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Abstract

« Key message Below-crown hydraulic resistance, a proxy for below-ground hydraulic resistance, increased during
drought in Scots pine, but larger increases were not associated to drought-induced defoliation. Accounting for variable
below-ground hydraulic conductance in response to drought may be needed for accurate predictions of forest water
fluxes and drought responses in xeric forests.

+ Context Hydraulic deterioration is an important trigger of drought-induced tree mortality. However, the role of below-ground
hydraulic constraints remains largely unknown.

« Aims We investigated the association between drought-induced defoliation and seasonal dynamics of below-crown hydraulic
resistance (a proxy for below-ground hydraulic resistance), associated to variations in water supply and demand in a field
population of Scots pine (Pinus sylvestris L.)

+ Methods Below-crown hydraulic resistance (ry,.) of defoliated and non-defoliated pines was obtained from the relationship
between maximum leaf-specific sap flow rates and maximum stem pressure difference estimated from xylem radius variations.
The percent contribution of 7. to whole-tree hydraulic resistance (%r,.) was calculated by comparing stem water potential
variations with the water potential difference between the leaves and the soil.

* Results ry. and %r, increased with drought in both defoliated and non-defoliated pines. However, non-defoliated trees showed
larger increases in ry,. between spring and summer. The difference between defoliation classes is unexplained by differences in
root embolism, and it is possibly related to seasonal changes in other properties of the roots and the soil-root interface.

« Conclusion Our results highlight the importance of increasing below-ground hydraulic constraints during summer drought but
do not clearly link drought-induced defoliation with severe below-ground hydraulic impairment in Scots pine.
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Drought is a major driver of the composition, function and
dynamics of forests worldwide (Allen et al. 2015).
Anthropogenic global warming has amplified drought and
heat stress conditions in the last decades (Trenberth et al.
2014), increasing background mortality rates and triggering
widespread tree die-off episodes after extreme droughts
(Allen et al. 2010; Young et al. 2017), which may cause pro-
found changes in ecosystem structure and function (Anderegg
et al. 2013). Over a decade of research on the physiological
mechanisms of drought-induced tree mortality, McDowell
et al. (2008), McDowell (2011) and Sala et al. (2010) has
revealed that drought-exposed trees rarely die of a single cause
(hydraulic failure, carbon starvation or phloem impairment)
(Mencuccini et al. 2015; Sevanto et al. 2014), precluding
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robust predictions of vegetation mortality. Although hydraulic
traits may be good predictors of drought vulnerability
(Anderegg et al. 2015, 2016) and hydraulic failure is usually
involved in drought-induced tree death processes (Adams
et al. 2017), lethal physiological thresholds have proved diffi-
cult to determine. These thresholds are organ-specific (Bartlett
et al. 2016), and it is still unclear which part of the plant’s
hydraulic pathway is more vulnerable to hydraulic failure dur-
ing extreme drought under field conditions (Anderegg et al.
2014; Bartlett et al. 2016).

Our understanding of hydraulic failure during extreme
drought is largely based on processes occurring in above-
ground organs, mostly stems. For example, a recent synthesis
of experiments on physiological mechanisms of drought-
induced mortality only included stem hydraulics (Adams
et al. 2017). However, below-ground hydraulic processes
may have a strong influence on whole-tree hydraulic dynam-
ics and tree survival because (1) spatial patterns of die-off are
often associated with variability in soil conditions (Lloret et al.
2004; Peterman et al. 2012; Vila-Cabrera et al. 2013; but see
Dorman et al. 2015) or rooting depth patterns across species
(Nardini et al. 2016), (2) roots are usually more vulnerable to
embolism than stems (Hacke et al. 2000; Martinez-Vilalta
et al. 2002; Johnson et al. 2016) and (3) incorporating topo-
graphically mediated soil moisture often improves prediction
of drought-induced tree mortality (Tai et al. 2016).

