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Abstract

Inhibition of BCR-ABL tyrosine kinase plays a crucial role in the management of chronic myelogenous leukemia (CML).
The suppression of CML is getting harder because of a distinct pattern of resistance. Developing new types of ABL tyrosine
kinase inhibitors along with ABL2, CSF1R, KIT, LCK, PDGFRA, and PDGFRB inhibitors is the main objective of this
study that may overcome the drug resistance issue. The current study has been conducted using a kinase database contain-
ing 177,000 bioactive molecules, the top 135 molecules were selected with the best docking score and subjected to com-
prehensive ADMET profiling, multi-target analysis. Based on consensus molecular docking score (AutoDock, Chimera,
Achilles, and Mcule), 22 molecules have been screened out which later undertaken for ADME/T profiling. After profiling of
ADME/T data, selected molecules subjected to docking with multiple targets. Finally, molecular dynamics simulations had
performed to screen the binding accuracy of the four lead molecules with ABL1. MD simulations of the desired complex
(ABL1, ABL2, CSFIR, KIT, LCK, PDGFRA, and PDGFRB, among them ABL1 was the prime target) performed and found
that PCID 10181160 and PCID 72724706 are the most promising inhibitors comparing to imatinib. These lead molecules
are the potential CML inhibitors that could resolve the resistance pattern. Further chemical synthesis, wet lab analysis, and
experimental validation deserve the utmost attention.

Keywords Chronic myelogenous leukemia - Imatinib - Consensus docking - ADMET - Multi-target analysis - Molecular
dynamics simulation

Background

domain with specific breakpoint cluster region (BCR) on
chromosome 22 (Faderl et al. 1999). The ABL1 gene on

Chronic myeloid leukemia (CML) is a myeloprolifera-
tive disease characterized by the translocation of a sec-
tion of human chromosome 9 which contains ABL kinase
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chromosome 9 and BCR gene on chromosome 22 together
involved in the formation of BCR-ABL which is basically
the active oncogene tyrosine kinase (TK) (Kang et al. 2016).
BCR-ABL tyrosine kinase plays a crucial role in the devel-
opment of CML (Jabbour and Kantarjian 2014). Thus, the
inhibition of BCR-ABL is the best possible option for the
management of CML.

Imatinib, a tyrosine kinase inhibitor, inhibits ATP bind-
ing site of BCR—ABL. It prevents tyrosine phosphoryla-
tion and downstream signaling (Shah et al. 2002). Addi-
tionally, the conformation of tyrosine kinase changes over
time due to mutation and made completely inaccessible
to imatinib (Mauro 2006; Shah et al. 2013; Le Coutre
et al. 2008; Steinberg 2007). BCR-ABL escalation at the
genomic level has been associated with imatinib and other
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kinase inhibitors’ failure (Eadie et al. 2018). This fail-
ure may overcome by targeting specific protein instead of
BCR-ABL (Druker et al. 2001). The effects of imatinib on
a number of tyrosine kinases depicted in Fig. 1 (Szklarc-
zyk et al. 2015).

Proto-oncogene tyrosine-protein kinase (KIT), Abelson
(ABL2), Colony-stimulating factor 1 receptor (CSFIR),
Lymphocyte-specific protein tyrosine kinase (LCK), Plate-
let-derived growth factor receptors A (PDGFRA), Platelet-
derived growth factor receptors B (PDGFRB) are the nota-
ble target of interests which are further divided into two
categories. Receptor protein kinase including BCR-ABL,
ABL2, KIT, a CSFIR kinase domain and Non-Receptor
protein kinase including PDGFRA, PDGFRB, LCK kinase
domain (Rask-Andersen et al. 2014). Imatinib exhibited
increased activity toward ABL. However, activity against
PDGFR, KIT, and LCK never performed before. Thus,
screening new inhibitors by targeting all these proteins
may reveal a new, wider possibility for the management
of CML.

Biologically active molecules were screened out from
kinase database and further subjected to molecular dock-
ing, ADMET profiling, and molecular dynamics simula-
tion in search of new inhibitor that could provide better
affinity than imatinib (Quintas-Cardama et al. 2007; Gold-
man and Melo 2003; Krieger and Vriend 2014).

