
Vol.:(0123456789)

Current Nutrition Reports (2024) 13:557–565 
https://doi.org/10.1007/s13668-024-00542-y

REVIEW

Cholesterol and Immune Microenvironment: Path Towards Tumorigenesis

Eslam E. Saad1 · Rachel Michel2 · Mostafa A. Borahay1

Accepted: 18 April 2024 / Published online: 2 May 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Purpose of Review  Since obesity is a major risk factor for many different types of cancer, examining one of the most 
closely associated comorbidities, such as hypercholesterolemia, is crucial to understanding how obesity causes cancer. 
Hypercholesterolemia is usually associated with many cardiovascular complications such as hypertension, angina, and ath-
erosclerosis. In addition, cholesterol may be a major factor in increasing cancer risk. Cancer patients who received statins, 
an anti-hypercholesteremic medicine, demonstrated improved prognosis possibly through its effect on tumor proliferation, 
apoptosis, and oxidative stress. Cholesterol could also aid in tumor progression through reprogramming tumor immunologi-
cal architecture and mediators. This review focuses on the immunomodulatory role of cholesterol on cellular and molecular 
levels, which may explain its oncogenic driving activity. We look at how cholesterol modulates tumor immune cells like 
dendritic cells, T cells, Tregs, and neutrophils. Further, this study sheds light on the modification of the expression pattern 
of the common cancer-related immune mediators in the tumor immune microenvironment, such as programmed cell death 
1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), transforming growth factor-beta (TGF-β), interleukin 12 (IL-12), 
IL-23, and forkhead box protein P3 (FOXP3).
Recent Findings  We highlight relevant literature demonstrating cholesterol's immunosuppressive role, leading to a worse 
cancer prognosis. This review invites further research regarding the pathobiological role of cholesterol in many obesity-
related cancers such as uterine fibroids, post-menopausal breast, colorectal, endometrial, kidney, esophageal, pancreatic, 
liver, and gallbladder cancers.
Summary  This review suggests that targeting cholesterol synthesis may be a fruitful approach to cancer targeting, in addi-
tion to traditional chemotherapeutics.
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Background

Cholesterol

Cholesterol is a steroid ring molecule found in both animals 
and plants [1]. In humans, about 80% of total cholesterol 
is biosynthesized in the body, while the remaining 20% is 
received through diet. Cholesterol comes in two forms: either 
free or esterified with fatty acids [2••]. Cholesterol ester 

– the predominant form of dietary cholesterol – is carried by  
Apo proteins as part of an Apo-lipoprotein complex (cho-
lesterol carrier/transporter) in the body to form lipoproteins. 
Plasma lipoproteins are classified as chylomicrons, chy-
lomicron remnants, very-low-density lipoprotein (VLDL), 
intermediate low-density lipoprotein (ILDL), low-density 
lipoprotein (LDL), lipoprotein A (Lp (a)), and high-density  
lipoprotein (HDL) [3, 4].

Cholesterol plays a role in cancer incidence, progno-
sis, and treatment outcomes. Cancer cells require ample 
cholesterol for rapid growth. Increased serum cholesterol 
levels have been linked to an increased risk of developing 
malignancies such as colon, rectal, prostatic, and testicular 
cancers [5]. Overexpression of LDLR and ACAT is found 
in most tumor tissue from cancer patients, which supports 
rapid cancer cell proliferation [1]. Most cancer tissues have 
higher LDL receptor expression than normal [6]. Using a 
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combination of drugs to target cholesterol production and 
uptake was found to decrease cancer cell survival.

As hypercholesterolemia is also one of the major risk 
factors for hypertension, Cho et al. [7] showed that there 
was a substantial correlation between the long-term usage 
of ARBs and a decreased incidence of cancer. When com-
pared to users of other kinds of antihypertensive pharma-
ceuticals, there was no overall increased risk of cancer for 
those who took typical antihypertensive medications. On the 
other hand, other analyses showed that there is no significant 
association was found between cancer and other antihyper-
tensives [8, 9].

