F3females and control partners of F3males exhibit a similar risk
of spontaneous PTB (Table 2) and high pup mortality [9, 88].
These results are particularly important since the F3 animals
are the first generation that were not directly exposed to
TCDD. Specifically, exposure of a pregnant female (human
or other animal) results in direct exposure of the mom (F0), the
fetus (F1), as well as the germ cells present within the fetus,
which have the potential to become the F2 generation (Fig. 1).
Toxicant-associated disorders within the F2 generation is thus
a consequence of direct exposure and termed a “multi-gener-
ational” effect [11]. In contrast, disorders occurring in the F3
generation or beyond are a consequence of indirect or ances-
tral exposure and are considered “transgenerational” effects
(reviewed by [11]).

The transgenerational occurrence of subfertility and ad-
verse pregnancy outcomes in our model is significant and
implicates a role for toxicant mediated epigenetic modifica-
tions within the germline of both sexes. To fully understand
the environmental risk of toxicant exposures to poor pregnan-
cy outcomes, the impact of toxicants on the reproductive sys-
tem of each sex must be considered. Equally important, it is
not currently understood whether the epigenetic transfer of
information to each sex differs when the information occurs
from the paternal versus the maternal germ line. Therefore,
environmental toxicants acting as androgen versus estrogen
or progesterone disrupting agents will need more in-depth
study. Nevertheless, since the placenta is heavily influenced
by paternally imprinted genes in humans and mice [5, 16, 18]
and placental inflammatory signaling is a critical determinant
of the timing of parturition [5, 19], epigenetic studies de-
scribed herein will focus on the male.

We recently conducted a methylation specific microarray
analysis of late pregnancy placentae (E18.5), derived from
control and F1males which identified ~ 2200 differentially
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methylated regions, including regions corresponding to the
regulation of genes known to be important for pregnancy
maintenance [9]. For example, we identified hypermethyla-
tion of the progesterone receptor (Pgr) in E18.5 placentae
derived from F1male mice compared to controls. Validation
studies confirmed Pgr hypermethylation in F1male derived
placentae compared to control, and further demonstrated
hypermethylation of this gene in F1male sperm as well as
F3male sperm and placentae [9]. Hypermethylation is typically
associated with gene silencing [90] and, not surprisingly, we
identified reduced placental Pgr mRNA in late pregnancy
placenta from toxicant-exposedmales compared to unexposed
controls [5, 88]. Premature loss of Pgr mRNA was closely
correlated with PTB in these mice.

Preterm human babies frequently exhibit intrauterine
growth restriction (IUGR) and evidence suggests that a poorly

functioning placenta may be related to reduced size [91].
Furthermore, hypomethylation of placental IGF2 has been
demonstrated in association with IUGR in human infants
[37–39]. IGF2 is a paternally expressed imprinted gene in
both mice and humans and is known to contribute to the reg-
ulation of fetal growth [92]. In our studies with toxicant ex-
posed mice, we have identified IUGR in offspring of F1males

(F2 pups) and offspring of F2males (F3 pups) compared to age
matched control offspring. Consistent with these findings, our
microarray analysis also ident i f ied this gene as
hypomethylated in F1male-derived placentae. Validation stud-
ies confirmed Igf2 hypomethylation in both F1male-derived
placentae and sperm. Although sperm and placentae from
F3males also exhibited a reduction in Igf2 methylation, these
changes did not reach significance [9]. Nevertheless, taken
together, these data support our hypothesis that paternal

Fig. 1 Multi- and transgenerational consequences of developmental
TCDD exposure of the male in humans and mice several studies have
revealed that exposure of pregnant mice (F0 generation) is associated
with adverse reproductive outcomes in male offspring (F1 generation).
Since the F2 generation is present as germ cells within the F1 fetus, this
generation is also directly exposed and exhibits similar outcomes as the
F1 generation. F3 generation mice, the first without direct exposure,
exhibit only modest improvements in reproductive outcomes. Data is
limited with regard to the F4 generation, but some effects have been

noted. In humans, specific information regarding developmental
exposure of males to TCDD is quite limited, but some effects have
been described. The persistence of PTB and significant adverse health
outcomes in children born years after the American War in Vietnam
support the occurrence of multi-generational effects of human TCDD
exposure. Although it is difficult to definitively assess the possible
transgenerational effects of developmental TCDD exposure in humans,
similarities between human and mouse spermatogenesis strongly suggest
this possibility

Table 2 Summary of pregnancy outcomes following paternal TCDD exposure

Male exposure history Pregnancy rate* p** Parturition Term preterm Pregnancy length
(avg number of days)

p** Reference(s)

Control 38/40 (95%) 100% 0% 20 [8, 88]

TCDD

F1 29/62 (47%) < 0.001 62% 28% 18.6 < 0.0001 [5, 8, 88]

F2 12/25 (48%) < 0.001 67% 33% 18.8 < 0.0001 [8]

F3 14/28 (50%) < 0.001 65% 35% 19.0 < 0.0001 [8, 88]

Control + fish oil 4/4 (100%) NS 100% 0% 20.5 NS [89]

F1 + fish oil 9/11 (81%) NS 100% 0% 19.8 NS [89]

*Mice achieving three vaginal plugs, but no pregnancy, were considered infertile

**Compared to control mating pairs

NS not significant compared to control
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exposure to TCDD leads to an altered sperm epigenome,
which influences fertility, placental function, and pregnancy
outcome transgenerationally.