Non Targeted
Proteins

Materials and method
Selection and preparation of proteins

Targeted proteins had carefully chosen from the stitch data-
base and SwissTargetPrediction web server. Crystal struc-
ture of proteins were retrieved from PDB is ABL1, ABL2,
CSFIR, KIT, LCK, PDGFRA, PDGFRB, and their corre-
sponding PDB IDs are 4WA9, 3GVU, 211 M, 4U0I, 2PLO,
5K5X and 3MJG. Ligand and water molecules removed
using pymol. Missing residues were corrected using MOE
(Molecular Operating Environment) protein preparation
wizard. The bound Zn** and CI~ ions removed and bond
orders were determined. Proteins preparation performed by
adding polar hydrogens and Gasteiger charge using Auto
Dock Tool 1.5.6.

Binding site prediction

MetaPocket 2.0 has been used to predict the top three bind-
ing cavities of ABL2, CSFI1R, KIT, LCK, PDGFRA, and
PDGFRB proteins (Huang 2009). The accuracy of predict-
ing binding pockets enhanced by means of the LIGSITE.
Z-score evaluated to select the top binding cavities. Desired
bioactive molecules had docked with the first pocket of
the protein. In order to validate the pockets of the protein

Target of
interests

Fig. 1 Numerous targeted proteins for imatinib which were generated by STITCH server
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obtained from MetaPocket, data compared with the CASTp
server (Dundas et al. 2006).

Virtual screening and preparation of ligand
molecules

Ligand-based virtual screening was carried out using a
kinase database comprising 177,000 molecules (biological
activity < 10 uM) and kinase inhibitor (ChEMBL) database.
About 135 compounds were screened out which were closely
similar to imatinib based on the cut-off value of above 80%.
Selected structures downloaded from the PubChem data-
base and prepared for docking studies. Polar hydrogen and
Gasteiger charge added using Auto Dock Tool 1.5.6., and
the energy of candidates minimized for docking purposes.

Molecular docking

135 bioactive molecules subjected for consensus docking
studies using the AutoDock, Achilles, Mcule server (Morris
et al. 1996; Nagasundaram et al. 2015; Pettersen et al. 2004;
Hassan et al. 2017). The docking program calculated ener-
gies to obtain the best binding mode. Based on the binding
energies better than Imatinib, 22 molecules had sorted out
for further ADME/T profiling.

ADMET prediction

SwissADME, AdmetSAR, and DruLiTo tool were used to
predict the topological polar surface area (TPSA), rotatable
bonds, H-bond acceptors, H-bond donors, fraction Csp3
from physicochemical properties, iLOGP, WLOGP for
lipophilicity, ESOL Class for solubility, Pharmacokinet-
ics profile, Lipinski rule of 5, druglikeliness, AMES tox-
icity, carcinogenicity and acute oral toxicity. Finally, after
ADME/T screening, four molecules passed all the criteria
and selected as the top hits for molecular simulation study
and multi-target analysis with ABL2, CSFIR, KIT, LCK,
PDGFRA, and PDGFRB.

Molecular dynamics (MD) simulation
of the complexes

ABL1 complexed with the top hits were subjected to MD
simulation using YASARA in Windows 64-bit operating
system (Krieger and Vriend 2015; Mitra and Dash 2018).
Each complex cleaned and hydrogen bond network had
optimized. Refinement of these complexes performed with
subsequent relaxation by steepest descent minimization and
subjected for full potential energy minimization for 5000
cycles until convergence reached. After that complexes were
set for simulation annealing minimization to adapt with
deleted water (Isa et al. 2018; Mandlik and Singh 2016;

