
Vol:.(1234567890)

Metallography, Microstructure, and Analysis (2019) 8:430–444
https://doi.org/10.1007/s13632-019-00550-3

1 3

REVIEW

Effect of High‑Energy Ball Milling on Structure and Properties of Some 
Intermetallic Alloys: A Mini Review

Fatma Hadef1

Received: 17 May 2018 / Revised: 24 May 2019 / Accepted: 26 May 2019 / Published online: 12 June 2019 
© ASM International 2019

Abstract
Currently, lightweight materials and structures are potentially required for economical aspects. A major preoccupation of 
engineers and materials scientists is to create and to develop existing materials to satisfy the rising needs of industries and 
population. It is well known that intermetallic compounds, such as aluminides, are used for a wide range of applications, due 
to their superior properties. These materials are generally produced through conventional manufacturing routes: melting, 
casting, powder grinding, and consolidation by hot pressing. However, these methods are inapplicable to the elaboration of 
some intermetallic alloys. The solid-state reaction of mechanical alloying makes it a processing way of choice for alloying 
elements that are difficult or impossible to combine by conventional melting methods. On the other hand, MA process seems 
to be a simple and cost-effective technique for improving structural and magnetic properties of intermetallic alloys. Within 
this context, this paper provides an overview of the experimental investigations performed on mechanical alloying/milling 
of γ-TiAl, τ-MnAl, and B2-RuAl intermetallic alloys.
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Introduction

One of the biggest challenges faced by industrial laboratories 
is the provision of new materials designed to have superior 
properties: stronger, lighter, smaller, faster, cheaper, and 
safer or to improve the performance and efficiency of cur-
rent materials. Materials scientists have been continuously 
conducting fundamental and applied studies with the inten-
tion of bringing up the properties of the materials and their 
operation in various structural and energy generation utiliza-
tions. Substantial advances in physical, chemical, electrical, 
and optical characteristics have been successfully realized by 
alloying and through chemical alteration and by subjection 
the systems to a series of conventional thermal, mechani-
cal, and chemical manufacturing processes [1, 2]. Currently, 
there are several techniques available for the modification of 
structural and microstructural characteristics of materials, 

among them mechanical alloying (MA) or high-energy ball 
milling.

Mechanical alloying (MA) is a simple, dry powder pro-
cessing technique, which involves repeated welding, fractur-
ing, and rewelding of powder particles by highly energetic 
collisions of grinding media in a high-energy ball mill. The 
powder particles are trapped between the colliding spheres 
during the operation and undergo fracture, deformation, and/
or phase development features [3]. However, despite this 
apparent simplicity, high-energy ball milling is a compli-
cated, less understood technique and the required structures 
are mainly obtained in an empirical fashion by trial and error 
[4]. This uncertainty arises, generally due to the far from 
equilibrium processing conditions during high-energy ball 
milling, which makes it difficult to predict the thermody-
namic and kinetic aspects of the phase transitions occurring 
during milling [4]. Actually, MA has been used to synthe-
size both equilibrium and non-equilibrium phases of com-
mercially useful and scientifically interesting materials from 
metallic to ionic: supersaturated solid solutions, metastable 
crystalline and quasicrystalline phases, nanostructured mate-
rials, and amorphous alloys [5]. MA has been found to be 
very effective in producing powders with unique properties: 
(i) homogeneous material with highly dispersed components 
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far away from thermal equilibrium state, (ii) a defected struc-
ture, grain boundaries, and (iii) ultrafine grain structure [5, 
6].

In fact, mechanical alloying is the main term used to 
describe the mechanical processing of powders in high-
energy ball mills [7]. Based on the classification proposed 
by Koch [8], ball milling can be divided into two classes 
that depend on the originating materials used. Ball milling 
of powders with different types of compositions, in which 
material transfer and solid-state interdiffusion take place, 
is named mechanical alloying (MA); however, ball milling 
of uniform composition, where the material transfer is not 
required, has been called mechanical milling (MM) [8, 9]. 
The most frequently used words that are used to describe 
the high-energy processing of powders are the following: 
mechanical disordering, mechanical grinding, reaction 
milling, cryo-milling, rod milling, mechanically activated 
annealing, and double mechanical alloying [10].

Beginning with Benjamin’s successful synthesis of 
mechanically alloyed IN-853 in 1970, the attempts to 
improve the properties of aluminum by using mechanical 
alloying technique have received a great deal of attention 
[11]. Aluminum is widely used in pre-alloyed powders, to 
produce high-performance composite materials [12]. Alu-
minum is the third most abundant metallic element on earth, 
posing a combination of excellent physical (2.7 g/cm3, high 
thermal and electrical conductivity), chemical, and mechani-
cal properties (excellent machinability and competitive cost) 
which made it a very popular cladding material [11, 13]. 
Aluminum is the second most employed metal in the world 
after steel. Due to low strength, its utility is limited, but 
dramatic improvements in mechanical properties can be 
achieved by the introduction of alloy additions of secondary 
elements [11]. The choice of aluminum alloys as structural 
engineering materials is dictated by the compelling need to 
have vehicles with low fuel consumption and reduced emis-
sions for a sustainable future [14, 15].

