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Abstract
Purpose of Review Infant weight gain is recognized to increase obesity risk across the lifespan. This review evaluates recent
evidence relating growth in infancy to childhood, adolescent and adult body composition, and cardiometabolic risk factors.
Recent Findings Greater weight or BMI gains in infancy increase both fat mass and fat-free mass in later life, but may prefer-
entially contribute to central adiposity. Impacts of infant growth on cardiometabolic health are mixed, and most findings are
attenuated after adjusting for current body size.
Summary Infant weight gain, length gain, and BMI changes are important in establishing risk for cardiometabolic health across the
lifespan. Infant growth effects on cardiometabolic health may be indirect, acting through changes in obesity risk or body composition.
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Introduction

It is now widely recognized that many adult chronic condi-
tions have their origins in childhood, infancy, and even in
utero development. This concept was first highlighted by Dr.
Barker, who identified that adults who experienced in utero
growth restriction or low birth weight were at higher risk for
developing cardiovascular disease, type 2 diabetes (T2DM)
and metabolic syndrome (MetS) as adults [1, 2]. In particular,
early studies noted the combination of low birth weight with
accelerated growth during childhood (but not infancy) repre-
sented the highest risk for cardiovascular disease [3] and
T2DM [4] in adulthood, as well as death from ischemic heart
disease [5]. Subsequent work in adults implicated both infant
(age 0–2 years) and childhood weight or BMI gains with
impaired cardiometabolic health in adults [6]. The develop-
mental programming hypothesis (also referred to as the Barker
Hypothesis or more recently, the Developmental Origins of
Health and Disease, DOHaD) thus posits that early life expo-
sures occurring during sensitive periods of development, dur-
ing gestation or postnatally, may permanently alter gene ex-
pression, tissue development, and biologic processes in a way
that is maladaptive or mismatched to exposures encountered
later in life [1, 7].

This review will focus on one aspect of the DOHaD hy-
pothesis pertaining to the role of infant growth during the first
24 months in the development of later childhood, adolescent,
and adult cardiometabolic health and disease. In particular,
given the increasing obesity prevalence, we will focus on re-
cent evidence relating to excess infant growth, rather than
growth inadequacy or faltering. Importantly, this review will
not focus on the role of birth weight or infant size at specific
ages, or predictors of infant growth differences. We will first
review the metrics and methods commonly used to evaluate
infant growth, particularly infant weight metrics, then will
summarize the evidence for how infant growth is related to
obesity and body composition, as well as cardiometabolic
outcomes at later developmental stages.

Assessment of Infant Growth

Infant growth is not linear, and various aspects of growth are
non-linear in differing ways. On average, weight decreases
within the first 7–14 days after birth, then increases rapidly
to about 6 months of age, and increases at a slower rate there-
after. Length increases quickly in the first few months, then
slows thereafter. Body mass index (BMI) increases rapidly to
about 6 months of age (the so-called infant BMI peak), before
decreasing to a nadir around 3–6 years of age (“BMI re-
bound”), then increasing more slowly throughout childhood.
In addition, the variability of infant weight and length is small-
er than at later stages of life, magnifying the impact of even

small changes or measurement error. Infant growth, then, is
not easily simplified into linear slopes, particularly for studies
involving infants of differing ages or time intervals between
measurements.

Most studies focusing on longitudinal weight changes in
relation to later outcomes do so using metrics designed to
identify growth beyond that anticipated from growth charts.
One of the most common metrics is change in weight-for-age
≥ 0.67 SD within a given time period, also referred to as
“upward percentile crossing,” “rapid infant weight gain,” or
“catch-up growth.” The + 0.67 SD change is typically equated
with crossing of two centile lines on standard growth charts
[8], but it should be noted that this is only true in reference to
the UK 1990 growth charts, which display centile lines at
exact 0.67 SD intervals [9, 10]. However, the extent of weight
gain per month (weight velocity) required to achieve a + 0.67
SD increase in weight-for-age SD score varies significantly by
age and interval between measurements. This is an issue when
attempting to compare studies using this “standard” + 0.67 SD
benchmark, but without standardizing the ages or intervals
between measurements, or even which reference growth chart
is used. As one paper notes, an “unconditional difference in z-
score can be considered a metric of velocity [only] when the
interval duration is constant for all children” [11].

