ORIGINAL ARTICLE

Three New Triterpenoids from European Mushroom Tricholoma terreum

Tao Feng · Juan He · Hong-Lian Ai · Rong Huang · Zheng-Hui Li · Ji-Kai Liu

Received: 3 August 2015/Accepted: 1 September 2015/Published online: 9 September 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Three rare triterpenoids, saponaceolides Q–S (1-3), have been isolated from fruiting bodies of the mushroom *Tricholoma terreum*. Their structures were characterized based on extensive spectroscopic data. Compound 1 showed certain cytotoxicities against four human tumor cell lines.

Keywords Tricholoma terreum · Triterpenoids · Cytotoxicity

1 Introduction

Our previous work has identified *Tricholoma terreum* as a hitherto unknown poisonous European mushroom [1]. From which fifteen new triterpenoids terreolides A–F and saponaceolides H–P have been isolated. Terreolides A–F possessed novel frameworks, while saponaceolides B and M were the main toxins in the mushroom. The structural diversity, as well as important bioactivity discovery, prompted us to make a further study on this mushroom. According to an investigation on chloroform extract of *T. Terreum* collected in Arcachon in southwestern France,

Electronic supplementary material The online version of this article (doi:10.1007/s13659-015-0071-5) contains supplementary material, which is available to authorized users.

T. Feng (⊠) · J. He · R. Huang · Z.-H. Li · J.-K. Liu College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China e-mail: fengtao@mail.kib.ac.cn

Z.-H. Li e-mail: lizhenghui@mail.kib.ac.cn

J.-K. Liu e-mail: jkliu@mail.kib.ac.cn

H.-L. Ai

College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China

three new triterpenoids, saponaceolides Q–S (1-3), have been obtained (Fig. 1). Their structures were established by extensive spectroscopic methods. Compounds 1-3 were evaluated for their cytotoxicities against five human cancer cell lines.

2 Results and Discussion

Compound 1 was isolated as a colorless oil. The HRESIMS data $(m/z 525.3193 [M + Na]^+)$ indicated the molecular formula C₃₀H₄₆O₆, requiring eight degrees of unsaturation. The IR absorption bands at 3436 and 1723 cm^{-1} suggested the presence of hydroxy and carbonyl groups, respectively. In the ¹H NMR spectrum (Table 1), five singlets from $\delta_{\rm H}$ 0.54 to 1.29 were readily identified signals for five methyls, while a singlet at $\delta_{\rm H}$ 7.11 (1H, br s, H-11) revealed the existence of a double bond that might have an α,β -unsaturated keto moiety. The ¹³C NMR and DEPT spectra displayed thirty carbon resonances that was classified into five CH₃, thirteen CH₂, four CH, and eight C, as shown in Table 2. These data displayed high similarities to those of saponaceolide O, a triterpenoid isolated from the same mushroom by Yin et al. [1]. The key difference in 1 was that C-7 was identified as a methylene ($\delta_{\rm H}$ 1.82 and 1.67, m; $\delta_{\rm C}$ 23.1) rather than a carbonyl carbon in saponaceolide O, which was supported by ¹H-¹H COSY fragments of H-7

Fig. 1 Structures of compounds 1-3

with $\delta_{\rm H}$ 1.68 (1H, m, H-6) and 2.48 (1H, m, H-8a), as well as HMBC correlations from H-7 to $\delta_{\rm C}$ 53.5 (d, C-6) and 24.7 (t, C-8) (Fig. 2). Analyses of 2D NMR data suggested that the other parts of **1** were the same to those of saponaceolide O (Fig. 2) [1]. Compound **1** was, therefore, elucidated as shown in Fig. 1 and named saponaceolide Q.