Below-ground hydraulic resistance is typically around half
of whole-tree hydraulic resistance (Irvine and Grace 1997,
Running 1980), but its response to evaporative demand and
water supply is complex and remains poorly studied.
Increasing evaporative demand can reduce below-ground
(Martinez-Vilalta et al. 2007) and fine-root hydraulic resis-
tances (McElrone et al. 2007) of trees. On the other hand,
below-ground hydraulic resistance can become the main bot-
tleneck during edaphic drought as a result of root embolism
(Domec et al. 2009) or reductions in the hydraulic conduc-
tance of the soil-root interface, for example following hydrau-
lic disconnection from the soil (Sperry et al. 2002). This latter
process has been suggested to occur in dying pines under
extreme drought (Plaut et al. 2012). Nevertheless, it is not
known whether roots and the rhizosphere constitute the main
hydraulic bottleneck during drought-induced mortality
processes.

Drought-induced mortality in Scots pine (Pinus sylvestris
L.) is typically preceded by long-term growth declines lasting
decades and by years of canopy defoliation (Galiano et al.
2011; Heres et al. 2012). This defoliated stage is associated
with severely limited gas exchange and depleted carbohydrate
reserves (Aguadé et al. 2015a, b; Galiano et al. 2011; Poyatos
et al. 2013). Compared to non-defoliated pines, defoliated in-
dividuals show a steeper decline of whole-plant hydraulic con-
ductance, slightly lower predawn leaf water potentials (Poyatos
et al. 2013; Salmon et al. 2015) and steeper vulnerability to
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embolism in roots (Aguadé et al. 2015a). This collective evi-
dence suggests that impaired below-ground functioning may be
associated to the mortality process.

Assuming steady-state conditions, xylem radius variations,
combined with sap flow and leaf water potential measure-
ments, can be used to estimate the seasonal dynamics of hy-
draulic conductance in different components of the plant’s
hydraulic pathway (Martinez-Vilalta et al. 2007). Here, we
investigated the association between defoliation and drought
responses of below-ground hydraulic resistance in a Scots
pine population affected by drought-induced mortality
(Heres et al. 2012; Martinez-Vilalta and Pifiol 2002). Xylem
radius variations were measured below the living crown, as-
suming that bole resistance does not vary seasonally and that
the dynamics of below-crown hydraulic resistance () are
dominated by the below-ground component (Domec et al.
2009). Our main objective was to estimate 7, and its contri-
bution to whole-tree hydraulic resistance and to explore their
seasonal dynamics in declining Scots pines. We hypothesised
that (1) both r,. and its contribution to whole-tree hydraulic
resistance (%ry,.) will increase in summer in all trees studied
due to the higher vulnerability to embolism of roots and the
increase in resistance at the soil-root interface, and (2) the sum-
mer increase in 7y, will be more pronounced in defoliated pines.

Part of the results in this paper belongs to the PhD thesis by
David Aguadé (Aguadé Vidal 2016).

2 Materials and methods
2.1 Study site

Measurements were conducted in Tillar Valley within the
Poblet Forest Natural Reserve (Prades Mountains,
Northeastern Iberian Peninsula). The climate is
Mediterranean, with a mean annual rainfall of 664 mm (spring
and autumn being the rainiest seasons and with a marked
summer dry period) and moderately warm temperatures
(11.3 °C on average) (Poyatos et al. 2013). The substrate is
fractured schist, and soils are rocky Xerochrepts, relatively
shallow (~40 cm deep), with a clay loam texture (Barba
et al. 2016). The study area has a predominantly northern
aspect and steep slopes (35° on average).

The forest studied (41° 19" 58.05” N, 1° 0’ 52.26" E;
1015 m asl) consists of a mixed holm oak (Quercus ilex
L.)—Scots pine stand; the canopy is dominated by pines
whereas oaks dominate the understorey (Poyatos et al.
2013). As a consequence of several drought-induced mortality
episodes since the 1990s (Heres et al. 2012; Martinez-Vilalta
and Piflol 2002), Scots pine average standing mortality and
crown defoliation are currently 12% and 52%, respectively.
However, in some parts of the forest, standing mortality is >
20% and cumulative mortality is as high as 50% in the last
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20 years (J. Martinez-Vilalta, unpublished). The Scots pine
population studied is more than 150 years old and has
remained largely unmanaged for at least 30 years (Heres
et al. 2012). No major insect infestation episode was detected
that could explain the forest decline in the area (Mariano Rojo,
Catalan Forest Service, personal communication).

