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Abstract Epithelial ovarian cancer (EOC) is the most difficult
cancer to cure in gynecological malignancy. Over 70 % of
patients respond to chemotherapy initially, but the majority will
relapse. Despite the emergence of a variety of cytotoxic anti-
cancer agents and targeted therapy such as bevacizumab, con-
trol over the progression of EOC remains inadequate.
Chemoresistance limits the survival of advanced cancer pa-
tients receiving chemotherapy. Many drugs have been devel-
oped so far; however, the improvement in the prognosis of
ovarian cancer patients is insufficient. Recent evidence sug-
gests that epigenetic change of DNA andmultiple cellular path-
ways contribute to acquired drug resistance to chemotherapy.
Identification of the molecular mechanisms associated with
chemoresistance is a crucial step toward improving patient sur-
vival. A new treatment paradigm for overcoming the resistance
of ovarian carcinoma is urgently needed. This review describes
the recent advances in the molecular mechanisms of
chemoresistance in EOC and strategies for overcoming them.
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Introduction

Among gynecological malignancies, epithelial ovarian cancer
(EOC) is the most difficult to cure. Maximum debulking sur-
gery followed by chemotherapy consisting of taxane and plat-
inum is the standard treatment for advanced EOC [1]. Over
70 % of patients respond to chemotherapy initially, but the

majority will relapse. Recurrent tumors can acquire resistance
to chemotherapy during treatment, and chemotherapy be-
comes ineffective in the end (Fig. 1). Despite the emergence
of a variety of cytotoxic anti-cancer agents and targeted ther-
apy such as bevacizumab, the progression of EOC has been
difficult to control [2, 3].

Drug resistance, namely chemoresistance, is a major cause
of therapeutic failure. Many mechanisms of drug resistance
have been proposed. More than 20 years ago, the expression
of multidrug resistance genes in cancer cells was considered a
main cause of chemoresistance. Stem cell theory, tumor het-
erogeneity, and epithelial-mesenchymal transition have re-
cently been proposed to explain chemoresistance. The impor-
tance of the tumor microenvironment has also been suggested.
Recent advances in molecular genetic techniques have re-
vealed that genetic and epigenetic factors are involved in the
chemoresistance of EOC cells. However, overcoming antican-
cer drug resistance of EOC has not been achieved because the
mechanism is complicated.

Identification of the molecular mechanisms associated with
chemoresistance is a crucial step towards improving patient
survival. In this review, we will describe recent advances in
the understanding of the molecular mechanisms of
chemoresistance in EOC and strategies for overcoming them.

Tumor and Microenvironment

Stem Cells

Cancer stem cells (CSCs) are a subgroup of tumor cells in
many malignant tumors that possess characteristics of normal
stem cells, with the ability to self-renew and differentiate [8].
CSCs are considered to be the cause of metastasis, recurrence
and resistance. A CSC-based model of drug-resistant cells
with chemotherapy has been put forward to explain
chemoresistance relapse in EOC [4]. In other words, CSCs
are the putative mediators of chemoresistance [5, 6]. It is
thought that CSCs are able to survive conventional
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chemotherapeutic treatment [7]. It has been shown that
primary treatment with chemotherapeutic agents results
in increased drug-resistant CSCs, which leads to recur-
rence [8]. For example, the percentage of side population
cells is increased in the ascites of patients with an initial
recurrence after platinum-based chemotherapy compared
with that of chemo-naive patients [9]. Despite being a
critical issue, there is no specific marker for ovarian
CSCs. Some proteins that have been identified in other
malignancies, such as CD44, CD133, CD117, ALDH1A1
and EpCAM (CD326) , are used as markers of
“stemness” for EOC [10–15]. Therefore, whether CSCs
are present remains controversial. However, therapeutic
strategies that target stem cell-like properties of tumors
are meaningful for overcoming the resistance of EOC.

Tumor Heterogeneity

Recent evidence showed that tumor heterogeneity leads to
chemoresistance. The presence of multiple tumor clones with-
in a patient provides an opportunity for survival selection dur-
ing chemotherapy. The problem of gene mutation needs to be
solved for tumor eradication, as tumor heterogeneity results in
major difficulties in implementing targeted therapy in EOC.
The clonal evolution model has been proposed to explain
tumor heterogeneity. Surviving cells that were naturally se-
lected by treatment are responsible for tumor progression.
The proliferating cells that have acquired additional mutations
will have new characteristics [16]. Therefore, in the clonal

evolution model, any cancer cell has the potential to become
resistant to chemotherapy.