Jakalian et al. 2002; Pascoini et al. 2018). At constant pres-
sure, MD simulation of these complexes had carried out
for a period of 50 ns. Force field parameters for the com-
plexes obtained by using the AMBER force field (Krieger
et al. 2002, 2006; Dickson et al. 2014). The complexes had
placed in a cubic box and filled with transferable intermo-
lecular potential 3P (TIP3P) water molecules (Skelton et al.
2011). All simulations had performed at 298 K under certain
periodic boundary conditions. The pH set to 7.4 and 0.9%
NaCl had maintained. Time step had used with force cut-off
8 A. Solvent density assigned for 0.997 g/ml. Each simu-
lation system consisted of 29,400 + 140 atoms. Using the
YASARA structure built-in macros the resulting trajectories
subjected to analyze the stability. To understand the relative
stability of the ligand inside its binding pocket, hydrogen
bonds between the solute and solvent analyzed. For further
experimental validation, the radius of gyration (Rg) of the
solute, RMSD and RMSF of the ligand bound protein had
generated (Krieger and Vriend 2015; Krieger et al. 2002;
Maier et al. 2015; Stewart 1990; Wang et al. 2004; Meng
et al. 2011; Sanchez-Linares et al. 2012).

Result and discussion
Consensus docking of bioactive ligands

In this study, consensus docking had performed to find out
the best scores possible from 135 bioactive molecules obtain
from the PubChem database. Consensus binding energies of
22 molecules showed in Table 1 and Fig. 2.

Results of Lipinski’s rule, and Veber filter demonstrated
in Table 2A&B. These consensus-binding scores had com-
pared with imatinib and presented in Fig. 3. 22 bioactive
molecule and ABL1 protein residual interactions showed
in Table 3.

ADMET analysis

The 22 compounds selected for further analysis to predict
the ADME/T parameter, such as, predict physicochemi-
cal descriptors, drug likeliness, and toxicity. Two servers
had used to calculate the important information required to
validate the selected bioactive ligands. The results achieved
from the two servers listed in Table 4.

According to the results, GI absorption of all molecules
was high. TPSA is an important interpreter for BBB penetra-
tion. The standard acceptable range of TPSA is from 90 to
140. If the TPSA value is less than 90 then it has the possi-
bility to cross BBB. Boiled egg from SwissADME for all the
molecules had analyzed. The boiled egg rendered according
to WLOGP vs TPSA. This graphical representation illus-
trated that molecules, which presented in the yellow portion,
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Table 1 Consensus binding ABL1

affinities of 22 bioactive

molecules with ABL1 PubChem ID AutoDock Chimera Achilles Mcule

affinity (kcal/mol) affinity (kcal/mol) affinity (kcal/mol) affinity
(kcal/
mol)

4369496 -9.8 -10.3 —11.1 -8.6
25128185 -9.2 -9.7 —11.2 -89
24848331 -9.5 -94 —11.2 -89
24971209 -9.6 -9.7 —10.8 -8
10110378 -94 —-10.4 -11.3 -8.7
73353596 -10.1 -9.7 -11.3 -9.6
2931814 -9.3 -9.3 —-11.3 -8.3
72724706 -9.8 -10.5 —10.6 -74
10181160 -10.9 -10.6 —-11.8 -83
25125902 -9.2 -9.3 -10.8 -9.7
51351018 -10.2 -104 —-11.2 -8.6
25125572 -10.5 -10.7 —-11.2 -9
46231494 -10.1 -10.1 -10.8 -89
9822042 -84 -9.8 -10.2 -8.5
10111108 -9.1 -10 -104 -84
10181075 -8.7 -94 -10.3 -85
24970384 -9.8 -8.6 -9 —-8.8
25235817 -94 -8.6 -9.6 -85
44273619 -8.6 -8.7 -8.6 -8.9
44340691 -8.8 -9.6 -10 -7.6
51351016 -8.6 -85 -10.1 -85
58172700 -10.6 -93 -10.2 -92

The chart showing consensus ( Autodock, Chimera, Achilles, Mcule) docking score of 22 molecules
m AutoDock Affinity(kcal/mol) = Chimera Affinity(kcal/mol) = Achilles Affinity(kcal/mol) = Mcule Affinity(kcal/mol)