As obesity is one of the main risk factors for several types 
of cancer [10, 11], investigating one of the most related 
comorbidities such as hypercholesterolemia is essential to 
knowing how obesity induces cancer. Several recent stud-
ies have emphasized altering tumor progression by targeting 
cholesterol metabolic pathways [12–14]. From there, several 
studies were made to find how cholesterol is essential for 
cancer growth, especially on proliferation, apoptosis, and 
oxidative stress. On the other hand, few studies randomly 
discussed the immunomodulatory effect of cholesterol. As 
the immune microenvironment is a recent promising axis for 
cancer-targeting, investigating the role of cholesterol on the 
cancer immune milieu will open a new era of better immune-
metabolome interaction and thus novel targeting approaches. 
The immune mediators and immune cells discussed here are 
among the most studied immune-related biomarkers related 
to the tumor immune microenvironment.

Antihypercholesterolemia

Statins are FDA-approved drugs that prevent cholesterol  
synthesis by inhibiting the enzyme 3-hydroxy-3-methylglutaryl- 
CoA (HMG-CoA) reductase [15, 16]. Statins appear to 
inhibit the growth and survival of several cancer cells 
in vitro and in vivo experiments. Furthermore, LDLR down-
regulation/inhibition increases the efficacy of chemothera-
peutics [17].

Cholesterol and Tumor Pathobiology

Cholesterol’s Effect on Cancer Proliferation

Enhanced proliferation is one of the main hallmarks of 
tumors. Cholesterol induces cancer proliferation by affecting 
multiple pathways. Afrin et al. [18•] found that simvastatin, 
one of the statins, inhibits uterine leiomyoma stem cell pro-
liferation and induces apoptosis. In a patient-derived xeno-
graft mouse model, El Sabeh et al. [19] showed that simvas-
tatin significantly reduced tumor volume and inhibited the 
proliferation marker Ki67 expression when compared to the 
control group. Borahay et al. [20] revealed that simvastatin 

decreased tumor development and Ki67 expression in xeno-
graft tumor tissue. Afrin et al. [21] found that simvastatin 
dramatically decreased proliferating cell nuclear antigen 
(PCNA) expression and E2-induced proliferation in leio-
myoma cells. El Sabeh et al. [22] showed that both primary 
and immortalized human leiomyoma cells showed decreased 
levels of β-catenin following simvastatin treatment.

Cholesterol’s Effect on Cancer Apoptosis

Cholesterol inhibits cancer apoptosis by affecting multi-
ple pathways. Caspase-3 is one of the apoptosis-inducing 
enzymes. Malik et al. [23] found that in simvastatin-treated  
cells, caspase-3 level decreased in a concentration-dependent  
manner. Borahay et al. [24] showed that simvastatin strongly 
induced leiomyoma cell death.

Cholesterol’s Effect on Cancer Oxidative Stress

Cholesterol induces oxidative stress and thus cancer pro-
gression by affecting multiple pathways. Homma et al. [25] 
found that long-term feeding of cholesterol induced atypical 
prostatic hyperplasia and increased tissue oxidative stress. 
Rauchbach et al. [26] found that in a model of non-alcoholic 
steatohepatitis, cholesterol may trigger hepatic stellate cells 
lipid peroxidation and death in the liver.

Cholesterol and Tumor Immune 
Microenvironment

Cholesterol and Immune Mediators

Cholesterol is found to suppress the immune microenviron-
ment by suppressing immunostimulant cytokines and stimu-
lating immunosuppressive cytokines. Immune mediators and 
cells discussed here are chosen based on their significance 
for cancer progression (Fig. 1).

Transforming Growth Factor‑beta (TGF‑β)

Transforming growth factor-beta (TGF-β) is an immunosup-
pressive cytokine that encourages cell growth and promotes 
cancer growth [27]. In HCC, TGF-β is linked to immune cell 
exhaustion, whereas inactivated TGF-β is linked to inad-
equate DNA repair [28, 29]. By controlling immune cells in 
the liver, TGF-β maintains a balance between immunologi-
cal tolerance and activation. TGF-β is also a growth factor 
that regulates immune cells [30, 31] (Fig. 2).