2.2 Experimental design

Between 2010 and 2013, several physiological variables were
measured in defoliated and non-defoliated Scots pine trees
growing together in the same population (Aguadé et al.
2015a, b; Poyatos et al. 2013; Salmon et al. 2015). In addition,
we also measured above-canopy meteorology and soil mois-
ture in the top 30 cm using a frequency domain reflectometer
(cf. Poyatos et al. 2013, for additional details). Defoliation was
visually estimated relative to a completely healthy tree in the
same population. A tree was considered as non-defoliated if
the percentage of green needles was > = 80% and defoliated if
the percentage of green needles was <=50%. Here, we use
the complete set of monitored trees to show the general pattern
in the seasonal dynamics of sap flow for defoliated and non-
defoliated trees, but we then focus on a subset of four
defoliated and four non-defoliated co-occurring Scots pine
trees in which sap flow, xylem radius variations and leaf water
potentials were measured concurrently between August 2011
and November 2012 (Table 3 in the Appendix).

2.3 Sap flow measurements

Measurements of sap flow density were conducted at 15-min
intervals using constant heat dissipation sensors (Granier
1985). The probes were inserted radially at breast height into
the xylem after removing the bark and covered with a reflec-
tive material to avoid solar radiation. Two sensors (north- and
south-facing side of the trunk) were placed in each tree and
averaged to account for an azimuthal variation of sap flow
within the trunk. Data processing of heat dissipation sensor
output included correction for natural temperature gradients in
the stem, and zero flow determination was based only on
nights with low and stable evaporative demand (Poyatos
etal. 2013). Sap flow density calculation in the outer sapwood
followed the original calibration (Granier 1985) and was then
integrated over the entire sapwood using radial profiles of sap
flow (six depths) measured in three trees using the heat field
deformation method (Nadezhdina 2018), during at least 7 days
per tree. This sap flow per unit sapwood area was expressed
on a leaf area basis (Jp ) after estimation of tree leaf area using
site-specific allometries for Scots pine and accounting for sea-
sonal variations of leaf area (see Poyatos et al. 2013 for
additional methodological details).

2.4 Water potential measurements

Predawn (Ypp, MPa; just before sunrise, 0300-0500 hours,
solar time) and midday (¥\ip, MPa; 1100-1300 hours, solar
time) leaf water potentials were measured once per month in
June, July, August and November in 2012. On each sampling
time, a sun-exposed twig from each tree was excised using a
pruning pole and stored immediately inside a plastic bag with
a moist paper towel to avoid water loss until measurement
time, typically within 2 h of sampling. Leaf water potentials
were measured using a pressure chamber (PMS Instruments,
Corvallis, OR, USA).

2.5 Xylem radius variations

Xylem radius variations were measured throughout the study
period using point dendrometers consisting of linear variable
displacement transducers (LVDTs; DG 2.5 Solartron
Metrology, West Sussex, UK). LVDTs were mounted on met-
al frames following the design by Sevanto et al. (2005b) with
some modifications. Briefly, the frame was held around the
bole, just below the living tree crown, by two metal plates that
were screwed ca. 20 cm above the measuring point. The frame
was made of aluminium, except for the two rods parallel to the
direction of the measured radius changes, which were made of
Invar, a nickel-iron alloy with a low thermal expansion coef-
ficient. Each frame held two LVDT sensors, placed ca. 30 mm
apart from each other: one measured over bark radius changes
(not used here) and the other one measured xylem radius
changes (i.e. the sensor measuring tip was in contact with
the xylem, since bark, phloem and cambium were removed
before the installation). We used xylem radius changes be-
cause they have been successfully used to estimate stem water
potentials in Scots pine (Irvine and Grace 1997; Martinez-Vilalta
et al. 2007) and because they are more suitable to monitor
changes in water potential than whole-stem radius changes
(Offenthaler et al. 2001). LVDT measurements were taken every
30 s, and the average values were stored every 15 min in a
datalogger (CR1000, Campbell Scientific, Inc., Logan, USA).
Since natural expansion and contraction of the metal frame and
sapwood occurs due to changes in air temperature, frame and
sapwood temperatures were measured using thermocouples. We
used these temperatures to account for thermal expansion of the
frame and the sapwood using the linear expansion coefficients
for the Invar rods (1.2 107 Kﬁl) and for Scots pine wood
(7.9 x 107° K; Sevanto et al. 2005a).