-10

14

Fig.2 The chart showing consensus (Autodock, Chimera, Achilles, Mcule) docking score of 22 molecules
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Table 2 molecules under A B
Lipinski’s rule (A) and
molecules under Veber filter (B) Lipinski’s rule Veber filter
S/N Title MW HBA HBD S/IN Title nRB TPSA
1 2931814 423.21 6 0 1 2931814 5 60.63
2 4369496 479.24 8 2 2 4369496 8 84.69
3 9822042 395.17 6 2 3 9822042 6 78.21
4 10110378 381.16 6 2 4 10110378 6 78.21
5 10111108 392.14 7 2 5 10111108 6 102
6 10181075 429.14 6 2 6 10181075 7 78.21
7 10181160 431.17 6 2 7 10181160 6 78.21
8 24848331 494.27 7 3 8 24848331 8 85.89
9 24970384 481.26 8 3 9 24970384 8 84.36
10 24971209 467.24 8 3 10 24971209 8 84.36
11 25125572 464.2 8 3 11 25125572 9 107.31
12 25125902 486.16 8 3 12 25125902 9 107.31
13 25128185 518.17 8 3 13 25128185 10 107.31
14 25235817 493.26 8 2 14 25235817 8 84.69
15 44273619 485.19 7 1 15 44273619 8 86.49
16 44340691 382.15 7 3 16 44340691 6 104.23
17 46231494 478.25 7 1 17 46231494 8 72.66
18 51351016 410.19 7 3 18 51351016 7 104.23
19 51351018 478.21 8 3 19 51351018 10 107.31
20 58172700 475.21 8 2 20 58172700 7 93.81
21 72724706 409.19 6 2 21 72724706 6 78.21
22 73353596 472.2 7 3 22 73353596 104.23
Fig.3 Consensus (Autodock, -8.2
Chimera, Achilles, Mcule)
docking score of Imatinib
-8.4
-8.6
-8.6
-8.8
-8.8
9
-9
9.2
9.3
9.4
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Table 3 Residual interaction results of ABL1 with 22 bioactive molecules

S/N PubChem code Interacting residues

Distance

Co-ordinates

Other weak residual Interactions

1 4369496 H bond:
ARG A:386
TYR A:393

C-H bond: ALA A:397

2 10181160 H bond:
ASP A:381
PHE A:382

C-H bond: LEU A:384

3 25125572 H Bond:
ASP A:381

PHE A:382

4 46231494 C-H Bond:

THR A:306

5 51351018 H Bond:
TYR B:253

MET B:318

C-H Bond: THR B:272

6 58172700 H Bond:

MET B:318

7 72724706

8 73353596 H Bond:
PHE A:382
ASP A:381

VAL A:299

2.18 A
274 A
1.96 A
3.54 A

223A
2.54 A
3.58 A

249 A
229A

3.53A

23A
275A3.77A

223A

227A276 A2.38 A

12.4108,
137.806,
31.0749

22.0183,
129.415,
24.6427

22.3764,
129.193,
24.1285

24.432,
133.221,
20.6791

11.3954,
159.638,
38.4229

11.6348,
159.739,
37.1487

22.8233,
129.394,
23.1002

24.9059,
127.344,
19.6449

Pi-Alkyl: LEU B:376, HIS A:396; Van Der
Waals: PHE A:359, LEU A:384, ARG
A:362, SER A:385, MET A:388, TYR
B:342, ASN B:374 GLU B:373, GLY
B:372, THR B: 319, PHE B:317, LEU
B:266, THR B:267

Pi Sigma: LEU A:384; Pi Pi T Shaped:
PHE A:359, TYR A:253; Alkyl: LEU
A:301; Pi Alkyl: VAL A:256, ALA
A:269, LYS A:271, LEU A:370, ILE
A:301, ARG A:386, ALA A:380; Van
Der Waals: GLY A:383, SER A:385,
THR A:315, VAL A:299, GLU A:292,
ILE A:293

Pi Pi T Shaped: PHE A:359, PHE A:282;
Alkyl: LEU A:301; Pi Alkyl: ILE A:313,
ARG A:386, LYS A:271, VAL A:299,
ALA A:380, LEU A:384; Van Der Waals:
ILE A:293, GLU A:292, SER A:385,
GLY A:383, THR A:315, LEU A:370,
TYR A:253, GLY A:321, ALA A:269,
VAL A:256