Khaique et al. [17] analyzed the genetic alterations of pri-
mary EOC tumors and suggested that monoclonal proliferat-
ing cells are selected from a genetically distinct mixed popu-
lation [18]. Another study of recurrent serous carcinoma con-
firmed that chemotherapy-resistant clones arise from minor
clones that are present in primary tumors. Castellarin et al.
[19] investigated the change of p53 mutations of cells that
were collected from the ascites of high-grade serous carcino-
ma (HGSC) patients receiving chemotherapy, using whole
exome sequencing. The vast majority of somatic variants
found in recurrent tumors were present in primary tumors.
These results demonstrated that cancer cells could be resistant
to the effects of chemotherapy. Elucidation of the molecular
events that control tumor heterogeneity may lead to the devel-
opment of strategies for overcoming chemoresistance.

Epithelial-Mesenchymal Transition

Epithelial-mesenchymal transition (EMT) converts epithelial
cancer cells into mesenchymal cancer cells with migratory
capability and the capacity to invade and metastasize. EMT
is characterized by the loss of epithelial polarity and differen-
tiation markers such as E-cadherin andβ-catenin, and the gain
of mesenchymal markers such as N-cadherin and vimentin
[20, 21]. Some signaling pathways involved in EMT include
Wnt/β-catenin, TGF-β, Notch and Hedgehog [22]. Among
them, Wnt/β-catenin pathway is one of the major signaling
pathways thought to be involved in EMT. Wnt/β-catenin sig-
naling plays an important role in the transcription of multidrug
resistance genes such as ABCB1/MDR-1 [23]. Furthermore,
this pathway is an important pathway in cell survival and has
been implicated in the mechanism of chemoresistance of ovar-
ian CSCs [24]. Thus, Wnt/β-catenin pathway may be a poten-
tial target for chemosensitization in EOC.

Recently, chemoresistance has been reported to be associ-
ated with EMT in EOC cells [25–27]. Clinical studies have
implicated a link between EMT-related gene expression and
relapse after platinum-based treatment [28], as well as a link
between EMTand innate resistance to platinum-based chemo-
therapy [29] in EOC. Through platinum-based treatment,
EOC cells acquire not only resistance to platinum, but also
to mesenchymal phenotypes [30–32]. A latest study con-
firmed that metastasizing EOC cells taken from patients have
a different molecular structure from primary tumor cells and
display genetic signatures consistent with EMT [33]. Miow
et al. [34] assessed the cellular responses to cisplatin using
expression microarray analyses of EOC cell lines. Their results
show that epithelial-like and mesenchymal-like EOC cells ex-
hibit distinct responses following cisplatin administration. This
distinction may suggest a need for differential therapeutic

Fig. 1 Overview of acquired drug resistance Chemoresistance is
acquired during treatment of epithelial ovarian cancer as follows. 1. The
primary tumor is incompletely removed at the cellular level in debulking
surgery. 2. If complete eradication of tumor cells is achieved by
chemotherapy, the patient is cured. 3. Cancer cells that have acquired
stemness, with tumor re-growth after developing chemotherapy
resistance, ultimately result in death of the host
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regimens in the treatment of EOCs based on the EMT status of
cancer cells.

Microenvironment

Recently, substantial evidence supports the key role of a
heterogeneous tumor microenvironment in carcinogenesis
and cancer progression, including various stromal com-
partments such as fibroblasts, endothelial cells, leuko-
cytes, pericytes and extracellular matrix [35, 36]. There
is also growing evidence that highlights the importance
of tumor microenvironment-mediated chemoresistance
mechanisms in EOC [37]. Accumulating evidence of tu-
mor microenvironment-mediated chemoresistance in
EOC suggests that targeting relevant molecules and sig-
n a l i n g p a t hway s i s c r i t i c a l f o r o v e r c om i n g
chemoresistance in EOC [38]. Direct cell-to-cell contact,
trogocytosis and efflux pumps of drugs are known mech-
anisms of chemoresistance that involve cancer-associated
mesenchymal stem cells (CA-MSCs). In addition, a re-
cent report demonstrated that CA-MSCs protected an
EOC cell line from carboplatin-induced apoptosis
through inhibiting the inactivation of X-linked inhibitor
of apoptosis protein (XIAP) [39]. Lim et al. [40] found
that tumor-associated macrophages (TAMs) in the tumor
microenvironment produced high levels of VEGF-C and
transduced signals to cancer cells through VEGF-C inter-
actions with VEGFR-3, a primary receptor of VEGF-C
on tumor cells. Upregulation of the ATP-binding cassette
genes by insulin-like growth factor (IGF)-I via the PI3K,
MEK and JAK2/STAT3 signaling pathways was another
mechanism of chemoresistance. Benabbou et al. [41]
demonstrated that the OVCAR-3 cell line showed signif-
icant drug resistance to paclitaxel or carboplatin when
co-cultured with Hospicells. Triulzi et al. [42] showed
that the overexpression of maspin, a member of the
serpin protease inhibitor family, led to doxorubicin resis-
tance through the maspin-induced, collagen-enriched
microenvironment.