Compound **2** was isolated as a colorless oil. The HRESIMS ion peak at m/z 555.3290 ([M + Na]⁺) (calcd. 555.3292) indicated the molecular formula C₃₁H₄₈O₇, requiring eight degrees of unsaturation. The ¹H and ¹³C NMR spectra displayed similar patterns to those of **1** except for the signals at $\delta_{\rm H}$ 4.13 (1H, dd, J = 7.6, 5.2 Hz,

H-7) and 3.30 (3H, s, MeO-) and $\delta_{\rm C}$ 75.2 (d, C-7) and 57.2 (q, MeO-), suggesting the existence of a methoxy substituent. The HMBC correlation from $\delta_{\rm H}$ 3.30 (3H, s, MeO-) to C-7 indicated that a methoxy group placed at C-7, which was also supported by ¹H–¹H COSY correlations of H-7 with $\delta_{\rm H}$ 1.60 (1H, m, H-6) and 2.01 (2H, m, H-8). Detailed analyses of 2D NMR data suggested that other parts of **2** were the same to those of **1**. The coupling constant of H-7 (J = 7.6, 5.2 Hz) suggested an *S* configuration of C-7 referring to the data of the literature [1–4]. Therefore, compound **2** was determined to be saponaceolide R.

The 1D NMR (Tables 1 and 2) and HRESIMS data of 3 were almost the same to those of 2, which informed that 3 might have the same framework to that of 2. Detailed analyses of 2D NMR data suggested that 3 did possess the same planar structure to that of 2. However, tiny changes of NMR data of CH-6, CH-7, and CH₂-8 suggested that the stereoconfiguration of C-7 was different from that of 2. The coupling constant of H-7 (d, J = 10.4 Hz) was also significantly different to those reported previously (less than 8 Hz) [1–4], which allowed an R configuration of C-7 in 3,

Table 1 ¹H NMR data for compounds 1–3 (δ in ppm, J in Hz)

Entry	1	2	3	
2	1.09 overlapped	1.06, overlapped	1.15 overlapped	
3	1.78 m; 1.09 m	1.76 m; 1.07 m	1.79 m; 1.13 m	
4	2.32 m; 1.92 m	2.29 m; 1.88 m	2.34 m; 1.98 m	
6	1.68 m	1.60 m	2.13 m	
7	1.82 m; 1.67 m	4.13 dd (7.6, 5.2)	4.10 d (10.4)	
8	2.48 m; 2.14 m	2.01 m	1.86 m; 1.63 m	
10	7.11 br s	7.35 br s	7.33 br s	
11	4.78 br s	4.84 d (6.0)	4.84 d (17.0)	
12	0.99 s	0.94, s	0.99, s	
13	0.54 s	0.53, s	0.52, s	
14	4.88 br s; 4.59 br s	4.87, br s; 4.64, br s	4.94, br s; 4.88, br s	
3'	2.00 m; 1.87 m	2.00 m; 1.87 m	2.00 m; 1.88 m	
4′	2.16 m; 1.68 m	2.16 m; 1.67	2.17 m; 1.67	
7′	1.97 m; 1.51 m	1.96 m; 1.50 m	1.97 m; 1.51 m	
8'	1.67 m	1.65 m	1.67 m	
9′	1.48 m	1.47 m	1.49 m	
10'	1.26 m; 1.03 m	1.23 m; 1.01 m	1.26 m; 1.04 m	
11'	1.55 m; 0.81 m	1.53 m; 0.79 m	1.56 m; 0.82 m	
12'	1.29 s	1.29 s	1.29 s	
13'	1.21 s	1.21 s	1.22 s	
14'	1.09 s	1.09 s	1.10 s	
15'	3.69 dd (11.0, 10.9)	3.68 dd (11.0, 10.8)	3.69 dd (11.3, 10.8)	
	3.60 dd (11.0, 4.3)	3.58 dd (11.0, 4.2)	3.60 dd (11.3, 4.0)	
MeO-		3.30 s	3.30 s	

Data (δ) were measured in CDCl₃. The assignments were based on DEPT, ¹H–¹H COSY, HSQC, and HMBC experiments

Table 2 ¹³C NMR data for compounds 1–3 (δ in ppm)