Preconception Paternal Fish Oil Therapy
and Prevention of Preterm Birth

While it may be possible for individuals and governmental
agencies to take steps to reduce ongoing exposure to certain
environmental toxicants, clearly, it is not possible to prevent
an exposure that has previously occurred. Thus, we explored
the potential utility of using an anti-inflammatory preconcep-
tion diet to improve reproductive outcomes associated with a
history of in utero exposure to TCDD. To this end, we exam-
ined the potential efficacy of preconception fish oil supple-
mentation of fathers to improve pregnancy outcomes. Fish
oil is an especially rich source of omega-3 fatty acid, which
is known to exhibit anti-inflammatory effects [93]. Optimal
reproductive health in humans is dependent on adequate in-
take of not only omega-3, but also omega-6 polyunsaturated
fatty acids (PUFAS) [23]. Since mammals have only a limited
capacity to synthesize these compounds [94], these essential
fatty acids must be obtained via diet or supplementation.
Although humans evolved on a diet of 1:1 omega-6 to ome-
ga-3s, over the last century, intake of omega-6 PUFAs has
dramatically increased among Western populations and most
Americans now consume a diet with ≥ 25:1 omega-6 to
omega-3 [95]. In the Southern USA, it is estimated that this
ratio can approach 40:1 among some individuals [95]. Excess
intake of omega-6 or inadequate intake of the omega-3 fatty
acids (i.e., fish oil) has been linked to systemic inflammation
and exacerbation of inflammatory diseases (reviewed by
[94]).

Inflammation of the placenta, fetal membranes, and decid-
ua is an essential element of term parturition [20, 96].
Significantly, pathologic activation of inflammatory signaling
cascades as a consequence of infection or sterile inflammatory
triggers can induce spontaneous PTB [96]. Thus, numerous
studies have examined the ability of maternal fish oil supple-
mentation to increase gestational length in women at risk of
PTB, but results have not consistently demonstrated efficacy
[22, 23]. Based on our data, presented above, we surmise that
the inconsistent ability of fish oil to prevent PTB in clinical
trials is due to the failure to initiate treatment prior to concep-
tion. Furthermore, because of the role of the paternal parent in
contributing to placental health and function, preconception
treatment of the father should be considered. Thus, using our
murine model, we examined the impact of preconception pa-
ternal fish oil supplementation on pregnancy outcomes in his
partner. In contrast to a high rate of PTB in partners of F1males

maintained on the standard diet, 100% of partners of F1males

provided a fish oil-supplemented diet prior to mating

delivered at term ([89] Table 2). Although PgrmRNA expres-
sion was significantly reduced in E18.5 placentae derived
from F1males, preconception paternal fish oil protected against
the loss of placental Pgr mRNA [5]. Preconception fish oil
supplementation of the male also eliminated IUGR and nor-
malized placental weights from F2 pups [89].

To begin to identify a possible mechanism for these
profound effects, we next examined expression of prosta-
glandin dehydrogenase (PGDH) in control and F1male (±
fish oil) derived placentae. PGDH is the enzyme that ca-
tabolizes the inflammatory prostaglandin E2 (PGE2) to its
inactive form. Our studies revealed that, compared to con-
trols, late pregnancy samples obtained from control fe-
males mated to F1males exhibited a dramatic decrease in
PGDH immunolocalization within the placenta and fetal
membranes while fish oil supplementation prevented the
premature loss of this enzyme. As expected, loss of
PGDH was associated with an increase in the inflammatory
prostaglandin, PGE2 [88, 89]. As yet, we have not deter-
mined whether the fish oil diet is capable of normalizing
the sperm and placental epigenome or is primarily acting
via suppression of inflammation.

Conclusions

Concomitant with industrialization, the rate of PTB has risen,
suggesting a possible association between pollution and ad-
verse pregnancy outcomes [97–99]. Although several studies
have examinedmaternal toxicant exposure with regard to PTB
risk (reviewed by [52, 100]), our studies in mice and epide-
miologic evidence in humans suggest that the developmental
exposure history of the father is also an important contributor
to this major health problem (Fig. 1). Unfortunately, current
clinical and research efforts to reduce or prevent PTB focus on
the mother—often only well into pregnancy once events plac-
ing her at risk of this event have already begun. Not surpris-
ingly, preventive measures taken after the inflammatory pro-
cesses of PTB have begun have only minimal benefit.
Significantly, our studies in mice support a successful reduc-
tion in PTB risk following a paternal intervention (Table 2).
Since evidence strongly indicates the paternal parent is also an
important contributor to timing of birth in women (Table 1),
exploring paternal intervention strategies to reduce the inci-
dence of PTB in women should be considered.
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