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Purpose of Review Dietary obesity is primarily attributed to an imbalance between food intake and energy expenditure.
Adherence to lifestyle interventions reducing weight is typically low. As a result, obesity becomes a chronic state with increased
co-morbidities such as insulin resistance and diabetes. We review the effects of brain insulin action and dopaminergic signal
transmission on food intake, reward, and mood as well as potential modulations of these systems to counteract the obesity

epidemic.

Recent Findings Central insulin and dopamine action are interlinked and impact on food intake, reward, and mood. Brain insulin
resistance causes hyperphagia, anxiety, and depressive-like behavior and compromises the dopaminergic system. Such effects
can induce reduced compliance to medical treatment. Insulin receptor sensitization and dopamine receptor agonists show
attenuation of obesity and improvement of mental health in rodents and humans.

Summary Modulating brain insulin and dopamine signaling in obese patients can potentially improve therapeutic outcomes.

Keywords Diabetes - Obesity - Insulin - Insulin receptor - Dopamine - Mesolimbic pathway - Reward - Food intake - Mood -

Depression - Anxiety - Depressive-like behavior

Introduction

The world is facing a global obesity epidemic, with an esti-
mated 1.9 billion people categorized as being overweight in-
cluding 650 million obese people [1]. Obesity arises as the
result of increased energy intake and decreased energy expen-
diture and greatly increases the risk of developing type 2
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diabetes [2, 3]. Obesity and diabetes are characterized by in-
sulin resistance, a condition where the body is unable to prop-
erly respond to insulin. Insulin resistance can be induced by
multiple factors including glucotoxicity, lipotoxicity, low-
grade inflammation or organelle stress. Importantly, insulin
resistance impacts peripheral tissues as well as the brain.
Food consumption is so far understood to be regulated by
the homeostatic system, which apparently resides in the hypo-
thalamus, and the reward system, which is thought to include
the mesolimbic dopaminergic pathways from the ventral teg-
mental area to the nucleus accumbens and the prefrontal cor-
tex [4]. The homeostatic system is regulated by peripheral
hormones such as insulin and leptin, senses the current energy
state of the body and controls food intake through hypotha-
lamic neurons [5]. The reward system is regulated by physio-
logical stimuli such as hunger [6], taste, cue-induced, and
palatable food intake, thereby altering food liking and wanting
[4, 7, 8]. Interestingly, homeostatic and reward systems inter-
act and their dysregulation is linked to obesity [9, 10].
Conversely, the consumption of a diet enriched with long-
chain saturated fatty acids impairs central insulin action and
inhibits dopamine function in the brain [8, 11]. Dysregulation
of both systems further promotes preference for high-calorie
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diets and results in hyperphagia, establishing a vicious cycle
of over-eating (hyperphagia) that causes long-term obesity
and the development of type 2 diabetes.

In addition, both systems play a crucial role in regulating
emotional behavior. Thus, diabetes, insulin resistance, and re-
duced dopamine function are associated with behavioral abnor-
malities and mood disorders such as anxiety and depression.
Depressive disorders, a severe category of mood disorders, are
accompanied by lack of motivation and, in some cases, can lead
to poor compliance to follow a therapy regime or even suicide
[12, 13]. Obese and diabetic patients are prone to develop de-
pressive disorders [14], whereas patients with depression have
an increased prevalence for type 2 diabetes [15, 16]. This cor-
relation is poorly understood but point to an interaction of in-
sulin signaling and dopamine function. Here we will review the
current understanding of this interaction. We will investigate for
evidence that the dysregulation of both systems is responsible
for the poor adherence for long-term weight loss after dietary
interventions due to the inability to properly regulate the hedon-
ic system and negatively impacts on mood and motivation.