Ordered intermetallics based on aluminides are another 
subclass of aluminum alloys. They have exhibited consid-
erable attention due to their potential application possibil-
ity, especially at high temperatures [16]. Investigation on 
intermetallic alloys has been mainly driven by the needs of 
the aerospace industry for innovative materials with high 
specific strength and stiffness, as well as the ability to retain 
their strength and resist environmental degradation at ele-
vated temperatures [17]. Aluminides of significant scientific 
and technological utility are from the following systems: 
Ni–Al, Fe–Al, and Ti–Al, which have been studied exten-
sively [17–30].

Prior to World War II, less attention has been paid to the 
research on intermetallic alloys. They were considered as 
materials of little interest except to those individuals con-
cerned with phase equilibria in polycomponent metallic 

systems [31]. Later, interest in intermetallics, particularly 
those containing rare earths, has intensively increased. The 
number of scientific research projects that involve multiple 
disciplines, materials scientists, chemists, physicists, engi-
neers, and production specialists, has increased, too [31]. A 
great deal of understanding on the intermetallics has been 
gained and significant progress has been defined repeatedly 
in some detail by Westbrook, one of the key people in the 
investigation and development of intermetallics in the sec-
ond half of this century [32]. In the past two decades, signifi-
cant fundamental and developmental research studies have 
been performed on intermetallic alloys [17], and excellent 
reviews and book chapters have been published [10, 32–39]. 
As a result, the structure–property relations of these materi-
als are reasonably well understood, which has led to a road 
map for further study to develop high-performance materials 
for many engineering fields [17].

The formation of the intermetallic alloys by high-energy 
ball milling process has been previously summarized by 
Suryanarayana [10]. Mechanisms involved in the formation 
of ordered intermetallic alloys during mechanical treatment 
have not been exactly determined. It has been suggested that 
a phase will exist in either the ordered or disordered condi-
tion, depending upon the balance between atomic disorder-
ing introduced by MA and the thermally activated reordering 
[10]. The effects of high-energy ball milling on transition 
metal intermetallics, TM-Al (TM = Fe, Ni, Co) having a B2 
structure, have been previously highlighted [40]. The current 
paper is intended to provide an overview of the major efforts 
made over the last years on MA/MM of γ-TiAl, τ-MnAl, and 
B2-RuAl intermetallic alloys.

Titanium and γ‑TiAl Intermetallic Alloys

Titanium is the fourth most abundant metal, comprising 
about 0.63% of the earth’s crust, and it is distributed widely 
throughout the world [41]. The presence of this element has 
been detected in meteorites, on the moon, and in the stars 
[41, 42]. Titanium (Ti), named after the Greek God Titan, 
was recognized as a new element by Reverend William 
Gregor in 1791 [41, 43]. Although it has been available more 
than two hundred years, it has only been produced indus-
trially since the 1950s [44]. It has been reported that the 
first known investigation of titanium powder metallurgy was 
performed by Dr. Kroll [45, 46]. Titanium and its alloys are 
largely utilized in both aerospace and non-aerospace fields: 
gas turbine engines, airframes, pulp and paper, oil and gas, 
marine, biomedical, and consumer goods industries [47–50].

Titanium aluminides are part of a large family of inter-
metallic compounds, and they present exciting materials for 
use in high-temperature applications [32]. At the beginning 
of 1970s, γ-TiAl intermetallic compounds were developed 
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as the first intensive and successful structural materials with 
fundamental deformation studies [32, 51]. Actually, titanium 
aluminide-based intermetallic compounds have been consid-
ered of great importance. They offer excellent mechanical 
properties, with low values of density (4.506 g/cm3 for pure 
titanium), high resistance to high temperatures, high elec-
tric and thermal conductivity, resistance to the oxidation, 
a tensile strength of 1000 MPa, and Young’s modulus of 
160 GPa [52]. Reason for development of TiAl alloys is to 
improve a class of materials whose properties are between 
those of nickel-based superalloys and elevated temperature 
ceramics [34].