One issue with examining changes in SD scores or z-
scores is that it inherently assumes that most children will
not deviate from their initial SD score [8], but will quickly
stabilize at a given percentile; therefore, deviation from their
original centile is viewed as clinically relevant. However, a
recent study found that changes in weight z-scores from
1 month to the next exhibit both positive and negative feed-
back, depending on age [12, 13], suggesting that infants do
not “pick a centile,” but rather change weight dynamically
relative to growth charts, especially during infancy. This is
demonstratedwithin theAvonLongitudinal Study of Parents
and Children cohort, where 31% of infants experienced an
increase in weight z-score > + 0.67 SD between birth and
2 years, while 25% of infants experienced a similar decrease
during this time [8], suggesting a roughlynormaldistribution
of weight change in infancy relative to growth curves. In
infancy, there is also a tendency for growth to regress toward
the mean, such that higher weight or length at one time point
is negatively related to the change in weight or length over a
subsequent period [14]. This leads to the concept of “catch
up” or “catch down” growth in infancy, characterized by the
extent of centile crossing as described above, which has also
been highlighted as a concern for later obesity or cardiomet-
abolic risk. A reasonable question, given these two phenom-
ena, is at what point is centile crossing normative, relating to
regression toward the mean or normal changes in infant
centiles, versus problematic, relating to increased risk for
later outcomes? At this point, little information is available
to address these questions.
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In addition to two-point change analyses, trajectory analy-
ses are common, particularly with BMI, permitting the incor-
poration of multiple assessments of growth per infant.
Because BMI increases in infancy and then decreases, model-
ing of individuals’BMI values using non-linear regressions or
splines allow the estimation of the magnitude of infant peak
BMI (BMI at peak, or BMIAP), age at BMI peak (AGEAP),
and weight velocity prior to the peak (pre-peak weight veloc-
ity, or PWV). These parameters have then been examined as
potential alternate metrics of infant growth in relation to out-
comes. Shape invariant techniques, such as Superimposition
by Translation and Rotation (SITAR) modeling [15], assume
that individuals in a population share a common “average”
growth trajectory, from which each person deviates in specif-
ic, estimable ways (vertical deviation or size; horizontal devi-
ation or tempo; and expanding or contracting the time axis, or
velocity). These deviation parameters can then be modeled in
relation to outcomes. Some studies employ conditional
growth metrics, whereby the growth in one period is adjusted
for growth in previous time periods, to allow for independent
assessment of each time frame.

Finally, when assessing infant growth, it is important to
recognize that relationships between infant growth and later
outcomes may differ depending on which aspects of growth
are considered (e.g., length, weight, or an index of the two
such as weight-for-length or BMI). Research regarding length
growth parameters, BMI or weight-for-length SD, or z-score
changes may provide additional information regarding body
proportionality, beyond weight gain.

How Does Infant Weight Growth Affect
Obesity Risk and Body Composition Later
in Life?

Considerable previous literature has demonstrated clear links
between weight gain velocity in infancy and obesity risk in
later childhood, adolescence, and adulthood. Three systematic
reviews were conducted on studies published before 2006,
each including between 10 and 21 studies [16–18], which
identified that “rapid infant weight gain,” often defined as
change in weight-for-age SD score ≥ + 0.67, carries a signif-
icant and consistent 2–3-fold increased risk for later obesity,
particularly when the infant exposure window is extended to
age 2; the obesity outcome is assessed at a younger age, and
adjustments are not made for confounding factors [16]. A
formal meta-analysis was not possible at that time because
of differences in exposure and outcome definitions, as “rapid”
weight gain was defined over variable time frames, from a
period of weeks to years [16], and with some studies evaluat-
ing outcomes (e.g., obesity) at ages young enough to be in-
cluded in the exposure windows of other studies. A later sys-
tematic review [19], a 2012 meta-analysis of 10 large cohort