Genetic Factors

Drug Resistance Genes

Adenosine 5’-triphosphate (ATP)-binding cassette (ABC) and
solute carrier (SLC) transporters are known to lower intracel-
lular drug concentrations and are important multidrug resis-
tance factors. The most important ABC transporters in the
context of EOC drug resistance are ABCB1 (also known as
P glycoprotein [P-gp]), ABCC2 (multidrug resistance-
associated protein-2 [MRP2]), and breast cancer resistance
protein (BCRP), which are encoded by the ABCB1 (multidrug
resistance protein 1 [MDR1]), ABCC2 and ABCG2 genes,

respectively [43, 44]. P-gp is able to actively expel nearly 20
cytostatics, including paclitaxel and doxorubicin. A recent
in vitro study confirmed that the main mechanisms of drug
resistance were due to P-gp expression in the doxorubicin-
resistant, vincristine-resistant and paclitaxel-resistant cell
lines, and BCRP expression in the topotecan-resistant cell line
[45]. Clinically, Naniwa et al. [46] demonstrated that the ex-
pression of theMDR-1 gene in EOC tumors was significantly
higher in nonresponders of chemotherapy, which consisted of
paclitaxel and carboplatin.

Currently, microarray-based multigene assays are avail-
able. Comprehensive analyses of genetic alterations of drug
resistance genes in ovarian cancer cells are being carried out,
but the detailed mechanism of drug resistance remains un-
known [47–49]. These approaches still require extensive val-
idation before they can be considered as putative biomarkers
[50]. Furthermore, inhibitors of drug transporters have been
evaluated. The results of most of the trials of these agents were
disappointing, as the inhibitors lacked specificity and exhibit-
ed high systemic toxicity [51].

Transcriptions

Multiple studies have reported the involvement of tran-
scription factors in gynecological cancer progression.
The tumor suppressor gene TP53 encodes a DNA-
binding transcription factor that induces cell growth ar-
rest, senescence and cell death by apoptosis upon cellular
stress [52]. Once activated by DNA damage detection or
UV radiation, p53 induces the expression of many well-
known apoptosis inducers and other tumor suppressors
such as p21, BAX, PTEN and TSP-1. Mutation of
TP53, the gene encoding p53, is very common in EOC
[53]. At least 50 % of all ovarian tumors have p53 mu-
tations. Serous carcinoma is classified as high-grade or
low-grade (HGSC or LGSC). HGCS accounts for 67 %
of all EOCs and often leads to chemoresistance. The
majority of HGCS have an inactive p53 because of ge-
netic mutation [54].

P53 protein aggregation is associated with p53 inactivation
and platinum resistance. A recent study showed that overex-
pression p14ARF, a p53-positive regulator, inhibited MDM2-
mediated p53 degradation. The authors of the study also dem-
onstrated that inhibition of p14ARF could suppress p53 ag-
gregation and sensitize cancer cells to platinum treatment
in vitro and in vivo. Furthermore, they discovered that the
aggregated p53 might function by interacting with proteins
that are critical for cancer cell survival and tumor progression
by using two-dimensional gel electrophoresis and mass spec-
trometry. These findings suggested that p53 aggregation is a
new marker for chemoresistance of HGCS. In addition, this
indicated that inhibition of p53 aggregation can reactivate the
pro-apoptotic function of p53 [55•]. Therefore, p53
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aggregation is a promising therapeutic target for overcoming
resistance to chemotherapy.

TWIST1 has been shown to be important in the reg-
ulation of programmed cell death and inflammation [56,
57]. Recently, it was found that TWIST1 is involved in
the process of tumor metastasis via modulation of
epithelial-mesenchymal transition (EMT). Some studies
have reported that TWIST1 is overexpressed in EOC
[58, 59]. Emerging evidence suggests that TWIST1 plays
an important role in the chemoresistance of cancer cells.
Kajiyama et al. [60] found that TWIST1 expression pre-
dicts poor clinical outcomes in patients with clear cell
carcinoma (CCC) of the ovary. They also found that
positive TWIST1 was an independent prognostic factor
for survival of EOC patients [61].