Brain Insulin Signaling Affects Food Intake
and Reward

The brain is an insulin-responsive organ and brain insulin action
has a crucial effect on food intake and reward. Mechanistically,
insulin binds to the insulin and IGF-1 receptor (IR and IGF-1R)
causing the autophosphorylation of the receptors, followed by
the recruitment of insulin receptor substrate (IRS) proteins and
their subsequent phosphorylation. Phosphorylated IRS proteins
act as a critical node activating the PI3-kinase-AKT and the
MAP-kinase-ERK pathway [17]. On the one hand, the PI3-
kinase-AKT pathway regulates neuronal protein content, au-
tophagy, synaptic function, plasticity, and proliferation of neu-
ronal progenitors via activation of downstream proteins such as
mTOR complex 1 (mTORC1), glycogen synthase kinase 33
(GSK3p), or Forkhead box O (FoxO). On the other hand, ac-
tivation of the MAP-kinase-ERK pathway controls mitochon-
drial function, proliferation, and differentiation [18, 19]. This
regulation can be influenced by the activation of stress-
activated protein kinases (SAPK) such as c-Jun kinase (JNK),
p38 kinase, or IkB kinase (IKK) in the brain. The activities of
these kinases are induced by cytokines, long-chain saturated
fatty acids, or oxidative stress. They are elevated in type 2
diabetes, cause inhibitory serine phosphorylation of IRS pro-
teins and inhibit the interaction of insulin signaling proteins
which results in the abrogation of the insulin signal [18].
Insulin receptors are expressed throughout the brain includ-
ing the hypothalamus which controls energy homeostasis and
the striatum as part of the dopamine system, revealing over-
lapping expression patterns of the insulin and dopamine sys-
tems [20]. In the late 1970s Woods et al. have already
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demonstrated that insulin infusion into the brain of baboons
reduced food intake, which has been further confirmed and
refined in various other models. Insulin reduces food intake by
regulating the activation of POMC and Agrp neurons in the
hypothalamus engaging anorexigenic signals in the hypothal-
amus [5]. Thus, diabetic and insulin-resistant mice as well as
mice with a knockout of the insulin receptor in the brain ex-
hibit hyperphagia and diet-induced obesity [21-23]. But cen-
tral insulin action affects not only the homeostatic but also the
reward system. The reward or hedonic system is mainly con-
trolled by dopamine signaling. Although it is assumed that
hypothalamic mechanisms controlling food intake and energy
expenditure are important in modulating energy balance, the
explosive prevalence of dietary obesity clearly implicates non-
homeostatic mechanisms as significant contributors. In the
midbrain, food and drug reward is mediated by dopaminergic
projections from the ventral tegmental area (VTA) to the nu-
cleus accumbens (ventral striatum), known as the
mesoaccumbens pathway, from the substantia nigra pars
compacta (SNpc) to the dorsal striatum, known as the
nigrostriatal pathway, and from the VTA to the medial pre-
frontal cortex, known as the mesocorticolimbic pathway. In
light of dopamine signaling and food intake, it is important to
mention that dopamine signaling impacts the food consump-
tion in a region-specific manner [24]. Dopamine action in the
ventrolateral neostriatum and dorsal striatum affects food in-
take and food preference, whereas in the nucleus accumbens
dopamine signaling controls food seeking [25-27]. Moreover,
dopaminergic neurons in the VTA modulate reward-related
and goal-directed behaviors and exhibit numerous interactions
with different brain regions [28]. The dopaminergic system is
regulated via insulin in at least three molecular ways: (i) insu-
lin regulates the uptake of released dopamine by induction of
dopamine reuptake transporter (DAT) expression, (ii) insulin
alters dopamine half-life or action by regulating the protein
expression of the dopamine-degrading enzymes monoamine
oxidases (MAQO) and DAT, and (iii) insulin affects the spike
frequency of cholinergic interneurons and dopaminergic neu-
rons [29ee, 30, 31°, 32, 33¢]. In addition, diet-induced insulin
resistance decreases the rate-limiting enzyme for dopamine
synthesis, tyrosine hydroxylase, suggesting that insulin might
affect TH synthesis in the brain [34] (Fig. 1). A causal role of
brain insulin and dopamine signaling on weight regulation
was shown in mice deficient for the insulin receptor in dopa-
minergic, tyrosine hydroxylase (TH)-positive neurons. These
animals exhibit increased body weight due to increased food
intake, showing that reduced dopaminergic insulin sensitivity
is crucial for the development and manifestation of obesity
[32]. Intra-ventral tegmental area (VTA) injection of insulin
reduces food anticipatory behavior in mice by suppressing
excitatory synaptic transmission onto dopamine neurons,
which is reduced in the presence of hyperinsulinemia [35¢,
36, 37]. This indicates that insulin alters neuronal plasticity
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Fig. 1 Brain insulin resistance impacts dopamine function on multiple
molecular levels. Obesity-induced insulin resistance causes a reduction in
TH expression [24], the rate-limiting enzyme in dopamine production.
Further insulin receptor deficiency in brain causes unrestraint MAO
expression and with it decreased dopamine half-life in the dopaminergic
brain regions [21]. Insulin receptor deficiency on astrocytes reduces ATP
exocytosis, leading to decreased purinergic signaling on dopaminergic