studies including risk prediction models [20], and a very re-
cent meta-analysis of 16 studies conducted after 2006 [21••]
confirm these earlier conclusions. The 2018 meta-analysis es-
timated that rapid weight gain ≥ + 0.67 SD is associated with a
3.66-fold increased risk for overweight or obesity (95% CI
2.59–5.17), which is higher when considering childhood rath-
er than adult obesity or for infant weight gain limited to 0–
12 months of age, rather than 0–24 months [21••]. The 2012
prediction equation for childhood obesity included change in
weight SDS from birth to 12 months, birth weight SDS, and
mother’s BMI and sex, with an AUC of 77% and reasonably
high sensitivity and specificity [20].

Given that early infant weight gain is widely accepted to be
associated with later obesity status, more recent investigations
have focused on two related lines of inquiry. First, does rapid
versus slow infant weight gain differentially impact the depo-
sition of fat mass versus lean mass, or the distribution of fat
mass to visceral or subcutaneous depots? Table 1 presents a
summary of findings from 39 studies published between 2003
and 2018 evaluating early infant weight growth and later body
composition parameters [22–60]. While not a systematic re-
view, these studies are nearly unanimous in their findings that
greater infant weight gain between birth and 24 months tends
to increase both fat mass (represented as either absolute fat
mass (FM) or fat mass index (e.g., fat mass (kg)/height (m)
[2]; FMI)), as well as fat-free (lean) mass (as either absolute
amount (FFM) or fat-free mass index (FFMI)) in children,
adolescents, and adults. Only three studies reported negative
findings [49, 50, 53]. The overwhelming evidence thus sup-
ports that infant weight gain is associated with both FM and
FFM accretion, across a wide range of ages (from 6 months to
46 years of age) and methods of body composition assessment
(including dual x-ray absorptiometry [DXA], bioelectrical im-
pedance [BIA], skinfold thicknesses [SFT], air-displacement
plethysmography [ADP], and abdominal ultrasound [AUS]),
suggesting a robust effect of infant weight gain on overall
body size rather than body composition.

It has been suggested the relationship of infant weight gain
with FFM is stronger than with FM in developing countries
[23, 28, 61, 62]; and currently, studies in developing countries
present a mixed picture of positive and negative results [39,
40, 42, 44, 45, 49, 52, 55, 57, 60]. However, most studies in
developed countries find that percent body fat is increased
with greater infant weight gain, and that fat gains are seen
preferentially in the abdominal region. Only one study to our
knowledge has reported on visceral versus subcutaneous fat
distribution, with no difference between these depots among
those with high-versus-low infant weight gain among middle-
aged adults [32]. This may indicate that while both FM and
FFM are impacted by infant weight gain, the effects may be
somewhat stronger for FM, resulting in higher percent body
fat and central adiposity, highlighting the importance of infant
weight gain to later adiposity risk.
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How Do Infant Length, BMI, and Body
Composition Changes Relate to Later Obesity
Risk and Body Composition?

Some of the most interesting recent data have come from
investigations of infant growth using length or BMI changes,
rather than weight gain alone. Length growth in infancy is less
commonly evaluated (Table 2), and unfortunately the results
from the 11 studies identified are highly mixed with respect to
associations with later body composition [28, 30, 38, 39, 51,
54, 56, 59, 60, 64] or obesity risk [30, 38, 51, 54, 57, 59, 63,
64]. While some studies note that longer length (but not nec-
essarily length gain) is associated with greater lean mass [59,
60] or height at a later age [57], it is not clear that length
growth in infancy has a consistent impact on later obesity risk
or body composition.