Structural Properties

The Ti–Al binary phase diagram is complex, as shown in 
Fig. 1a [53]. Its alloys show different microstructures for 
different compositions near the 50:50 aluminum-to-titanium 
ratio [54–56]. Ti–Al alloys in the range of 40–50 at.% Al 
are named γ-TiAl-based alloys [57, 58]. γ-TiAl phase has 
a face-centered tetragonal (fcc) L10 structure (CuAu type) 
[59]. γ-TiAl-based alloys contained two phases (γ and α2) 
and a little quantity of reinforcing precipitations of the third 
phase [58, 60]. The structure of γ-TiAl presents a layered 
arrangement of Ti and Al atoms on successive (002) planes 
(Fig. 1b). γ-TiAl has a, c/a =1.02 at Ti50Al50 [61]. The lattice 
parameters a and c show a linear variation with Al content 
and the tetragonal distortion increases with increasing Al 
concentration [64, 65]. The γ-TiAl phase can remain ordered 
up to its melting point of about 1450 °C [65].

MA γ‑TiAl Intermetallic Alloys

As previously mentioned, TiAl alloys have remarkable prop-
erties that are regarded as promising candidates in aerospace 
and automobile industry [66–68]; however, low-tempera-
ture ductility and poor formability limit them extensive 

application [66, 69, 70]. Actually, alloying elements can 
be added to improve the mechanical properties of γ-TiAl 
intermetallic alloys [71]. Moreover, it has been reported that 
powder metallurgy via mechanical alloying (MA) process 
can fabricate ultrafine-grained materials with controlled 
composition [18, 19, 24] and good homogeneity which the 
latter have the improved mechanical properties [20, 21]. It 
is important to note that TiAl alloys can be synthesized via 
different powder metallurgy methods: hot isostatic pressing, 
hot extrusion reaction synthesis, and spark plasma sintering 
[72].

The effect of milling parameters, on the formation of 
γ-TiAl phase, has been investigated by Hales and Vsquez 
[73]. Suryanarayana [61] has mentioned that there have been 
some reports on the possible synthesis of the disordered 
γ-TiAl (fcc) phase by MA process. However, a careful inves-
tigation conducted by XRD has revealed that the fcc phase 
interpreted as the disordered form of the γ-TiAl phase was 
the contaminant nitride TiN [61]. In another investigation, 
Suryanarayana et al. [74] have produced the equiatomic TiAl 
phase. These authors have synthesized the γ-TiAl phase by 
mixing titanium hydride and the Al3Ti intermetallic powders 
in the proper proportion, according to the chemical reaction:

Other experimental works have studied the solid-state 
reactions from elemental powder mixtures to titanium 
aluminides [75–83]. The milling conditions used by these 
investigators as well as their main results are summarized 
in Table 1.

Other researchers have obtained nanostructured inter-
metallics in ternary and quaternary powder mixtures. 
Nargesi et al. [79] have conducted an investigation aim-
ing to study the effect of Cr on TiAl formation. They have 
reported that the addition of 5% at. Cr to the TiAl samples 
shifted the γ-TiAl phase to nanostructured duplex phase 
(γ + α2). Kennedy et al. [84] have successfully prepared 

(1)Al3Ti + 2TiH2 → 3TiAl + 2H2 ↑

Fig. 1   (a) Equilibrium phase 
diagram of Ti–Al [62]. 
Reprinted by permission from 
Springer Nature [62] and (b) 
crystal structure of γ-TiAl [63]. 
Reprinted from [63], with per-
mission from Elseiver
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Table 1   Mechanically alloyed mixtures of elemental Al and Ti powders

Alloy/composition Mill BPR Atmosphere Time, h Main results References

Ti50Al50, Ti43Al57 and Ti44Al56 Centrifugal ball mill of the 
model AGO-2MI

20:1 Ar or He 2–3 Annealed products showed the 
formation of single γ-TiAl

The activation energy 
of transformation: hcp 
phase → tetragonal phase was 
close to 260 ± 43 kJ/mo1

[75]

Ti50Al50 Planetary ball mill P5 10:1 Ar 80 The structural phase 
transformations: 
Ti50Al50 → Ti(Al) → amor-
phous → hcp supersaturated 
Ti(Al) and the structural 
phase transformations during 
heating: amorphous → meta-
stable hcp → disorder fcc 
TiAl → TiAl (L10)

Heat treatment of powders 
resulted in the formation of 
TiAl intermetallic compound 
(50 nm, microhardness of 
1190 HV).