within the dopaminergic system and this function is disrupted
in hyperinsulinemic conditions such as obesity and insulin
resistance. Insulin also reduces the intake of high-fat food in
sated mice in the VTA [38], preventing over-eating in this
state, a feature also present in obese subjects [39e, 40].
Intranasal insulin treatment in lean women modulates intrinsic
reward circuitry [41], supporting that insulin in humans affects
the dopamine system. In line, insulin not only reduces the
response to food pictures in brain regions affected by dopa-
mine of healthy, sated subjects but also reduces ratings of food
palatability via mesolimbic pathways in insulin sensitive pa-
tients [42, 43]. Consistently, the response to food images is
enhanced in type 2 diabetic patients compared to healthy con-
trols [44]. Insulin is also able to regulate striatal function in
lean men, while overweight men do not respond to insulin,
indicating brain insulin resistance in this dopaminergic brain
area [45¢]. Indeed, aberrant dopamine signaling is present in
obese humans and animals. In several rodent models of obe-
sity, central dopamine neurotransmission is altered before,
during, and after obesity develop. We have previously report-
ed that this dopamine deficit is already in place as early as

Obesity
Non-hunger driven food intake
| | Mood disorders

neurons [19]. Besides these effects, insulin regulates DAT activity and
thus dopamine action in the synaptic cleft [20], while also increasing
spike frequency in cholinergic interneurons [23] and TH-dopaminergic
neurons [22], highlighting the profound effect of insulin action on
dopamine function. TH tyrosine hydroxylase, MAO monoamine
oxidase. Lightning symbol highlights impact of insulin on dopamine
function

postnatal day 1 in rats inbred to become obese (obesity-prone
(OP)) when compared to rats inbred to become lean (obesity-
resistant (OR)) [46]. Therefore, the dopamine deficit predates
the interaction of the dam with the pups during weaning and
any effects of the offspring’s dietary history. This finding ef-
fectively implicates the prenatal environment and potentially
maternal hormonal levels, including insulin, in central dopa-
mine deficits observed in OP rats and confirms
transgenerational aspects of obesity. The response of insulin
receptors in the offspring may be a crucial determinant of
dopamine aberrations observed in OP and diabetes-prone an-
imals. Obese patients exhibit decreased striatal D2 receptor
density, which negatively correlated with BMI [47].
Although decreased D2 receptor availability in the striatum
can be affected by genetic predisposition, environmental fac-
tors might also influence this phenomenon [48-51]. While
dopamine antagonism does not result in a major alteration of
food consumption, it alters food-related motivation [52].
Haloperidol, a D2 receptor antagonist, reduces lever presses
for preferred food but increases consumption of freely avail-
able less preferred food in healthy mice [53]. Dopamine
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injection into the lateral hypothalamus reduces food intake via
reduced meal size in obese Zucker rats [54]. Bromocriptine, a
dopamine agonist, has been shown to reduce obesity and im-
proves glycemia in obese rodents and humans [55-57], indi-
cating the therapeutic potential in counteracting obesity by
enhancing the dopamine system. In summary, altered insulin
and dopamine signaling is present in a variety of obese mouse
models and humans [46, 58—64], highlighting insulin and do-
pamine action as a therapeutic target to regulate food intake
and motivation-related behavior.