The use of BMI metrics in studies of infant growth is rel-
atively recent, as BMI is not typically measured in clinical
practice, and theWHO growth charts for infant BMI were first
published in 2006. Particularly since 2013, several groups
have evaluated infant BMI trajectories and z-scores in relation
to childhood obesity (Table 2). Both BMI z-score change in
infancy [43, 61, 63] and higher BMIAP and later AGEAP [65,
66, 68, 69, 71, 72] are consistently associated with higher
obesity risk or higher BMI, assessed from age 2 to 29 years.
When considering body composition, a higher infant BMIAP
and a higher infant PWV are associated with higher FM [67,
72], FFM [67], percent body fat [66, 69, 72], and abdominal
obesity [66, 69, 70••]. Associations of AGEAP with body
composition are mixed, with a later AGEAP associated with
lower FM and FFM at age 3 in one study [67], associated with
higher percent body fat and abdominal adiposity in two others
[66, 69], and not associated with body composition in a final
study [72]. BMI z-score change in infancy is generally asso-
ciated with both higher FM and FFM [43, 59, 61], and higher
percent body fat and abdominal adiposity [43, 61], similar to
findings of weight-for-age SD change.

Very few studies have presented data regarding changes in
infant body composition and later outcomes (Table 2), mostly
because assessment of body composition in large numbers of
infants is difficult and expensive. In one study of 314
Ethiopian children, FM accretion during the first 4 months
of life was associated with higher FMI at age 4 years, while
FFM accretion from 0 to 6 months was positively associated
with both FMI and FFMI [75•]. Accretion of FFM, but not
FM, in infancy in this cohort is also related to length at 1 year
of age [76]. A small study of children from the USA found
that FM gains between 0 and 4 or 0–8 months, but not FFM
gains, were associated with higher odds of overweight/obesity
at age 9 [73]. And a third study from the Netherlands found
that gain in percent body fat in the first 3 months of life was
associated with greater visceral fat at 3 months of age and with
greater percent body fat at 6 months [74]. Further research in

other populations and larger sample sizes is needed to validate
and extend these results.

How Does Infant Growth Affect
Cardiometabolic Structure or Function
in Later Life?

Given the early findings regarding retrospective associations
between birth weight and early growth patterns with cardio-
vascular disease [1, 3], T2DM [2], and MetS [6], several stud-
ies have prospectively examined the relationship between in-
fant growth patterns and later cardiometabolic risk factors, as
well as assessing whether these relationships are independent
of concurrent BMI or other measures.

Blood Pressure and Circulating Lipids

With respect to blood pressure, higher BMIAP or greater BMI
z-score or weight changes in infancy are associated with
higher systolic blood pressure (SBP) and diastolic blood pres-
sure (DBP) in childhood, adolescence, or adulthood [28, 66,
72, 77, 78••, 79–82]. However, several of these associations
do not account for [72, 77], or are not significant after
adjusting for [66, 78••, 79–81], concurrent BMI, suggesting
associations between high infant weight gain and later BP
may be largely mediated by the impact of early weight gain
on obesity itself. Negative findings are also reported [35, 83,
84]. One study noted that greater length growth between birth
and 3 months of age is associated with higher DBP in women
adjusting for adult size [57]. From a retrospective analysis,
adults with elevated blood pressure (≥ 130/85 mmHg or treat-
ment for hypertension) did not experience different BMI tra-
jectories from normotensive adults at any point during child-
hood [70••].

Relationships between infant weight gain and later lipid
profiles are weak. Many studies identified no relationships
with total cholesterol [35, 78••, 83, 85, 86], or with HDL or
LDL cholesterol [35, 57, 78••, 83, 85, 86]. Several others have
identified adverse associations (e.g., higher total or LDL cho-
lesterol, higher TG, or lower HDL cholesterol) that are either
not corrected for [35, 87–89], or are attenuated [57] upon
adjustment by concurrent body size. However, one study not-
ed that later AGEAP in infancy was associated with lower TG
at age 6, particularly in boys, even after adjusting for concur-
rent fat mass and lean mass [78••]. Linear growth between
birth and 3 months is also reported to be associated with
higher cholesterol and TG in men, adjusted for adult size
[57]. A retrospective study of adults with and without MetS
identified that BMI trajectories of those with high-versus-low
TG did not diverge until after age 1.5 years, while BMI tra-
jectories of those with high-versus-low HDL did not diverge
across childhood [70••].
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Insulin Resistance and Sensitivity