[76]

Ti50Al50 Planetary ball mill P6 10:1 Ar 100 The structural phase 
transformations: 
Ti50Al50 → Ti(Al) → amor-
phous → hcp supersaturated 
Ti(Al) (with trace amounts of 
TiAl after 80 h of milling)

Additional milling up to 100 h, 
gave rise to TiAl, Ti3Al, and 
TiAl3 intermetallic com-
pounds (200 nm)

[77]

Ti50Al50 Planetary ball mill Retsch PM 
100

20:1 Ar 100 The structural phase trans-
formations: nanocrystalline 
Ti(Al) supersaturated solu-
tions → TiAl phase after 40 h 
of milling

Subsequent heat treatment of
1. Powder milled for 80 h, 

exhibited the formation of a 
mixture of: mainly α2-Ti3Al 
and γ-TiAl phases

2. Powder milled for 100 h, 
exhibited the formation of: a 
major γ-TiAl, α2-Ti3Al and a 
little TiAl3 phases.

[78]

Ti50Al50 Planetary mill FP4 15:1 Methanol + Ar 70 An amorphous phase was 
detected after 50 h of milling

Heat treatment of MA powders 
led to the formation of 
nanocrystalline γ-TiAl phase

[79]

Ti50Al50 Planetary ball mill P5 10:1 Ar 100 After 50 h of milling, homo-
geneous hcp supersaturated 
Ti(Al) solid solution was 
formed

After 55 h, the material is 
partially amorphized (milling 
intensity of 5)

[80]
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TiAl alloy with the addition of Nb, Cr, Mo, and B and 
consolidated by spark plasma sintering (SPS). They have 
reported that the addition of Nb increased the densifi-
cation of TiAl intermetallic compound, which was also 
related to the effects of milling such as the decrease in 
particle size and the morphological changes. Another 
research group has synthesized TiAl-based alloy with 
nearly the same elements [85]. The composition was 
Ti–45Al–2Cr–2Nb–1B–0.5Ta–0.225Y (mole fraction, %). 
These powders have been subjected to double mechani-
cal milling (DMA) and spark plasma sintering (SPS) 
processes. The results showed that the DMA powders 
have nanometer-scale structure. The authors of the study 
reported that the microstructure of SPSed samples showed 
TiAl and few phases of Ti3Al, Ti2Al and TiB2. They have 
shown that with the increase in the SPS temperature, the 
microhardness and the bending strength decreased from 
HV658 to HV616 and 781–652 MPa, respectively [85]. 
Huang et al. [86] have studied the effects of milling and 
hot isostatic pressing processes on Ti–48Al–2Cr–2Nb 
powder mixtures. The results showed that the micro-
structure of powders milled for 8 h consisted of equiaxed 
γ-TiAl and α2-Ti3Al phases; however, the annealed powder 
displayed a duplex microstructure of γ-TiAl matrix and 
lamellar (γ + α2) grains.

MM γ‑TiAl Intermetallic Alloys

The systematic researches on MM TiAl alloys are reported 
in the literature. Oehring et al. [79] have indicated that 
milling γ-TiAl with Ll0 structure did not lead to a trans-
formation into an fcc but into a fine-grained hcp solid 
solution. Powders of the intermetallic phase γ-TiAl were 
ball-milled by Klassen et al. [87]. It was found that the 
intermetallic phase was chemically partially disordered 
which transformed into a solid solution after prolonged 
milling time. This structural transformation was accom-
panied by a slight decrease in the long-range order param-
eter. Figure 2 shows the XRD patterns of MM γ-TiAl and 
the evolution of the long-range order parameter, as a func-
tion of milling time [87].

The structural and microstructural evolutions occurring to 
γ-TiAl-based alloy fabricated by cryo-milling of gas atom-
ized powders followed by spark plasma sintering (SPS) 
have been investigated by Shanmugasundaram et al. [88]. 
The results indicated that the cryo-milled powder was fully 
densified at a temperature nearly 125 °C lower than that of 
un-milled powder. The microstructure of the sample heated 
at different temperatures consisted of fine grains of γ-TiAl 
and α2-Ti3Al phases in different volume fractions. They 
have mentioned that cryo-milling reduced the temperature 
required for the densification.

Table 1   (continued)

Alloy/composition Mill BPR Atmosphere Time, h Main results References

Ti53Al47 SPEX 8000 Mill 8:1 Ar 8 The bulk nanostructured alloys 
consisted of TiAl and a small 
fraction of Ti3Al phases

The addition of a small frac-
tion of powder particles such 
as Nb, Cr, B, and Ta led to 
the formation of alloys with 
small average particle sizes

[81]

Ti52Al48 An INSMART high-energy 
ball mill

10:1 Stearic acid + Ar 50 An amorphous structure was 
produced after complete dis-
solution of Al in Ti

Thermal stability of MA pow-
ders decreased with

increasing milling time
Prolonged milling time led to 

the formation of an amor-
phous alloy

[82]

TiAl – 20:1 Ar 3 After a series of processing 
routes, the obtained TiAl 
alloy showed high density 
and refined grain sizes of 
(α2+ γ) lamella and γ

The compressive yield strength 
of the sintered TiAl was 
600 MPa at 800 °C

[83]

It should be noted that only the conditions of high-energy ball milling experiments are presented in the table
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Manganese and τ‑MnAl Intermetallic Alloys

Manganese is generally found to be combined with other 
elements. It is the twelfth most abundant element and con-
stitutes about 0.085% of the earth’s crust [89]. Although 
its concentration in particular rocks was given much ear-
lier [90–92], it is present in only one part per billion in 
seawater due to the tendency of manganese to oxidize and 
form insoluble nodules in the ocean [93, 94]. Manganese 
was recognized as a chemical element in 1774 by Scheele 
[89]. Mn is an essential trace element in most tissues of all 
living organisms [95]. Most of its usage is in steelmaking 
with a much lesser amount going into the production of 
batteries. It should be noted that Mn and Fe shared similar 
chemical characteristics [96].