Pi Sigma: THR A:315, ASP A:381; Pi
Pi Stacked: PHE A:382; Pi Alkyl: LEU
A:370, ALA A:380, LEU A:301, ILE
A:313, LYS A:271; Van Der Waals: VAL
A:299, TYR A:253, ASN A:368, LYS
A:305, PRO A:309

Pi Pi Stacked: PHE B:382; Alkyl: LEU
B:248; Pi Alkyl: VAL B:256, ALA
B:380, LYS B:271, TYR B:253; Van Der
Waals: GLY B:321, PHE B:317, GLU
B:316, ALA B:269, LEU B:370, GLU
B:255, PHE B:283, GLY B:254, ASN
B:368

Pi Sigma: LEU B:248, LEU B:370; Pi Pi
Stacked: PHE B:382, PHE B:317; PiPi T
Shaped: TYR B:253; Alkyl: LEU B:370,
ALA B:380; Pi Alkyl: ALA B:380, ALA
B:269, VAL B:256, LYS B:271, TYR
B:253, PHE B:283; Van Der Waals: GLU
B:286, GLY B:321, GLU B:316, THR
B:315, GLU B:255, GLY B:254, ASN
B:368

Pi Sigma: ILE A:313, PHE A:382; Alkyl:
LYS A:271, ALA A:269, VAL A:256,
ALA A:380; Pi Alkyl: LEU A:384, LEU
A:301, TYR A:253, LEU A:370, LYS
A:271, ALA A:269, VAL A:256; Van
Der Waals: PHE A:359, ILE A:293, SER
A:385, ASP A:381, VAL A:299, THR
A:315

Pi Sigma: LEU A:248, LEU A:301; Pi
Pi Stacked: PHE A:317; Pi Alkyl: VAL
A:256, ALA A:269, LEU A:370, LYS
A:271, ALA A:380, ILE A:313; Van Der
Waals: THR A:319, GLY A:249, GLY
A:321, MET A:318, TYR A:253, THR
A:315, GLN A:300, GLU A:292
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Table 3 (continued)

S/N PubChem code Interacting residues

Distance

Co-ordinates

Other weak residual Interactions

H Bond:

TYR B:342
LYS B:378
C-H Bond:
PRO B:296

9 2931814

10 9822042 H Bond:

MET A:318

11 10110378 C-H Bond:

VAL A:299

12 10111108 H Bond:
ASP A:381

PHE A:382

13 10181075 H Bond:
ASP A:381

PHE A:382

14 24848331 H Bond:
TYR B:342
TYR A:393

PHE B:317

C-H Bond: GLU B:316

15 24970384

16 24971209 H Bond:
GLU B:329
C-H Bond:

MET B:318

C-H Bond: TYR A:320

284 A276 A2.60 A3.39A

2.04 A

351 A

2.19A2.09 A

281A2.18 A

2434
195A 1.86 A 345 A

352 A

3.05A
327A
348 A

16.6548,
138.949,
34.596

23.8282,
130.107,
18.6372

24.5197,
127.861,
19.1718

21.8154,
130.092,
24.3853

21.6552,
130.108,
24.4275

13.1905,
139.735,
33.2445

24.807,
126.103,
13.0557

Pi Sigma: LEU B:376, PRO B:296; Amide
Pi Stacked: HIS B:295; Pi Pi T Shaped:
TYR B:342; Alkyl: PRO B:296; Pi
Alkyl: MET A:388; Van Der Waals: GLU
B:373, ASN B:374, TYR A:393, GLN
B:300, LYS B:294, GLN B:346, HIS
B:490, ASN B:297, SER B:349, THR
B:345

Pi Sigma: ALA A:269, LEU A:370, PHE
A:382, ILE A:313; Pi Pi Stacked: PHE
A:382; Pi Pi T Shaped: TYR A:253;
Alkyl: VAL A:299; Pi Alkyl: VAL
A:256, ALA A:380, LYS A:271; Van Der
Waals: LEU A:248, GLY A:254, PHE
A:317, GLU A:316, THR A:315, ASP
A:381