With respect to insulin sensitivity, findings differ somewhat
depending on whether infants were born preterm/small for
gestational age (SGA), or not. Among term infants, an early
study in a population of middle-aged men from Herfordshire,
England, noted that the prevalence of impaired glucose toler-
ance and plasma insulin concentrations were lower with
higher birth weight or higher weight at 1 year, implicating
low weight through infancy with adult insulin resistance, par-
ticularly when coupled with higher adult BMI [4]. More re-
cent prospective studies have reported associations between
faster infant weight gain and lower insulin sensitivity [28, 35]
and acute insulin response [35], but these results are not ad-
justed for later body size. Null findings are also reported [36,
57, 78••]. One study noted that both weight growth and height
growth between 6 and 12 months of age were associated with
lower insulin sensitivity after adjusting for concurrent fat and
lean mass [28]. However, one study of children with obesity
found that greater infant weight gain between birth and
24 months was associated with higher whole-body insulin
sensitivity index (WBISI) at age 10, correcting for birth
weight and concurrent height and percent body fat [90]; how-
ever, weight gain after age 4 in this group was associated with
lower WBISI. A similar finding was noted in 6511 young
adults from low-income countries, where greater weight gain
between birth and 24 months was protective against impaired
fasting glucose/type 2 diabetes (IGF/T2DM) adjusting for
adult waist circumference; by contrast, weight gain after age
4 was associatedwith lower insulin sensitivity and risk of IFG/
T2DM [91]. A retrospective study of adults noted that adults
with MetS versus without MetS similarly did not demonstrate
different BMI trajectories until after age 4 [70••]. Thus, the
complexity of these findings suggests that while higher infant
weight gain is often associated with lower insulin sensitivity, it
may be beneficial in some circumstances, and weight gains in
later childhood may be more important in this relationship.

Significantly more research has been conducted regarding
infant weight gain and later insulin resistance among preterm,
low birth weight (LBW), and/or SGA infants. Among preterm
or SGA infants, relationships between infant growth and in-
sulin resistance are somewhat stronger and more consistent
[35, 92, 93], with some of these findings also reviewed recent-
ly [94]. In particular, among infants born small or early, great-
er infant weight growth between 0 and 3 months [35, 95] or 6–
12 months [93] appears to be related to lower insulin sensitiv-
ity in young adulthood and early childhood, respectively, al-
though not adjusted for concurrent body size. In more detailed
analyses, markers of insulin resistance (fasting 32–33 split
proinsulin and intact proinsulin) were higher among adoles-
cents born preterm with greater weight gain in the first
2 weeks, but not growth at later ages, accounting for concur-
rent body size [87]. Weight gain from birth to term age in very

low birth weight (VLBW) infants also born SGA was also
associated with higher fasting and 2-h insulin levels in young
adults, but this was not seen in appropriate for gestational age
(AGA) VLBW infants [96]. Young adults born preterm with
the highest quartile of weight SD gain between birth and term
age had lower insulin sensitivity, higher acute insulin re-
sponse, and higher disposition index compared with lower
quartiles; however, this finding was not adjusted for concur-
rent body size [88]. Conversely, in a study of 9–12-year-olds
born preterm, growth in the first 18 months, but not between
birth and term age, was associated with lower insulin, 32–33
split proinsulin, intact proinsulin, and postload insulin, ac-
counting for current weight [97], suggesting improved insulin
sensitivity. Length growth in small infants may also play a
role. At age 1 year, SGA infants with greater length SD gain
between birth and 1 year had higher postload insulin secretion,
assessed by insulin area under the curve (AUC) or first-phase
insulin response (FPIR) [92]; greater length growth in early
infancy has also been associatedwith greater beta cell function
(HOMA-%β) at age 4 [93]. Null findings are reported in this
population, as well [53, 58, 92]. From these studies, it appears
that preterm or SGA infants may experience a closer link
between infant weight and length growth and later insulin
resistance, but a critical period for this growth is not consistent
among studies.