Al–Mn alloys have important technological applications 
due to their high mechanical properties and also for their 
interesting and attractive magnetic properties [97–100]. 
Mn–Al alloys are attractive candidates for rare earth-free 
permanent magnet, with potential magnetic properties 
superior to the well-known alnicos and hard ferrites [101, 
102]. The Mn atom is known to exhibit a high magnetic 
moment, though its value depended on the distance from 
the neighboring atoms. The latter give rise to different 
magnetic behaviors: ferromagnetic, antiferromagnetic, 
paramagnetic, or ferrimagnetic [103].

The τ-phase of MnAl is a well-known RE-free perma-
nent magnetic material [97–99, 104, 105], due to its high 
maximum magnetic energy density product per unit mass, 
low cost, low density (5.3 g/cm3), good machinability, high 

specific strength and modulus of elasticity, and remarkable 
corrosion resistance [105–107].

Structural Properties

The binary Al–Mn system has attracted much attention 
because of the wide variety of equilibrium and metastable 
phases it contains: solid solutions, 9 intermetallic phases, 
quasicrystalline phases, and amorphous alloys [108]. 
Figure 3a shows the phase diagram of binary Al–Mn 
alloys. This system is of great importance for magnetic 
applications in the composition range of 50–60 at.%Al 
(~ 67–75 wt.%). In this range, there is a metastable, fer-
romagnetic τ-phase, which makes Mn–Al alloys a poten-
tial candidate for permanent magnet applications. First 
reported by Kono [97] and Koch et al. [98], τ-MnAl is the 
only ferromagnetic phase in the Mn–Al binary system. It 
has been reported that τ-MnAl formed only within a very 
narrow window of composition, with a maximum prob-
ability for the composition Mn54Al46. Hence, the τ-phase 
tends to decompose or transform into non-magnetic 
phases [109]. It has been reported that τ-MnAl coexisted 
with γ2 and β phases, depending on the preparation tech-
nique and annealing temperature or time [109, 110]. It is 
well known that τ-phase can be obtained by quenching the 
high-temperature ε-phase followed by isothermal anneal-
ing from 673 to 973 K. Prolonged annealing resulted in its 
decomposition to the equilibrium γ2 and β phases [111]. 
τ-MnAl phase is an ordered structure and displays the 
following properties: a Curie temperature close to 635 K, 

Fig. 2   (a) XRD of Ti51Al49 
powder as a function of milling 
time and (b) phase fraction (x) 
and relative long-range order 
parameters (circles) for γ-TiAl 
as a function of milling time 
[87]. Reprinted from [87], with 
permission from Elsevier
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a magnetic moment of 1.94 μB, and a high uniaxial mag-
netocrystalline anisotropy value of 93 × 104 J/m3 which is 
quite unusual for RE-free permanent magnets [111–114].

Figure  3b (top) presents the crystal structure of 
τ-phase. The face-centered cell can also be described 
using a primitive tetragonal unit cell shown with dashed 
lines. The primitive lattice parameters are: a = 2.77 Å 
and c = 3.54 Å, which are the axes of easy magnetiza-
tion. The tetragonal cell itself can be considered as being 
a distorted cubic cell (Fig. 3b, bottom) [113, 115]. This 
ferromagnetic phase has body-centered tetragonal struc-
ture, in which the Mn atoms occupy the (0, 0, 0) sites and 
exchange ferromagnetically with each other, while the Al 
atoms and the Mn atoms in excess with the equiatomic 
composition take the (1/2, 1/2, 1/2) sites. Mn moments in 
these two sites exchange antiferromagnetically [116–119].

MA and MM τ‑MnAl Intermetallic Alloys

The past few years have witnessed a rapid growth in the 
investigation and understanding of τ-MnAl intermetallic 
alloys prepared by high-energy ball milling. It has been 
mentioned that, in the equilibrium, the solid solubility of 
aluminum in α-Mn is 2 at.%; however, mechanical alloy-
ing markedly increased this value and induced important 
phase transitions [119]. The intermetallic phases and the 
transformations that can be attained in MA Al–Mn are not 
completely clear and depended on the milling conditions 
[100, 119, 120].