Insulin and Dopamine Signaling Controls
Emotional Behavior

Depressive disorders, diabetes, and insulin resistance associ-
ate [65, 66], yet the molecular mechanisms for this linkage are
not well understood. Some epidemiological studies suggest an
interaction of depression with type 2 diabetes and postulate
inflammatory responses as a common mediator [67, 68].
Indeed, inflammation is one of many inducers of insulin re-
sistance [18, 69]. In addition, psychological stress is linked to
depression syndromes, affects the dopaminergic system, and
has been shown to cause insulin resistance [70—73]. Children
with increased depressive syndromes exhibit higher insulin
resistance and the occurrence of depressive syndromes can
predict the deterioration of insulin resistance [74]. Further,
children with highest insulin resistance showed an association
between altered brain morphology and depressive syndromes
[75]. Thus, it seems that insulin resistance and depressive
behavior might be functionally interconnected. Consistently,
a variety of mouse models of insulin resistance exhibit signs of
depressive-like behavior, suggesting that insulin resistance
can influence this behavior. Mice fed a high-fat diet and db/
db mice (mouse model of type 2 diabetes) exhibit central
insulin resistance, depressive-like behaviors, and increased
anxiety [29+, 31, 76, 77]. Depressive disorders are associated
with impairment in neural circuits related to emotion and cog-
nition and altered synaptic plasticity. This occurs in regions
with high IR expression and insulin sensitivity such as the
prefrontal cortex or hippocampus. Insulin improves synaptic
plasticity and neuronal transmission, and exerts neuroprotec-
tive functions [19, 20], features which are impaired in depres-
sive disorders. Further, treating obese animals with the insulin
sensitizer rosiglitazone or pioglitazone ameliorated
depressive-like behavior indicating that insulin action im-
proves mood [78, 79]. Adding to this, prenatal stress reduces
signaling of the closely related IGF-1R in hippocampus and
frontal cortex and causes depression, which can be rescued by
intracerebroventricular injection of IGF-1, which is able to
activate the insulin receptor cascade [80, 81].

The monoamine deficiency hypothesis postulates that a re-
duction in serotonin, dopamine, and/or norepinephrine can be
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causal for the development of depressive disorders. Altered do-
pamine action has been shown to modulate depressive-like be-
havior [82-84]. A key region regulating dopaminergic VTA
function represents the insulin-sensitive habenula (Hb) [28, 85,
86]. Structural and functional alterations of the Hb in humans are
linked to depressive disorders [65, 87]. Altering the firing pattern
of dopaminergic midbrain neurons or selective inhibition of
VTA dopamine neurons induces depressive-like behavior [83,
84]. We were able to show that a neuronal and glial knockout of
IR caused depressive-like behavior and anxiety with altered do-
pamine signaling. In neurons, insulin was able to suppress MAO
A and B expression, enzymes crucial for monoamine degrada-
tion, and enhances dopamine half-life after electrically evoked
dopamine release [31+¢]. IR deficiency in GFAP-positive glia
cells caused reduced ATP exocytosis, resulting in decreased
purinergic signaling on dopaminergic neurons and subsequently
anxiety- and depressive-like behavior [29+¢]. Recent data show
that knockout of the insulin receptor in dopaminergic neurons
using the DAT-Cre mouse model does not affect food consump-
tion or emotional behavior early in life, suggesting that loss of IR
in distinct dopaminergic cell populations differentially affect me-
tabolism and behavior [32, 88—90]. The combined lack of IR and
IGF-1R only in the hippocampus or in the amygdala can induce
increased anxiety-related behavior, supporting the hypothesis
that insulin action can influence dopamine-dependent behavior
[91]. Clearly, more research is needed to decipher the precise
effect of insulin action in different brain cell populations and
regions and on dopamine function regulating food intake and
anxiety- and depressive-like behavior.