Cholesterol induces TGF-β expression. Zhou et  al. 
[32••] found that the levels of plasma TGF-β1 and choles-
terol were positively correlated. Feeding high cholesterol 
elevated glomerular TGF-β1 and fibronectin mRNA levels 
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in a nephrosis rat model. Furthermore, Statins decreased 
TGF-β activity as well as expression of TGF-β targets ZYX 
and SERPINE1. These effects were observed in GBM and 

GBM-initiating cell (GIC) lines [33]. In UL stem cells, sim-
vastatin has been observed to suppress the production of 
TGF-β1 (Fig. 2) [18•].

Fig. 1   Effect of cholesterol on 
cancer progression. Cholesterol 
increases cancer progression 
through different mechanisms 
such as increased proliferation, 
oxidative stress, metastasis, 
and immunosuppressive cells 
and mediators. It also inhibits 
apoptosis and immunostimulant 
cells and mediators

Fig. 2   Effect of cholesterol on tumor immune mediators. Cholesterol 
alters the tumor microenvironment in favor of immunosuppressive 
activity via a variety of mechanisms, including (1)  Stimulation of 
both PDL1, IL-23, and TGF-β1, which stimulates both Treg cells and 
tolerogenic DCs while inhibiting cytotoxic T cells and mature DCs, 
(2) Stimulation of FOXP3, and CTLA-4, which stimulates Treg cells 

and inhibits cytotoxic T cells, and (3) Inhibition of IL-12 which stim-
ulates Treg cells and M2 macrophages and inhibits cytotoxic T cells 
and M1 macrophages. CTLA-4: Cytotoxic T lymphocyte antigen-4; 
Il-12: interleukin 12; PD-L1: Programmed death-ligand 1; TGF-β: 
Transforming growth factor-β; DCS: Dendritic cells; FOXP3: Fork-
head box protein P3; Treg: Regulatory T cells
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Programmed Cell Death 1 (PD‑1)

Programmed cell death 1 (PD-1) and its ligand, PD-L1, 
deplete T cells and prevent the action of proinflammatory 
mediators. PD-L1 induces tumor growth, activated T-cell 
immune suppression [34, 35]. Cholesterol induces PD-L1 
expression. Anti–p PD–1 immunotherapies may be more 
effective if cholesterol is reduced [36]. Simvastatin was 
found to inhibit PD-L1 expression promoting anti-tumor in 
colorectal cancers (CRCs) [37]. In melanoma and lung can-
cer cells, simvastatin, atorvastatin, lovastatin, and fluvastatin  
reduced PD-L1 expression [38••]. Cholesterol increased 
PD-1, decreased interferon-gamma, and granzyme B produc-
tion, and increased apoptosis in T cells [39] (Fig. 2).

Interleukin 12 (IL‑12)

IL-12, a heterodimeric cytokine consisting of p40 and p35 
subunits, is mostly thought to be pro-inflammatory. It is 
produced by antigen-presenting cells (APCs) – including 
macrophages and dendritic cells (DCs) – and is essential 
for CD8+ T and NK cell recruitment and effector functions. 
Thus, IL-12 plays a significant role in promoting anti-
tumor immune responses [40, 41]. Cholesterol was found to 
inhibit IL-12 expression. In a central nervous system (CNS) 
autoimmune illness model, atorvastatin decreased STAT4 
phosphorylation and suppressed the release of IL-12 [42]. 
Coward et al. [43] found that the primary mechanisms by 
which statins induce a proinflammatory response in acti-
vated peripheral blood monocytes (PBMCs) are the activa-
tion of caspase-1 and IL-18 production in the monocytes, 
with IL-12 playing a secondary role (Fig. 2).

Forkhead Box Protein P3 (FOXP3)

Forkhead box protein P3 (FOXP3) is a transcription fac-
tor and member of the forkhead box (FOX) protein fam-
ily. FOXP3 acted as a master regulator in the maturation 
and operation of the immunosuppressive regulatory T cells 
(Tregs) [44]. Tregs can suppress several immunostimulant 
cells as NK cells, macrophages, DCs, and B cells by gen-
erating immunosuppressive substances and thus encourage 
tumor growth [45–47]. A large number of tumor-infiltrating 
Tregs are associated with HCC [48]. Li et al. [49] found that 
in stage B HCC patients, Treg levels independently predicted 
a poor prognosis.