Some studies have not reported the formation of τ-MnAl 
intermetallic alloys. However, these studies have investi-
gated the composition ranges of τ-MnAl phase. These works 
are summarized in Table 2.

The synthesis of τ-MnAl intermetallic alloys by MA has 
been successfully achieved by several researchers. Singh 
et al. [105] have obtained τ-MnAl phase in MA Mn54Al46 

Fig. 3   (a) Calculated stable phase diagram of the Al–Mn system 
[115]. Reprinted from [115], with permission from Elsevier and 
(b) top: crystal structure of τ-MnAl. The dashed lines showed the 

reduced tetragonal cell, and the tetragonal lattice parameter, bot-
tom: idealized simple cubic structure of MnAl [113]. Reprinted from 
[113], with permission from Elsevier

Table 2   Mechanically alloyed mixtures of elemental Al and Mn powders

It should be noted that only the conditions of high-energy ball milling experiments are presented in the table

Alloy/composition Mill BPR Atmosphere Time, h Type of investigation References

Mn42Al58 SPEX 8000 11:1 N2 50 Structural and magnetic properties [100]
Mn55Al45 – 23:1 Ar 500 Structural and magnetic properties [119]
Mn56Al44 Planetary ball mill 10:1 Toluene 25 Mechanical and magnetic properties of milled powders 

followed by spark plasma sintering
[121]

Mn55Al45 Planet ball milling 
machine QM-lSP

20:1 Ethanol 24 Relationship between temperature and phase formation
Microwave absorbing properties

[122]

– – 20:1 Hexane + Ar 26 Structural and magnetic properties [123]
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powders, by using three different materials processing 
routes: arc melting, mechanical alloying, and a combination 
of them. They have reported that the formation of τ-MnAl 
phase was always accompanied by other non-magnetic 
phases: β and γ. However, the relative fraction of these 
phases was found to be dependent on the materials process-
ing route and consequently on the grain size of the parent 
phase. It was reported that the alloy prepared by MA showed 
the smallest grain size and the lowest fraction of the mag-
netic phase. The authors also reported that in addition to 
the magnetic τ-MnAl phase, the magnetic properties could 
be related to the density of structural defects induced by 
the processing route. MnAl flakes with different size were 
obtained using the surfactant-assisted ball milling method 
by Su et al. [124]. They have indicated that after annealing 
the textured flakes, high-purity τ-phase has been synthesized 
from milled powders. It has been reported that the magnetic 
properties depended on the fraction of the τ-phase and ball 
milling time. The main results of this study were: a coerciv-
ity of about 234.9 kA/m and a saturation magnetization close 
to 0.47 T. A high coercivity up to 5.3 kOe and a saturation 
magnetization of ~ 62 emu/g have been reported by Lu et al. 
[117]. These investigators have shown that the coercivity 
firstly increased and then decreased, leading to the formation 
of knee point coercivity, while the saturation magnetization 
decreased simultaneously. The authors have stated that the 
chemical disordering and internal strain of τ-MnAl were 
greatly enhanced with increasing milling time (Fig. 4).

Other research studies have investigated mechanically 
alloyed ternary systems with carbon addition. The first inves-
tigated in the late 1950s and early 1960s, and the discovery 

that the addition of carbon to MnAl not only stabilized the 
τ-phase, but also allowed the processing of anisotropic per-
manent magnets with good machinability [125, 126] has 
attracted a great deal of attention [127–129], with focus 
on the effect of milling and annealing conditions [130]. A 
correlation between the coercivity and internal strain has 
been established for as-milled τ-phase Mn51Al46C3 flakes 
obtained by surfactant-assisted ball milling (SABM) [131]. 
These researchers reported that the high coercivity up to 
266.2 kA/m was accompanied by a relatively large residual 
strain, due to the domain wall pinning effect of the defects 
and the associated strained areas. Another study has been 
conducted by Jian et al. [102]. The investigation revealed 
the formation of flake-shaped powders 2 h of milling. They 
have found that magnetization decreased and coercivity 
increased continuously with milling time due to the defects 
introduced by the milling. It has been seen that the magneti-
zation increased significantly because of the recovered crys-
tal structure of τ-phase. The relationships between magnetic 
properties and milling time of Mn53.3Al45C1.7 powders are 
illustrated in Fig. 5.

Obi et al. [130] have shown that carbon addition highly 
affected the structural and magnetic properties of MA 
Mn0.53Al0.47–xCx (x = 0–0.015), upon annealing. They have 
mentioned that Ms and Mr decreased, while Hc increased 
with the increase in carbon concentration which was attrib-
uted to the formation of Mn3AlC phases and the reduction 
in grain size, respectively. The investigators reported that the 
magnetic properties such as Ms and Mr strongly depended 
on the quantity of the ferromagnetic τ-MnAl phase, while 
Hc depended on the volume fraction of the Mn3AlC phase.