No.	1	2	3
1	39.8 C	39.7 C	39.5 C
2	48.0 CH	47.9 CH	48.1 CH
3	30.3 CH ₂	29.1 CH ₂	30.5 CH ₂
4	37.3 CH ₂	37.2 CH ₂	37.5 CH ₂
5	148.0 C	148.8 C	148.1 C
6	53.5 CH	49.2 CH	49.3 CH
7	23.1 CH ₂	75.2 CH	75.4 CH
8	24.7 CH ₂	30.5 CH ₂	32.0 CH ₂
9	134.8 C	135.0 C	136.5 C
10	143.8 CH	146.8 CH	144.9 CH
11	70.1 CH ₂	70.2 CH ₂	70.6 CH ₂
12	26.5 CH ₃	26.4 CH ₃	26.6 CH ₃
13	14.9 CH ₃	14.9 CH ₃	15.3 CH ₃
14	106.7 CH ₂	106.5 CH ₂	107.9 CH ₂
15	174.4 C	172.8 C	173.2 C
1'	77.5 C	77.5 C	77.7 C
2'	96.6 C	96.6 C	96.8 C
3'	27.9 CH ₂	27.9 CH ₂	28.1CH ₂
4′	28.5 CH ₂	28.5 CH ₂	28.4 CH ₂
5'	72.8 C	72.8 C	73.0 C
6′	101.4 C	101.2 C	101.5 C
7′	29.2 CH ₂	29.2 CH ₂	29.5 CH ₂
8'	24.8 CH ₂	24.8 CH ₂	25.1 CH ₂
9′	35.7 CH	35.6 CH	35.9 CH
10'	31.7 CH ₂	31.6 CH ₂	31.9 CH ₂
11'	27.6 CH ₂	27.6 CH ₂	28.1 CH ₂
12'	25.9 CH ₃	25.9 CH ₃	26.1 CH ₃
13'	22.4 CH ₃	22.4 CH ₃	22.6 CH ₃
14'	20.9 CH ₃	20.9 CH ₃	21.1 CH ₃
15'	65.8 CH ₂	65.9 CH ₂	66.2 CH ₂
MeO-		57.2 CH ₃	58.4 CH ₃

Data (δ) were measured in CDCl₃. The assignments were based on DEPT, ¹H–¹H COSY, HSQC, and HMBC experiments

Fig. 2 Key 2D NMR correlations of saponaceolide R (2)

that was also in agreement with those described in the literature [3]. Therefore, compound 3 was established and named saponaceolide S.

Table 3 Cytotoxicities of compounds 1–3 (IC₅₀, µM)

Entry	HL-60	SMMC-7721	A-549	MCF-7	SW480
1	12.2	19.3	>40	12.2	1.4
2	>40	>40	>40	>40	>40
3	>40	>40	>40	>40	>40
Cisplatin	2.4	11.2	17.6	18.7	14.9

Many triterpenoids in this type, such as saponaceolides B, E, and F, have been reported to possess cytotoxicities to several cancer cell lines [2-4]. Compounds 1-3 were, therefore, evaluated for their cytotoxicities to five human cancer cell lines. As a result, compound 1 showed moderate activities as shown in Table 3.

3 Experimental

3.1 General Experimental Procedures

Optical rotations were measured on a Jasco-P-1020 polarimeter. IR spectra were obtained using a Bruker Tensor 27 FT-IR spectrometer with KBr pellets. NMR spectra were acquired with instrument of a Bruker DRX-600 with tetramethylsilane (TMS) used as an internal standard at room temperature. HRESIMS were recorded on an API QSTAR pulsar spectrometer. Silica gel (200–300 mesh), Sephadex LH-20 and RP-18 gel (20–45 μ m) were used for column chromatography (CC). Fractions were monitored by thin layer chromatography and spots were visualized by heating silica gel plates immersed in H₂SO₄ in EtOH, in combination with the Agilent 1200 series HPLC system (Eclipse XDB-C18 column, 5 μ m, 4.6 \times 150 mm).

3.2 Mushroom Material

Wild mushrooms, *T. terreum*, were collected from Arcachon in southwestern France in December 2012 and identified by Prof. Zhu-Liang Yang of Kunming Institute of Botany, Chinese Academy of Sciences. A specimen (No. KIB20121205.2) was deposited at the Kunming Institute of Botany, Chinese Academy of Sciences. For details of this mushroom please see that reported previously [1].