Cholesterol induces FOXP3 expression. High-cholesterol 
diets increase the CD4+ FOXP3+ Treg cell population in the 
liver [50]. Mailer et al. [51] found that a high-cholesterol 
diet increased FOXP3 expression. Wen et al. [52] noted that 
cholesterol replenishment could prevent nicotine-induced 
p-STAT5/ FOXP3 pathway suppression, and Treg frequency 
(Fig. 2).

Cytotoxic T‑lymphocyte Associated Antigen 4 (CTLA‑4)

As a T cell suppressor, cytotoxic T lymphocyte-associated 
antigen 4 (CTLA-4) was the first molecule effectively targeted 
for immune checkpoint therapy [53–55]. Cholesterol induces 
CTLA-4 expression. By targeting Ras-activated mTOR sign-
aling, atorvastatin has been shown to suppress the expression 
of CTLA-4, implying an indirect link between cholesterol and 
immune checkpoint expression [56]. According to Zeng et al. 
[57], the mevalonate pathway, which is responsible for cho-
lesterol synthesis, is necessary to produce CTLA-4 (Fig. 2).

IL‑23

Interleukin-23 is an immunosuppressive cytokine that is 
overexpressed in many human malignancies, consistent with 
its involvement in increasing tumor growth in mice [58]. 
Infiltration of the immunosuppressive M2 macrophages, 
neutrophils, TGF-β, IL-10, and VEGF into tumor tissues 
is promoted by IL-23. IL-23 also raises the expression of 
the endothelial and proliferative markers CD31 and Ki67 
in malignancies. Furthermore, IL23 suppresses the immune 
system by lowering the invasion of CD4+ and CD8+ T lym-
phocytes into tumor tissues [59]. Mice lacking IL-23p19 
were resistant to DMBA/TPA-induced skin papillomas [58]. 
Cholesterol induces IL-23 expression. In obese patients, adi-
posity is a potential biological source of IL-17 and IL-23, as 
well as a source of pro-inflammatory mediators and invad-
ing immune cells [60]. In the synovitis, acne, pustulosis, 
hyperostosis, and osteitis group, serum IL-23 was associated 
positively with total cholesterol and HDL cholesterol [61].

Ma et al. [62] found that one week after starting statin 
medication, there was a decrease in IL-23 levels in periph-
eral blood [62]. Furthermore, statin inhibits the phosphoryl-
ation of the transcription factors STAT3 and STAT1, which 
are implicated in the control of IL-6 and IL-23 [63] (Fig. 2).

All data mentioned in the immune mediators’ part and 
their correlations to cholesterol are summarized in Table 1.

Cholesterol and Immune Cells

Cholesterol is found to suppress the immune microenviron-
ment by suppressing immunostimulant cells and stimulating 
immunosuppressive cells.

Neutrophils

Neutrophils comprise 50–70% of human leukocytes in the 
bloodstream. They serve as the host's first line of defense, 
protecting against pathogen attacks by phagocytosis, granule 
release, and cytokine synthesis. Tumor-associated neutrophils 
(TANs) that infiltrate the body exhibit either protumorigenic 
(N2) or anttumorigenic (N1) properties [65]. Xiong et al. [66] 
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found that cholesterol metabolite causes an increase in neu-
trophil counts. Akinyemi et al. [67] and Grzywa et al. [68] 
found that arginase activity, one of the common inducers of N2 
immunosuppressive neutrophils, was significantly increased in 
rats fed a high-cholesterol diet. Guasti et al. [69] demonstrated 
that patients on long-term statin therapy consistently showed a 
reduction in AT1-R expression in primed PMNs and a rever-
sion of the pro-inflammatory oxidative functional response.