TWIST2 is a novel zinc finger transcription factor that has
been shown to be an important inducer of EMT. A recent
study demonstrated that TWIST2 also plays a crucial role in
the chemoresistance of EOC. Downregulation of TWIST2
expression facilitated apoptosis and previously chemoresistant
EOC regained sensitivity through the AKT/GSK-3β pathway
[62].

Many other transcription factors are being studied as po-
tential targets in general cancer treatment, such as STATs,
NF-κB and Notch1 [63–65]. However, clinical treatments that
target transcription factors have not been realized.

Epigenetic Factors

Epigenetics is a phenotypical change in gene expression with-
out any alteration of the DNA sequence. The epigenetic
change in tumors generates the diverse gene expression in-
volved in drug resistance. This allows cancer cells to acquire
chemoresistance. Furthermore, this phenomenonmay compli-
cate the selection of chemotherapy that is based on mutation
biomarkers.

DNA Methylation

DNA methylation is the most frequent epigenetic phenome-
non. In cancer cells, DNA hypermethylation is associatedwith
gene silencing, while DNA hypomethylation is associated
with gene expression. DNA methyltransferase (DNMT), an
enzyme that catalyzes the transfer of a methyl group to
DNA, is essential for this process [66]. DNA methylation
has attracted attention as a target for overcoming
chemoresistance. The efficacy of some demethylating agents
in treating EOC has been examined in clinical trials [67, 68].
Human mutL homolog 1 (hMLH1) is a promising target.
Hypermethylation of hMLH1 inhibits the apoptotic response
to platinum chemotherapy. This is considered a major molec-
ular cause of acquired resistance to platinum chemotherapy in
EOC [69]. In addition, the presence of methylated hMLH1

DNA in plasma after chemotherapy predicts poor survival
for EOC patients [70]. In EOC cells, histone deacetylation
at the RGS10-1 promoter correlates with suppression of
RGS10 and chemoresistance [71]. This data suggest the
possibility of using histone biomarkers to determine the
appropriate selection of therapy in cases of EOC
chemoresistance [71, 72]. Recent preclinical research on
resensitizing platinum-resistant cells using a novel
DNMT inhibitor SGI-110 is noteworthy. This study dem-
onstrated that ALDH+ EOC cells possessing stem cell
characteristics are enriched in platinum-resistant EOC
cell lines, human tumors and residual xenografts after
platinum therapy. SGI-110 inhibited ALDH+ cell viabili-
ty, sphere formation and tumor-initiating capacity; re-
pressed stem cell-associated gene transcription; and
resensitized platinum-resistant EOC cells to platinum
[73•].

Histone Modification

Histone modifications also play important roles in epige-
netic regulation. Histones are dynamic proteins that can
become methylated or acetylated at specific amino acid
residues, which correlate with active or repressive tran-
scription [74, 75]. By tightly winding and condensing
chromatin or loosening up the structure of chromatin, tran-
scription factors and other proteins are denied or permitted
access to DNA for transcription. Histone deacetylases
(HDAC) cause repression of gene expression by regulating
the condensation of chromatin. Aberrant expression of
HDACs in gynecological cancers is associated with
chemoresistance. The use of HDAC inhibitors such as
valproic acid, belinostat and vorinostat in combination
therapy for overcoming chemoresistance has been pro-
posed. The results of clinical trials of combination therapy
with belinostat and carboplatin have been reported for
platinum-resistant EOC [76, 77]. Clinical trials of EOC
epigenetic therapeutics are ongoing.