Fig. 4   (a) Dependence of grain size and internal strain on the MM time in τ-MnAl alloys and (b) relation between long-range order parameter S 
and mechanical milling time [117]. Reprinted from [117], with permission from Elsevier
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Ruthenium and B2‑RuAl Intermetallic Alloys

Ruthenium is a very little chemical element. It is the 74th 
most abundant metal on earth. It was discovered in Kazan 
(Russian Federation) by Karl Karlovich Klaus in 1844 [132]. 
It has been reported that the first publications were printed 
in Russian journals which are difficult to get at present, but 
were published in Western Europe in 1845 [133–135] with a 
summary in English [133, 136]. Klaus called it ruthenium in 
honor of his native land (Ruthenia, Latin for Russia) [133]. 
Gottfried Wilhelm Osann identified what he thought was 
a new element in 1827 and named it ‘ruthenium,’ but his 
claim is generally discounted [133, 137, 138] though he still 
has some supporters [133, 139]. Ru is generally found in 
ores combined with other metals in the Ural Mountains and 
in America. Due to the remarkable characteristics of Ru, 
ruthenium-containing complexes are well suited for biologi-
cal and pharmacological uses [123].

RuAl phase was first recorded in 1960 by Obrowski 
(Degussa Laboratories, Germany), who shortly described 
its structural properties [140]. Three years later, Obrowski 
investigated other alloys in Ru–Al system [141]. The work 

that followed in the late 1970s by Wopershow and Raub 
[142] who have studied a wide range of properties of several 
binary intermetallic phases including RuAl [143]. An inter-
esting overview on RuAl published by Wolff [144] gave a 
better description of structural properties of this intermetal-
lic aluminide. Due to its elevated melting temperature (about 
2323 K), high-temperature strength, oxidation and corrosion 
resistance, and good room-temperature toughness, B2-struc-
tured intermetallic compound RuAl has been considered as 
a good base material for elevated temperature utilizations 
in exceedingly aggressive environments, especially as a 
candidate material for spark plug electrode [144–146]. The 
B2-RuAl intermetallic compound displays strong thermody-
namic stability along with good oxidation resistance at high 
temperatures due to the growth of a protective α-Al2O3 scale 
[147–149]. The most important advantage of this compound 
over other aluminides arises on the coefficient of thermal 
expansion (CTE), which is substantially lower than that of 
B2 Al-X (X = Fe, Ni, Co) and nearer to that of the α-Al2O3 
[150]. Intermetallics based on RuAl have shown relatively 
good oxidation resistance up to 900 °C, [151–153]. RuAl has 
shown strong resistance to attack from aqueous solution such 
as nitric acid, aqua regia, HF, sulfuric acid, FeCl3, NaOH, 
and HCl, but the only solution reported to attack RuAl is 
NaOCl [144, 154]. RuAl alloys have received much attention 
in last years because of their high-room-temperature ductil-
ity, which was attributed to the existence of five independent 
slip systems in the RuAl phase [155].

Structural Properties

B2-RuAl with CsCl crystal structure type [88] is formed in 
the composition ranges from 49.9 to 53.4 at.% Al [149, 156]. 
As shown in the existing Ru–Al phase diagram (Fig. 6a), the 
ordered B2 structure is not stable for wide deviations from 
stoichiometry and the existence limits of the RuAl phase 
are still not exactly determined [157–161]. Thermodynamic 
information on the formation of RuAl was deduced both 
experimentally and theoretically. Calorimetric analysis at 
(1473 ± 2) K revealed a high negative value of enthalpy of 
the formation of RuAl (ΔH0

f= (− 124.1 ± 3.3) kJ/mol), indi-
cating a very huge chemical interaction between Ru and Al 
[110, 162]. The lattice parameter of RuAl has been defined 
by both experimental works and theoretical calculations. 
Villars and Clavert have found a value of 0.303 nm; how-
ever, Fleischer reported a value close to (0.29916 ± 0.00008) 
nm [163, 164].

MA B2‑RuAl Intermetallic Alloys

RuAl has become a candidate for future structural or coating 
materials for high-temperature applications. However, this 
is impeded by problems in the production of single-phase 

Fig. 5   Dependence of magnetic properties on the milling time of MM 
Mn53.3Al45C1.7 powders [102]. Reprinted from [102], with permission 
from Elsevier
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RuAl, by conventional melting methods [166]. Ingot met-
allurgy is difficult because of the elevated melting point 
of RuAl and the large difference in melting temperatures 
between Al and Ru elements (ΔTm = 1674 K) [145, 166]. 
This alloy can be manufactured by powder processing tech-
niques, especially by reactive powder processing [161, 167], 
or reactive hot isostatic processing [151, 161]. Many inter-
esting papers have been published dealing with the structural 
characterization of the intermixing between Ru and Al ele-
ments (see Table 3).