Cytotoxic CD8+ T Cells

Cytotoxic T lymphocytes (Cytotoxic CD8+ T Cells; CTLs) induce 
cancer cell death through temporary cell-cell interaction and par-
acrine distribution of cytotoxic effector chemicals [45, 54, 70]. 
Interleukin-2 and IFN-γ promote T cell priming, activation, and 
cytotoxicity, which culminates in anti-tumor action [71]. Upreg-
ulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3 was 

Table 1   Effect of cholesterol on 
immune mediators

Biomarker Effect of 
Cholesterol

Model
(Organ, Cell, or Disease)

Reference

TGF-β Increase Nephrosis rat model [32••]
GBM and GBM-initiating cell (GIC) lines [33]
UL stem cells [18•]

PD-1 Increase Primary colon tumors or myeloma samples, metastatic 
lung lesions in a mouse melanoma model

[36]

Colorectal cancers (CRCs) [37]
Lung, breast, colorectal, hepatocellular, and cervical 

cancer cells, melanoma cell lines
[38••]

MC38-gp100, B16, or LL2 tumor cells and T cells [39]
FOXP3 Increase Liver [50]

Thymocytes and splenocytes [51]
Prenatal nicotine-exposed female mice [52]

CTLA-4 Increase PBMCs [56]
Colitis model [57]

IL-23 Increase Dyslipidemia and atopy [64]
Psoriatic arthritis patients [60]
SAPHO syndrome [61]
Acute coronary syndrome [62]

IL-12 Decrease CNS autoimmune illness model [42]
PBMCs and monocytes [43]

Fig. 3   Effect of cholesterol 
on tumor immune archetype. 
Cholesterol alters the tumor 
microenvironment by various 
mechanisms, including (1) 
Shifting T cell equilibrium 
away from the cytotoxic type 
and towards the Treg cell type; 
(2) Shifting DCs equilibrium 
away from the mature type and 
towards the tolerogenic cell 
type; (3) Shifting Neutrophils 
equilibrium away from the N1 
type and towards N2 cell type. 
DCs: Dendritic cells; Tregs: 
regulatory T cells
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positively and gradually linked with T cell exhaustion in tumor 
tissues enriched with cholesterol and cholesterol content in tumor-
infiltrating CD8+ T cells [39]. Picarda et al. [72] found that T cell 
exhaustion was induced by tumor-derived or exogenous cholesterol 
via upregulating immunological checkpoints on CD8 T cells and 
inducing death (Fig. 2).

Dendritic Cells

Dendritic cells are APCs that can recognize diseases and alert 
the immune system, mainly T cells, of their presence. Major his-
tocompatibility molecules (MHCs) are required for naive T cells 
to locate, identify, capture, and process pathogens in peripheral 
tissues before conveying antigenic peptides from pathogens to 
naive T cells in lymphoid organs. These methods result in a criti-
cal role for DCs in the development of antigen-specific immune 
responses [73]. Cholesterol shifts the equilibrium in DCs from the 
mature type (immunostimulant) to the tolerogenic (immunosup-
pressive) type (Fig. 3). Ramakrishnan et al. [74] found that cross-
presentation was inhibited by oxidized lipids. DCs with a high 
lipid content could not efficiently excite allogeneic T lymphocytes 
or present tumor-associated antigens, and their ability to digest 
antigens was diminished [75]. Please see Table 2 for a summary 
of the data of Cholestertol’s correlation to immune cells.

Conclusion

Despite decades of considerable research on cancer immu-
nophenotyping that has yielded intriguing results, there 
is still a need to investigate the pathobiological role of 
different metabolites in tumor immune microenvironment.

Several studies proved the carcinogenic role of cholesterol 
through its pro-proliferative, pro-oxidant, and anti-apoptotic 
properties. Cholesterol was found to suppress tumor immune 
fitness. Cholesterol decreases immunostimulant mediators 
like IL-12 while increasing immunosuppressive mediators, 

including TGF-β, FOXP3, IL-23, PD-L1, and CTLA-4. Fur-
thermore, immune-stimulatory cells such as cytotoxic T cells, 
DCs, and neutrophils were blocked by cholesterol, whereas 
immunosuppressive cells like Treg cells were activated. Based 
on our review, we suggest more research be done on different 
types of cancer, studying the effect of cholesterol and choles-
terol-lowering medication on cancer immune milieu.
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