3.3 Extraction and Isolation

The fresh fruiting bodies of *T. Terreum* (3 kg) were extracted with chloroform (24 h \times 3), and then partitioned with water (1:1). Finally, a chloroform extract (12 g) was

obtained, which was submitted to silica gel CC using petroleum-acetone (from 1:0 to 0:1) to give six fractions (A–F). Fraction B (1.8 g) was separated by reverse-phased CC eluted with gradient mixture of MeOH and H₂O (30:70–100:0, v/v) to afford five sub-fractions (B1–B5). Fraction B2 (32 mg) was purified by Sephadex LH-20 (MeOH) to give compound **1** (2.2 mg), while fraction B4 (57 mg) was also purified by Sephadex LH-20 (MeOH) to give compounds **2** (2.3 mg) and **3** (1.3 mg).

3.3.1 Saponaceolide Q(1)

Colorless oil, α_D^{23} + 7.2 (*c* 0.12 MeOH); IR (KBr) v_{max} 3436, 2937, 1723, 1448, 1367, 1201, 1068, 991 cm⁻¹; for ¹H (600 MHz) and ¹³C NMR (150 MHz) data (CDCl₃), see Tables 1 and 2, respectively; HRESIMS: *m/z* 525.3193 (calcd for C₃₀H₄₆O₆Na, [M + Na]⁺, 525.3187).

3.3.2 Saponaceolide R (2)

Colorless oil, α_D^{23} + 19.7 (*c* 0.10 MeOH); IR (KBr) v_{max} 3443, 2926, 1726, 1457, 1381, 1065, 998 cm⁻¹; for ¹H (600 MHz) and ¹³C NMR (150 MHz) data (CDCl₃), see Tables 1 and 2, respectively; HRESIMS: *m/z* 555.3290 (calcd for C₃₁H₄₈O₇Na, [M + Na]⁺, 555.3292).

3.3.3 Saponaceolide S (3)

Colorless oil, α_{D}^{23} + 13.7 (*c* 0.11 MeOH); IR (KBr) v_{max} 3441, 2926, 1724, 1452, 1382, 1120, 997 cm⁻¹; for ¹H (600 MHz) and ¹³C NMR (150 MHz) data (CDCl₃), see Tables 1 and 2, respectively; HRESIMS: *m*/*z* 555.3290 (calcd for C₃₁H₄₈O₇Na, [M + Na]⁺, 555.3292).

3.4 Cytotoxicity Assay

Human myeloid leukemia HL-60, hepatocellular carcinoma SMMC-7721, lung cancer A-549 cells, breast cancer

MCF-7 and colon cancer SW480 cell lines were used in the cytoxic assay. All cell lines were cultured in RPMI-1640 or DMEM medium (Hyclone, USA), supplemented with 10 % fetal bovine serum (Hyclone, USA) in 5 % CO₂ at 37 °C. The cytotoxicity assay was performed according to the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method in 96-well microplates [5]. Cisplatin was used as a positive control.

Acknowledgments This project was supported by the National Natural Sciences Foundation of China (U1132607, 81102346).

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- X. Yin, T. Feng, J.H. Shang, Y.L. Zhao, F. Wang, Z.H. Li, Z.J. Dong, X.D. Luo, J.K. Liu, Chem. Eur. J. 20, 7001–7009 (2014)
- 2. M. De Bernardi, L. Garlaschelli, G. Gatti, G. Vidari, P. Vita-Finzi, Tetrahedron 44, 235–240 (1988)
- M. De Bernardi, L. Garlaschelli, L. Toma, G. Vidari, P. Vita-Finza, Tetrahedron 47, 7109–7116 (1991)
- K. Yoshikawa, M. Kuroboshi, S. Arihara, N. Miura, N. Tujimura, K. Sakamoto, Chem. Pharm. Bull. 50, 1603–1606 (2002)
- 5. T.J. Mosmann, J. Immunol. Methods 65, 55-63 (1983)