Neuroinflammation Impacts Insulin
and Dopamine Function

Increased food intake and especially the increased consumption
of saturated, long-chain fatty acids cause a low-grade inflamma-
tion in peripheral tissues and the brain. There is a strong associ-
ation between inflammation and depression in humans and ro-
dents [92¢]. Major contributors of the inflammatory response are
activated macrophages. Macrophages have been proposed to
play a pivotal role in the pathogenesis of depression [93].
Macrophages secrete cytokines, such as tumor necrosis factor
(TNF) o, which does affect not only the inflammatory response
but also the insulin signaling cascade [94]. Increased pro-
inflammatory cytokines affect synaptic plasticity and neuronal
transmission and are implicated in the development of depres-
sive disorders [95]. In line, adipose tissue secretes vast amounts
of TNF« in obesity, which induces insulin resistance and is
upregulated in depressive states [96]. Treating mice with the x
TNFa monoclonal antibody infliximab results in protection
against depressive-like behavior [97]. In addition, the widely
used antidepressant bupropion reduces TNFo and improves me-
tabolism in stressed rodents [98]. A prominent effector of TNFx



Curr Nutr Rep (2019) 8:83-91

87

represents the stress-activated kinase JNK [99]. Type 2 diabetic
mice exhibit increased activation of JNK in brain, which induces
insulin resistance due to serine phosphorylation of insulin recep-
tor substrates [100, 101]. Conversely, JINK1 deficiency improves
brain insulin sensitivity and reduces anxiety- and depressive-like
behavior [102, 103]. In addition, inhibition of JNK protects do-
paminergic neurons and improves behavior in a mouse model of
neurodegeneration [104, 105].

Further, there seems to be an association between
microbial-associated molecular patterns (MAMPs) generated
by the gut microbiome, inflammation, insulin resistance, and
dopamine function [106]. Obesity is associated with insulin
resistance, altered dopamine function, and an altered
microbiome [107]. Microbes produce MAMPS such as lipo-
polysaccharide (LPS), which can cause neuroinflammation,
insulin resistance and depressive-like behavior [107-109].
Supporting this, healthy C57BL/6 mice which received an
adoptive transfer of microbiota of high-fat diet (HFD) donor
animals exhibited increased anxiety-like behavior compared
to mice given the fecal transplants of normal chow diet-fed
mice [110]. HFD feeding impairs membrane integrity, and
with this there is an increase of endotoxin release, including
LPS, into circulation [107, 111]. LPS per se induces insulin
resistance and affects dopamine function representing a poten-
tial mechanism of how inflammation, altered insulin, and do-
pamine function are interlinked [108, 112]. Further, some mi-
crobes can generate short-chain fatty acids and precursors of
neurotransmitters, such as dopamine [113], which affect insu-
lin and dopamine function. Yet, whether actually these gut-
derived metabolites penetrate the brain and affect dopamine-
dependent behavior warrants further investigation.

The hypothalamus-pituitary-adrenal (HPA) axis regulates re-
sponses to stress and affect metabolism and emotional behavior.
A dysregulated HPA axis is present in obesity and depression
and inflammation can activate the HPA axis [114, 115]. Pro-
inflammatory cytokines can induce a heightened response of
the HPA axis and has been observed in depression syndromes
[116]. Increased levels of glucocorticoid levels can induce in-
sulin resistance but also affect dopamine function pointing to an
additional mechanism of how inflammation might impact brain
insulin signaling and dopamine function [117, 118]. Here, time
and strength of the HPA axis activation differentially affects
dopamine function, further complicating this crosstalk [118].
Overall these data highlight the close relationship between in-
flammation, insulin resistance, and depression.

Conclusion

Dietary obesity other metabolic disorders, and diabetes all
share significant central monoamine neurotransmitter aberra-
tions with psychoactive disorders like depression. In this arti-
cle, we attempted to highlight some of recent advances in

understanding how such deficits may be linked to central in-
sulin receptor signaling. Beyond the role of peripheral insulin
resistance in obesity and diabetes, there is substantial promise
in the study of the role of brain insulin in behavioral and mood
disorders that may open new pathways in novel drug target
discovery and in drug development for the treatment of such
disorders.
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