2.6 Estimation of stem water potential

We used within-day xylem radius variations to estimate
changes in below-crown stem water potential. We first calcu-
lated the difference between the maximum stem radius within
a day, which corresponds to the minimum shrinkage, and the
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instantaneous measurements of the xylem radius. This below-
crown xylem radius difference (AR, mm) quantifies the in-
stantaneous shrinkage compared to maximum swelling condi-
tions within a day. We then used ARy, to calculate the corre-
sponding water pressure difference (AP, MPa) by dividing
ARy by the sapwood depth (Ry, sw, mm) and multiplying it by
the radial modulus of elasticity of wood (£,, MPa) following
the equation (Irvine and Grace 1997)

ARy,

be,sw

APy = E;

(1)

We can assume that the osmotic potential in xylem sap is
very low and relatively constant over time, and therefore, wa-
ter pressure in the xylem can be used to estimate xylem water
potential (Irvine and Grace 1997). APy, is thus equivalent to
the difference between water potential at the LVDT location
(under the living crown) and the soil, assuming that the xylem
water potential under conditions of maximum swelling was in
equilibrium with the soil.

We did not measure E. for the trees in our study. A literature
survey showed that values of E, for Scots pine are variable
across trees and populations, with reported average values
ranging between 150 and 750 MPa (Irvine and Grace 1997,
Mencuccini et al. 1997; Peramaki et al. 2001). Given this
variability and the fact that applying literature values of E to
estimate xylem pressure dynamics can be problematic
(Sevanto et al. 2008), we applied a value of £, (180 MPa) so
that the maximum percentage of below-crown resistance to
whole-tree hydraulic resistance (%ry,) observed during sum-
mer (see next section) was 100%. This assumption is justified
on the grounds that, under extreme drought conditions, it is
expected that most of the hydraulic resistance is found below
ground (Domec et al. 2009; Duursma et al. 2008; Sperry et al.
2002). While this assumption should not affect the relative
values of %r,. over time or between trees, the absolute %r,.
values reported here are subject to high uncertainty and have
to be considered with caution.

Sapwood radius was measured below the living crown, at
each LVDT location. We extracted wood cores with a Pressler
borer, put them in paper bags and stored them in a portable
cooler. Samples were then coloured with bromocresol green in
the laboratory to distinguish between sapwood and heartwood
and measure their length.

2.7 Below-crown hydraulic resistance

We used the maximum daily values of sap flow per unit leaf
area (JL max> K8 m 2 sfl) and stem pressure difference
(APpc.max» MPa) to calculate the below-crown hydraulic resis-
tance (7., MPa kgf1 m’s)

o AP bc,max

= = bomax 2
Tbe JLA,max ( )
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The percent contribution of below-crown resistance to
whole-tree hydraulic resistance (%ry,.) was calculated by com-
paring the water pressure difference (APy.) measured with
LVDTs and the leaf water potential difference (Av); 1np mi-
nus 1pp) when both measurements were taken on the same
day (Irvine and Grace 1997)

APbc
A

We assumed that pines reached equilibrium with the
soil during night, and as a consequence, {pp is an esti-
mate of soil water potential (Irvine et al. 2004), which
corresponded to the maximum stem radius within a day.
Two pieces of evidence suggest that this assumption was
not critical in our case (comparison of temporal dynamics
and drought responses between defoliation classes). First,
we quantified night-time sap flow per unit leaf area
(JLnight» global radiation <5 W m ?) for the winter and
spring periods only and expressed it as a percentage of
daytime flow; the calculations for summer were not used
because daytime flows were very low and dividing two
low flows sometimes yielded unreasonable values.
Median values of percentage Ji nighe Were 10% for
defoliated and 6% for non-defoliated trees and did not
differ between classes (P =0.182). Second, we modelled
Toe as a function of Jy niene interacting with defoliation
class, and no effect of either Ji nighe (P=0.454) or its
interaction with defoliation class (P = 0.389) was detected.