MicroRNAs

MicroRNAs (miRNAs) are small, non-coding RNAs that
negatively regulate gene expression at the post-
transcriptional level. MiRNAs play an important role
in carcinogenesis and cancer progression. Certain
miRNAs have also recently emerged as important epi-
genetic modulators of autophagy in cancer cells [78].
Two major approaches in targeting transcription factors
are post-transcriptional silencing by siRNAs or
miRNAs, or blocking the binding of transcription fac-
tors to DNA. Multiple studies have focused on the roles
of miRNAs in overcoming resistance to chemotherapy
for EOC.
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It has been reported that many miRNAs are expressed dif-
ferentially between chemosensitive and chemoresistant ovari-
an cell lines such as miR-30c, miR-130a and miR-335 [79].
MiR-214 induced cell survival and cisplatin resistance
through direct targeting of PTEN and inactivation of the
AKT pathway [80]. Vecchione et al. [81] analyzed miR signa-
tures associated with chemoresistance in 198 samples of serous
ovarian cancer. They demonstrated that the presence miR-217,
miR-484 and miR-617 could predict chemoresistance. MiR-
199a-5p was shown to increase chemoresistance by simulta-
neously promoting autophagy and suppressing apoptosis. By
downregulating Beclin-1 expression, miR-30a and miR-376b
downregulate not only autophagy but also apoptosis, since the
level of free antiapoptotic BCL-2 protein decreased in the cell.
MiR-30a was found to be deregulated in stage I ovarian cancer
patients, together with other miRNAs. In particular, it was
downregulated in samples from patients with relapse [82, 83].
MiR-27a increases MDR1/P-glycoprotein expression in
EOC cells by targeting HIPK2 [84]. Similarly, miR-451
and miR-21 facilitate MDR1/P-glycoprotein overexpres-
sion, leading to paclitaxel resistance in EOC cells [85,
86]. Let-7a is a potential biomarker for the selection of
chemotherapy in EOC. Patients with low let-7 showed a
good response to platinum–paclitaxel combination thera-
py [87]. The down-regulation of let-7i is associated with
resistance of EOC cells to cisplatin [88]. Let-7 g
downregulates the multiple drug resistance 1 (MDR1)
gene, one of the major factors causing paclitaxel resis-
tance in EOC [89]. Lower expression of miR-31 and
higher expression of MET significantly correlated with
PTX resistance and poor prognosis in ovarian cancer
patients [90]. Epigenetic silencing of miR-199b-5p is as-
sociated with chemoresistance in EOC through the acti-
vation of JAG1/Notch1 signaling [91].

As noted above, many of the miRNAs are involved in
chemoresistance. Further research is needed before miRNAs
can be used in clinical treatment.

Related Signaling Pathways

Ubiquitin–Proteasome Pathway

The ubiquitin–proteasome pathway is responsible for
maintaining cellular homeostasis by regulating the degra-
dation of proteins. Disruption of this pathway can result
in cell cycle arrest and apoptosis as a result of incom-
patible regulatory protein accumulation within the cell
[92]. Cancer cells generally have higher levels of protea-
some activity and are more sensitive to the proapoptotic
effects of proteasome inhibition than normal cells [93].
Bortezomib is a reversible proteasome inhibitor that tar-
gets the chymotrypsin-like and caspase-like active sites
of the proteasome complex [94]. By inhibiting the

proteasome, bortezomib acts through several mechanisms
to suppress tumor survival pathways and to arrest tumor
growth, metastasis and angiogenesis. These mechanisms
of action underlie the rationale for the combined use of
bortezomib with other chemotherapeutic and targeted
agents, some of which have been evaluated in EOC clin-
ical trials [95–97]. A recent study demonstrated that pro-
teasome inhibition affects microtubule stabilization in a
manner similar to taxanes, and increases sensitivity to
paclitaxel [98].

Toll-like Receptor 4 Signaling

Myeloid differentiation factor 88 (MyD88) is an adaptor pro-
tein that is required for Toll-like receptor 4 (TLR4) signaling.
The activation of the TLR4/MyD88 signal pathway can in-
duce the activation of the Akt survival pathway and enhance
the expression of the antiapoptotic protein XIAP. Further-
more, knockout of Myd88 reduces MRP1, which is a pump
involved in chemoresistance. For the above reasons, MyD88
is involved in resistance to chemotherapy. In particular, EOC
cells expressing MyD88 induces resistance to cisplatin and
paclitaxel [99, 100]. MyD88 is expected to be a new thera-
peutic target.

Conclusions

Chemoresistance limits the survival of advanced cancer pa-
tients receiving chemotherapy. Many drugs have been devel-
oped so far, however, the improvement of the prognosis of
EOC patients is insufficient. Chemoresistance occurs as a re-
sult of a complex interplay of the various factors described
above. We can only confirm the status of the tumor clinically.
Thus, it is important to identify a simple clinical biomarker
that indicates the mechanisms of chemotherapy resistance of a
recurrent tumor. There is a need for detailed validation studies
of tumor and plasma at the time of relapse and clinically ac-
quired resistance, for optimizing tailored therapy. A new treat-
ment paradigm for overcoming the resistance of ovarian car-
cinoma is urgently needed.
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