Pi Sigma: ASP A:381, THR A:315; Pi Pi
Stacked: PHE A:317; Pi Pi T Shaped:
TYR A:253; Alkyl: LEU A:248; Pi
Alkyl: ILE A:313, LEU A:301, ALA
A:380, LYS A:271, LEU A:370, VAL
A:256, ALA A:269; PHE A:382, MET
A:318, GLY A:321

Pi Alkyl: LEU A:384, ALA A:380, VAL
A:299, LYS A:271, LEU A:301, ILE
A:313; Van Der Waals: TYR A:253, LEU
A:370, VAL A:256, ALA A:269, THR
A:315, PHE A:359, ARG A:386, SER
A:385

Pi Sigma: LEU A:301, TYR A:253; PiPi T
Shaped: PHE A:382; Alkyl: ALA A:269;
Pi Alkyl: LYS A:271, VAL A:299, ALA
A:380, ILE A:313; Van Der Waals: GLY
A:383, LEU A:384, SER A:385, ARG
A:386, LEU A:370, PHE A:359, ARG
A:362, VAL A:256, THR A:315

Pi Donor H Bond: ASN B:297 (2.81,3;),
GLU B:373 (2,751&); Alkyl: MET A:388;
Pi Alkyl: LEU B:376; Van Der Waals:
SER B:349, HIS B:490, THR B:345,
GLN B:346, PRO B:296, ARG A:386,
ASN B:374, HIS A:396, GLY B:372,
THR B:319, MET B:318, LEU B:266

Pi Sigma: LEU A:348, LEU A:370; Pi Pi
Stacked: TYR A:253, PHE A:382; Pi
Alkyl: LYS A:271, ALA A:380, ALA
A:269, VAL A:256; Van Der Waals: ASN
A:368, ILE A:313, THR A:315, MET
A:318, GLY A:321, PHE A:317, GLU
A:329, GLY A:254, GLY A:249, THR
A:319

0.945508, 147.724, Pi Sigma: LEU B:248; Pi Pi Stacked: PHE

35.9714

B:317; Pi Pi T Shaped: TYR B:253,
TYR B:320; Pi Alkyl: ALA B:269, LEU
B:320, TYR B:320, LEU B:248; Van Der
Waals: GLY B:321, ASN B:322, GLY
B:249, GLN B:252, ASP B:325, TYR
B:326, CYS B:330, GLU B:334, ASN
B:331
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Table 3 (continued)

S/N PubChem code Interacting residues Distance Co-ordinates Other weak residual Interactions
17 25125902 H Bond: ASPA:381 2.73 A 19.1007, Alkyl: ARG A:386; Pi Alkyl: MET A:388,
PHE A:382 228 A 131.285, LEU A:301, PHE A:359; Van Der Waals:
ARG A:386 2.08 A 28.5898 GLU A:292, TYR A:393, TYR B:342,
SER A:385, LEU A:384, ALA A:380,
ILE A:313,LYS A:271
18 25128185 H Bond: 255A222A253A 22.1084, Pi Pi T Shaped: PHE A:359, PHE A:382;
PHE A:382 253 A 129.295, Alkyl: LYS A:271; Pi Alkyl: VAL A:299,
ASP A:381 23.8136 ILE A:313, ALA A:380, ARG:386, TYR
ARG A:386 A:253; Van Der Waals: LEU A:370, VAL
C-H Bond: LEU A:384 A:256, ALA A:269, THR A:315, LEU
A:301, GLY A:383, SER A:385, GLU
A:292, ILE A:293
19 25235817 H Bond: 247 A 22.5461, Pi Sigma: LEU A:301; Pi Pi Stacked: PHE
ARG A:386 338 A 129.631, A:382; Alkyl: LEU A:301, LEU A:370,
C-H Bond: SER A:385 23.8361 VAL A:256, LYS A:271; Pi Alkyl: LEU
A:384, ILE A:313, ALA A:380, TYR
A:253; Van Der Waals: PHE A:359, ILE
A:293, GLU A:292, VAL A:304, ASP
A:381, VAL A:299, THR A:315, ALA
A:269
20 44273619 C-H bond: 332 A 22.2102, Pi Sigma: THR A:315; Pi Pi T Stacked:
ASP A:381 3.54 A 129.833, TYR A:253; Alkyl: ILE A:313; Pi Alkyl:
PHE A:382 22.8799 ALA A:380, ALA A:269, VAL A:299,
LYS A:271, LEU A:384, ILE A:313; Van
Der Waals: ASN A:368, GLY A:383, ILE
A:293, PHE A:359, GLU A:292, LEU
A:301, VAL A:256, LEU A:370
21 44340691 H bond: 223A191 A 11.7928, Pi Sigma: LEU B:370, LEU B:248; Pi Pi
MET B:318 158.454, Stacked: PHE B:317, PHE B:382; Pi Pi
THR B:272 36.3231 T Shaped: TYR B:253; Pi Alkyl: VAL
B:299, VAL B:256, ALA B:380, LEU
B:370, ALA B:269, LYS B:271; Van Der
Waals: GLU B:255, PHE B:283, LEU
B:273, GLY B:254, GLY B:321, THR
B:315
22 51351016 H bond: 2.96 A 23.499, Pi Donor H bond: GLY A:254 (3.2410\);
MET A:318 130.108, Pi Sigma: ILE A:313, PHE A:382, LEU
18.5412 A:370; Pi-Pi T Shaped: TYR A:253;