Roroe = - 100 (3)

2.8 Data analysis

The analyses of APy, 1, and Jp need sap flow and xylem
radius variations data measured simultaneously. However, due
to technical problems mostly related to power failures due to
the remote location of the sampling site, these data were not
always available. We selected representative periods with
maximum data availability within three different seasons of
year 2012 showing contrasted characteristics of soil water
content: winter (from day 53 to day 78), spring (days 145-
164) and summer (days 224-248). Note that for these periods,
we did not always have usable data from the four trees per
defoliation class.

Linear mixed-effects models were fitted to test for sta-
tistical differences between defoliation classes (defoliated
or non-defoliated) and season (winter, spring or summer)
on rype, %rpe, Wpp, Ymp and At Measurements of ¢ in
June and August were considered as spring and summer
seasons, respectively. Winter measurements of ¢ were not
available, and thus, models for %7, and 1) did not include
a winter season. To test the combined effects of vapour
pressure deficit (VPD), soil water content (SWC) and de-
foliation class on APy, and ry., we fitted similar linear
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mixed-effects models including a quadratic term in the
case of the relationships with VPD or log-transforming
SWC, in order to account for non-linear responses. In all
mixed-effects models, tree identity was included as a ran-
dom factor. r. and APy were log transformed, and %y,
was square root transformed to achieve normality prior to
all analyses. In all cases, we started by fitting the most
complex, biologically plausible model and then this, and
all the alternative models resulting from different combi-
nations of explanatory variables, were ranked from lowest
to highest Akaike information criterion corrected (AICc)
for small sample sizes. When multiple models minimising
AlICc lied within 2 AICc units, likelihood ratio tests were
performed to select the best-performing model. All statis-
tical analyses were carried out using the R Statistical soft-
ware, version 3.3.1 (R Core Team 2016), using the lme
function to fit mixed-effects models (Pinheiro et al. 2018),
and the dredge function (MuMIn package) to compare
models (Barton 2017).

3 Results

3.1 Seasonal course of sap flow and environmental
conditions

The values of sap flow per unit leaf area (J; ) measured in all
defoliated and non-defoliated Scots pine trees from our
whole study population were higher in defoliated trees rel-
ative to non-defoliated ones throughout the study period,
especially in late spring and early summer (Fig. 1). With the
beginning of summer drought, J; strongly decreased in
both defoliated and non-defoliated pines, though this re-
sponse was more acute in the former. Winter, spring and
summer periods selected in Fig. 1 and used in subsequent
analyses are representative of different values of Ji and
environmental conditions in year 2012. Summer drought
conditions in 2012 were intense in terms of both evapora-
tive demand and soil water supply, with maximum VPD of
3.86 kPa and minimum SWC of 0.08 m* m > (Fig. 2¢, ). In
fact, 2012 was the second driest growing season since 1951
in the study area (133.9 mm of rainfall between May and
October).

3.2 Seasonal courses of sap flow, leaf water potentials
and stem pressure difference in selected trees

Sap flow per unit leaf area (Jy) for the selected trees (N =
4; see Section 2) has the same patterns as the full set of
measured trees (Fig. 1), with higher J; in defoliated trees
over all periods, and an acute reduction of J_ in both
defoliation classes in summer (Figs. 1 and 2g—i). The
temporal dynamics of APy, generally followed the course

of Ji, and APy was higher in defoliated pines over win-
ter and spring (Fig. 2j, k). However, defoliated and non-
defoliated Scots pines showed similar APy, values in
summer (Fig. 21).

Midday leaf water potential (¥pp) was similar between
defoliation classes but significantly different between sea-
sons, with lower values in summer (Fig. 3, Table 1). In
contrast, Yyp showed differences between defoliation
classes, with lower values for defoliated trees, but no sea-
sonal effect (Fig. 3, Table 1). On the other hand, the in-
teraction between season and defoliation was significant
for A1), indicating that the water potential difference was
highest for defoliated trees in spring and similarly low for
all the other combinations of season and defoliation class
(Fig. 3, Table 1).

3.3 Seasonal course of below-crown hydraulic
resistance and contribution to whole-tree resistance

Below-crown hydraulic resistance (ry.) increased from
winter to summer for both defoliation classes (Fig. 4a—c,
Table 2). Although defoliated and non-defoliated Scots
pine trees presented similar levels of ry,. in winter and
spring, the summer increase in ry,. was significantly larger
for non-defoliated Scots pine trees (Fig. 4, Table 2). The
percent contribution of below-crown hydraulic resistance
to whole-tree hydraulic resistance (%ry,.) increased in
summer for both defoliated and non-defoliated Scots pine
trees relative to spring (Fig. 4d, e, Table 2), but we did not
find any effect of defoliation class on the seasonal dynam-
ics of %ry (Fig. 4d, e, Table 2).