Some research works have investigated mechanically 
alloyed Ru–Al–X ternary systems. Liu et al. [173] have 
obtained B2-structured single-phase (Ru, Ni)Al by an abrupt 
reaction during MA of the elemental powders of Ru, Al and 
Ni. Complete solubility between pseudo-binary RuAl–NiAl 
was achieved in a range between 10 and 25 at.% Ni, while 
the range for Al remained at 50 at.%. The research clearly 
showed that Ni was found to improve the sluggish reactivity 

of Ru by promoting the abrupt reaction. Liu and Mucklich 
[146] reported the synthesis of RuAl/ZrO2 nanocomposite, 
starting from stoichiometric Ru and Al powders mixture 
with 10 and 20 at.% of ZrO2 particle additions. The over-
all structural evolutions during MA can be summarized as 
follows:

The investigators have reported that ZrO2 was distributed 
uniformly in RuAl matrix after annealing, and the RuAl/
ZrO2 nanocomposite exhibited a strong thermal stability at 
high temperatures (Fig. 7).

(2)

Ru + Al + ZrO2

MA 2 h
⟶ Ru(Al) + (ZrO2)

MA 15 h
⟶ RuAl + Ru(Al) + (ZrO2)

MA 35 h
⟶ RuAl + (ZrO2)

Fig. 6   (a) Partial Al–Ru phase 
diagram [165]. Reprinted from 
[165], with permission from 
Elsevier and (b) B2 crystal 
structure of RuAl

Table 3   Mechanically alloyed mixtures of elemental Al and Ru powders

It should be noted that only the conditions of high-energy ball milling experiments are presented in the table

Alloy/composition Mill BPR Atmosphere Time, h Main results References

Ru50Al50 Turbula mixer – – 6 MA Ru–Al samples heated at 0.25 K/s, led to the formation 
of RuAl

MA RuAl samples heated at 0.08 K/s, led to the formation 
of RuAl2 and RuAl

[168]

Ru50Al50 Spex 8000 mill 10:1 Ar 50 Two stages of MA reaction before single RuAl formation 
are reported

Heat treatment of RuAl exhibited reordering, strain relaxa-
tion and grain growth

15 at.% Fe existed in the form of solid solution in RuAl 
as substitutional element and as segregation in grain 
boundaries.

[169, 170]

Ru47Al53 Attrition mill 10:1 Stearic acid + Ar 50 RuAl phase was formed after 7 h of milling
Density close to 97% of the theoretical value was reported 

after cold compaction and sintering of milled powder

[171, 172]
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MM B2‑RuAl Intermetallics

Research on MM B2-RuAl intermetallics is quite limited. 
Hellstern et al. [174] studied structural and thermodynamic 
modifications occurring during ball milling AlRu interme-
tallics. They have found that the milling caused a decrease 
in the long-range order (LRO) parameter from 1.0 to 0.7. 
They have indicated that ball milling of AlRu compound did 
not lead to the formation of an amorphous alloy, but showed 
the development of a fine nanocrystalline structure with an 
average grain size close to 7 nm, accompanied with a lattice 
strain of about 3%.

Concluding Remarks

Over the past decade, the need of intermetallic alloys for 
structural, mechanical, and magnetic applications has inten-
sively increased. These lightweight materials are mainly uti-
lized in the aerospace and automobile industries. Numerous 
processing routes have been developed to produce these 
materials or to improve the existing structural and mechani-
cal characteristics. Among these techniques is the mechani-
cal alloying or high-energy ball milling.

In this article, the current state of knowledge on MA/MM 
of binary γ-TiAl, τ-MnAl, and B2-RuAl intermetallic alloys 
has been presented. The conclusions of the paper may be 
drawn as follows:

•	 The reported studies perfectly illustrated the effectiveness 
of high-energy ball milling process in obtaining nano-
structured intermetallic alloys.

•	 High-energy ball milling process has been used jointly 
with other techniques in order to perform nanostructured 
intermetallic alloys.

•	 It was reported that even after having the mechanically 
alloyed state, a suitable heat treatment was necessary to 
obtain the perfect crystalline structure.

•	 The structural and magnetic properties of powders so 
obtained are different, even for the same composition, 
which clearly showed that the milling parameters played 
a vital role in achieving the desired structure/propriety.

•	 It was demonstrated that the structural imperfections such 
as disordering and defects played the most important role 
in the changes in the magnetic properties of milled inter-
metallic alloys.
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