Pi—Pi Stacked: PHE A:382; Pi Alkyl:
ALA A:269, VAL A:256, LYS A: 271,
ILE A:313, PHE A:382; Van Der Waals:
GLY A:321, PHE A:317, LEU A:248,
VAL A:299, THR A:315, ALA A:380,
ASP A:381

literally can penetrate the blood-brain barrier (BBB). Red
and blue colored dots (molecules) indicated PGP positive
or PGP negative. Blue colored molecules have the possi-
bility to efflux by PGP positive and red-colored molecules
cannot efflux. According to TPSA score from Boiled egg
analysis, PCID 9822042, PCID 10110378, PCID 10181075,
PCID 24970384, PCID 25235817, PCID 44273619, PCID

@ Springer

2931814 and PCID 46291494 molecules were BBB perme-
ate positive and dropped out. Based on ESOL LogS scale
all molecules were within —4.2 to —5.97, which exhibited
normal water solubility. All molecules were within range
(from — 0.4 to 5.6) of MLogP except PCID 24848331, which
showed — 1.53. Log Kp (the skin permeability coefficient) of
all molecules were ranging from — 5.3 cm/s to —7.02 cm/s.
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Fig.4 Boiled egg analysis from SwissADME for 22 bioactive molecules

The more negative the log kp, the less skin permeate was
the molecule. Based on Log Kp, PCID 24971209 dropped
out. According to a carcinogen and AMES toxicity profile,
PCID 25128185, PCID 10111108, PCID 25125572 and
PCID 25125902 molecules showed positive toxicity signs
and dropped out.

According to acute oral toxicity (Level I Fatal if swal-
lowed, Level II Fatal if swallowed, Level III Toxic if swal-
lowed, Level IV Harmful if swallowed, Level V may be
Harmful if swallowed), PCID 44340691, PCID 51351016,
PCID 51351018 and PCID 73353596 were dropped out as
they had shown Level II toxicity.

According to the synthetic accessibility profile (SA score
1 means very easy to synthesize and 10 means very diffi-
cult to synthesize), PGP Substrate profile, and TPSA value
from boiled egg analysis and considering other parameters,
PCID 4369496, PCID 10181160, PCID 58172700 and PCID
72724706 had fulfilled all of the requirements of ADMET.
The ADMET data (Boiled egg analysis from SwissADME)
of 22 molecules presented in Fig. 4 and the structure of the
selected four molecules showed in Fig. 5.

@ Springer

Multi-target analysis

Though ABLI1 is the key target for CML, there are other
proteins CSFIR, KIT, LCK, ABL2, PDGFRA, and PDG-
FRB, which could be also important target to combat CML.
After ADMET analysis, PCID 72724706, PCID 10181160,
PCID 4369496 and PCID 58172700 bioactive molecules
found as potential hit molecules. Consensus docking scores
of imatinib and hits with the CSFIR, KIT, LCK, ABL2,
PDGFRA, and PDGFRB illustrated in Figs. 6 and 3D & 2D
interaction of selected four molecules with ABL1 presented
in Fig. 7.