3.4 Responses of stem pressure difference
and below-crown hydraulic resistance to VPD
and SWC

Soil water content interacted with VPD and defoliation
class to determine AP, (Table 4 and Fig. 6 in the
Appendix). The values of APy, were lower and less vari-
able for non-defoliated pines. For defoliated pines, varia-
tion with environmental demand and soil water supply was
more evident: high values of APy, were observed at high
VPD and SWC (Fig. 6 in the Appendix). In contrast, we
did not detect VPD effects on ry,., which did decline with
SWC, especially for non-defoliated pines (Fig. 5, Table 3
in the Appendix). Therefore, r,. in non-defoliated pines
tended to be more sensitive to the depletion of soil water
content (Table 4 in the Appendix), leading to higher ry at
low levels of SWC, compared to defoliated Scots pines
(Fig. 5).
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Fig. 1 Seasonal course of daily-
averaged sap flow per unit leaf
area (Jp) over year 2012 in
defoliated (red) and non-
defoliated (blue) Scots pine trees.
Error bars indicate + 1 SE.
Periods selected for the present
paper, representative of different
seasons, are indicated by vertical
bars
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4 Discussion

Our results are consistent with whole-plant responses of
Scots pine suffering drought-induced decline and support
an important role of below-ground hydraulic constraints
during seasonal drought. The eight intensively measured
trees in this study showed sap flow responses (Figs. 1
and 2) largely consistent with the patterns observed for
the full set of sampled trees in 2012 and in the previous
2 years (Poyatos et al. 2013). As for leaf water potentials,
lower yp was observed in defoliated trees but ypp was
similar between defoliation classes. Here, adding xylem
radius variations to sap flow and leaf water potential mea-
surements has allowed us to dig deeper into the factors
driving these whole-tree drought responses, by describing
the dynamic patterns of below-crown hydraulic resistance
(rpe) associated to seasonal drought and defoliation. This
approach for estimating ry,. is not new (Irvine and Grace
1997; Martinez-Vilalta et al. 2007) but has been used sur-
prisingly little in the literature. It is based on several as-
sumptions (overnight equilibration of plant and soil water
potentials, constant modulus of elasticity and osmotic po-
tential of xylem sap), and it is certainly not free of poten-
tial methodological issues (for instance, in our case, the
high uncertainty in the estimation of the modulus of elas-
ticity). However, it remains one of the easiest ways of
obtaining reliable time series of below-ground (or
below-crown) plant hydraulic resistance without having
to resort to modelled estimates (Johnson et al. 2018).
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4.1 Drought increases below-crown hydraulic
resistance and its contribution to whole-tree
resistance

As hypothesised, below-crown hydraulic resistance (1) in-
creased in both defoliated and non-defoliated Scots pine trees
as drought progressed (Fig. 4). In our study, . includes the
whole trunk, the root system and the rhizosphere, but we can
assume that the trunk will probably contribute little to varia-
tions in below-crown hydraulic resistance, compared to the
roots and the rhizosphere (Domec et al. 2009; Johnson et al.
2016; McCulloh et al. 2014). We observed increases in 7,
with declining soil water content, which were pronounced
under very dry soils (Fig. 5), consistent with the decrease in
root hydraulic conductance observed in other conifer species
(Domec et al. 2009). In contrast, we did not find any effect of
VPD on .. An increase in below-ground conductance (i.e. a
decrease in resistance) with increasing evaporative demand
was reported for a mesic Scots pine population (Martinez-
Vilalta et al. 2007). Nevertheless, in the xeric population stud-
ied here, low values of SWC concur with high VPDs and,
therefore, the effect of dry soils appears to override any influ-
ence of evaporative demand on ry.