Circulating Hormones

Few studies have examined the relationship of infant growth
with circulating hormones related to growth, insulin sensitiv-
ity, or cardiometabolic function. One study noted that weight
gain from 0 to 3 or 0–9 months was associated with higher
ghrelin and adiponectin (both corrected for body fat), but not
with leptin, at age 17 [36]. At age 13–16, leptin was also not
associated with birth weight or discharge weight z-scores in
adolescents born preterm [98]. Greater weight gain between 0
and 18 months was associated with higher high-sensitivity C-
reactive protein at age 8, but not after adjusting for concurrent
body size [80]. No differences in insulin-like growth factor
binding protein-1, sex hormone binding globulin, or cortisol
at age 1 year were seen in SGA infants with versus without
catch-up growth [92]. In addition, no significant associations
were detected betweenweight growth between 0 and 3months
and the liver markers γ-glutamyltransferase, alanine amino-
transferase, or aspartate aminotransferase in young adults
[89]. Thus, overall, there is little evidence to support an asso-
ciation between infant growth rate and circulating hormones
related to later obesity or cardiometabolic risk.

Cardiac and Vascular Structure and Function

Cardiac and vascular structure and function parameters may,
however, have an independent relationship with greater early
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infant growth. Although few studies exist, those that do sug-
gest that higher infant weight gain is associated with lower left
ventricular (LV) mass at age 6 years [78••], higher carotid
intima media thickness (cIMT) at 8 years [80], lower flow-
mediated dilation at 13–16 years [99], and higher carotid-
radial pulse wave velocity at age 16–20 years [100], all of
which, except lower LV mass, are risk factors for adverse
cardiovascular events, and all but the last finding adjusted
for concurrent body size. The contrary finding of lower LV
mass with greater infant PWV [78••] is unexpected, and may
require additional research to place this finding in context.
Another study of young adults born preterm found no associ-
ation between late infancy weight gain (3–12 months) and
cIMT after adjustment for adult height SDS [85]. These stud-
ies suggest that greater weight gain in infancy may be related
to subclinical atherosclerosis, endothelial dysfunction, and
vascular stiffness, independent of obesity development.

Conclusions

Weight gain in infancy has been strongly shown to be associ-
ated with higher obesity risks in a variety of populations
across the life course. This review newly highlights that a
substantial body of literature also supports an association of
greater infant weight gain or greater BMI gain with both great-
er fat mass and lean mass, suggesting an impact on larger
overall body size. Greater infant weight gain may also result
in higher percent body fat and greater central fat deposition.

Infant weight gain is also associated with worse cardiomet-
abolic profiles in later childhood through young adulthood,
although much of these associations appears to be indirect,
through the impact on increased obesity and adiposity. This
indirect pathway may make sense developmentally, as late
gestation and infancy are periods of rapid growth and accu-
mulation of both fat and fat-free tissue, but development of
organs important in cardiometabolic health, including the
heart and pancreas, has largely already been completed in
utero. Indeed, the original Barker work noted that birth weight
and later childhood growth were both critical periods in estab-
lishment of risk for T2DM and cardiovascular disease, but that
infancy was not [2, 3]. The impact of later childhood growth
on risk development is supported by other findings noted in
this review, particularly in relation to insulin resistance and
MetS risk. Although not fully reviewed here, mid-childhood
weight gains may be the first postnatal developmental stage
with independent associations with several later metabolic
comorbidities.

From both a clinical and public health standpoint, monitor-
ing infant weight and length gain velocity and BMI trajecto-
ries, especially in relation to standard growth charts, is impor-
tant in understanding future risk of obesity, and for developing
potential strategies to prevent obesity development during

childhood and beyond. In particular, it is important to monitor
growth among preterm and small for gestational age infants to
ensure balance between these infants’ additional energy re-
quirements to prevent inadequate growth, while avoiding
overnutrition and excessive growth rates to prevent obesity.
Additional research is needed to fully understand the mecha-
nisms, critical windows of development, and vulnerable pop-
ulations involved in the direct versus indirect pathways be-
tween infant growth and later cardiometabolic risk.
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