Molecular dynamics simulation study

The protein ABLI is an important drug target in the treat-
ment of CML. To account for the flexibility of the protein
and selected four ligands, a 50 ns molecular dynamics
simulation of the docked complexes carried out. Four main
parameters analyzed throughout the simulations, which
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Fig.5 Structures of desired four molecules (a) PCID 4369496, b 10181160, ¢ PCID 58172700 and d PCID 72724706

were Root Mean Square Deviation (RMSD) and Root Mean
Square Fluctuations (RMSF), Radius of gyration of the
complexes.

Root mean square deviation (RMSD)

The stability of the complexes found validated by calculating
the root mean square deviation. The RMSD value showed

in Fig. 8 and in which observed range up to 6.5 A showing
that the systems are well converged. —PCID 4369496 was
stable up to 34 ns then deviated. PCID 10181160 became
stable after 23 ns, PCID 58172700 remained stable from 8 ns
to 43 ns then deviation occurred. PCID 72724706 stabilized
after 33 ns. PCID 10181160 and PCID 72724706 showed
greater stability than the rest two.
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Fig.6 Consensus docking scores of top 4 bioactive molecules and imatinib with ABL2 (a), CSFIR (b), KIT (c), LCK (d), PDGFRA (e) and
PDGFRB (f)

Root mean square fluctuation (RMSF) fluctuated most in the entire simulation period. The over-
all fluctuations of the RMSF of the ligands found from a

The root mean square fluctuation evident in Fig. 9. On  range of 1-14 A throughout the simulation. The average
this plot, peaks demonstrate the areas of the protein that ~ RMSF values for the generated molecules achieved 13.07 A
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Fig.7 3D and 2D interaction diagram of PCID 4369496 (a, b), PCID 10181160 (¢, d), PCID 58172700 (e, f), PCID 72724706 (g, h) with ABL1
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(D)

Fig.8 RMSD of the ABL1 with ligand PCID 4369496 (a), PCID 10181160 (b), PCID 58172700 (¢) and PCID 72724706 (d)

(PCID 4369496), 11.65 A (PCID 10181160), 6.08 A (PCID  The radius of gyration (R,)
58172700) and 5.78 A (PCID 72724706) in which the pro-

tein flexibility had conferred. The radius of gyration shows the compactness of protein and
protein—ligand complex i.e., how much protein is folded or

@ Springer
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Fig. 9 RMSF data for each complex

unfolded with or without ligand. From Fig. 10, it had found
that the radius of gyration of the molecules is constant over
time and maintained the same mean value of 21.0+0.5 A.
However, the oscillations were greater for PCID 4369496. R,
may suggest that this molecule was less stable than the rest.
From the overall molecular dynamic study, these two com-
pounds PCID 10181160 and PCID 72724706 formed stable
complexes with ABL1 during 50-ns MD simulations.

Conclusion

The present, in silico studies, provides insight into the inhi-
bition of ABL1, ABL2, CSFIR, KIT, LCK, PDGFRA, and
PDGFRB by imatinib and its bioactive molecules. Virtual

548
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- » w AN o o ~ )
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372 388 404 420 436 452 468 484 500 516 532 541
Residue number

D)

b L L s s L L
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screening, Consensus docking studies, Multi-target analysis,
and ADMET profiling suggest that PCID 4369496, PCID
10181160, PCID 58172700, and PCID 72724706, among
22 bioactive molecules from 135 bioactive molecules with
the best docking scores than imatinib from a database of
1,77,000 molecules, are the most active inhibitors. These
four molecules further selected for molecular dynamics
(MD) simulation analysis, which revealed that the two com-
pounds PCID 10181160 and PCID 72724706 formed stable
complexes with ABL1 during 50-ns MD simulations. These
lead molecules are the potential CML inhibitors that could
resolve the resistance pattern. Further chemical synthesis,
wet lab analysis, and experimental validation deserve the
utmost attention.
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Fig. 10 Radius of gyration of ABL1 with four selected molecules
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