The increase in r, with seasonal drought can be related to
several xylem and rhizosphere processes (Newman 1969;
Sperry et al. 2002). Minimum pp values observed in our
study corresponded to root embolism levels < 50% (cf. on-
site root vulnerability curves reported in Aguadé et al.
2015a) and, thus, were unlikely to be the only (or main)
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Fig. 2 Seasonal course of (a—)
daily vapour pressure deficit
(VPD), (d—f) soil water content
(SWC), (g—i) daily-averaged sap
flow per unit leaf area (/1) and (j—
1) stem pressure difference (APy.)
for the three seasons studied in
2012. J and APy, are given for
defoliated (red) and non-
defoliated (blue) Scots pine trees.
Error bars indicate + 1 SE.
Arrows in the lower panel
indicate sampling dates of leaf
water potentials
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Fig. 3 Daily averages of predawn (¢pp; dark grey) and midday (¢)mp;
light grey) leaf water potential measurements in defoliated and non-
defoliated Scots pine trees in (a) spring and (b) summer of 2012.
Different uppercase letters indicate significant differences (P <0.05)
between predawn measurements, different lowercase letters indicate

significant differences between midday measurements and different
Greek letters indicate significant differences in the water potential
difference between predawn and midday (At)) across defoliation
classes and seasons. Error bars indicate + 1 SE
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Table 1 Summary of the linear

wPD
R*(m)=0.82

wMD
R*(m)=0.50

Ay
R*(m)=0.87

mixed-effects models with Parameter

predawn (1pp), midday (nvp)

leaf water potentials and their

difference (A1) as response Intercept

variables Non-defoliated
Summer

Non-defoliated: summer

—1.33+£0.05%**

—2.14+£0.06%**

—0.95 £ 0.08***

ni 0.30+0.09* 0.55 £ 0.12%*
—0.48£0.07%** ni 0.81 £ 0.17%%*
ni ni —0.63 £0.17*

The coefficients indicate the difference between each level of a given variable and the corresponding reference
level (‘defoliated’ for defoliation class and ‘spring” for season). The values are the coefficient estimates + 1 SE.
Only marginal R*, R* (m), is reported as the variance associated to the ‘tree’ random effect was estimated as near

zZero

ni not included in the model

*0.01 < P<0.05; #*%0.001 < P<0.01; ***P < 0.001

mechanism explaining increases in 7, with drought, particu-
larly in non-defoliated trees. Increased hydraulic resistance of
the soil-root interface can be also caused by root shrinkage or
suberisation (Brunner et al. 2015). Hydraulic disconnection
from the soil reduces water loss from drying soils (North
and Nobel 1997) and has been reported in pines under
extreme drought, associated with anomalous ¥pp (e.g.
more negative than ¢\p or soil ) (Plaut et al. 2012;
Pangle et al. 2015) or with reduced sap flow responses
to precipitation pulses (Plaut et al. 2013). In our study,
pp Was always less negative than i\p, but Scots pine
sap flow recovered only partially after autumn rains

(Fig. 1; see also Poyatos et al. 2013), which could indi-
cate hydraulic isolation from the soil. Root hydraulic con-
ductance during drought can also be constrained by sup-
pressed root elongation rates below ¢pp <—1 MPa, as
observed in other pine species (Zou et al. 2000), by de-
creased fine root production (Olesinski et al. 2011) or by
fine root mortality (Gaul et al. 2008). The latter, in par-
ticular, could lead to the observed decrease in 7y, during
drought.

We also showed that the percentage contribution of
below-crown to whole-tree hydraulic resistance (%ry.)
increases with severe drought in Scots pine (Fig. 4).

2.5¢ 05{@) Winter | 1b) Spring c) Summer
Defoliated: A Defoliated: B Defoliated: C
Non-defoliated: a Non-defoliated: a Non-defoliated: b
~ 2.0e 05
(]
~
€
T 15e 05 J A-
(=]
X
©
o 1.0e 05
=
£
°
£ 50e 06 \ L ; L‘JJ “v
0.0e+004°
53 58 63 68 73 78 145 151 157 163 224 228 232 236 240 244 248
Day of year
100 d) Spring e) B
a
Summer
75
8
e
50
X a
a
25
0 i

Defoliated

Fig. 4 (a—c) Seasonal course of daily averages of below-crown hydraulic
resistance (,.) in defoliated (red) and non-defoliated (blue) Scots pine
trees over the three seasons studied in 2012. Different letters indicate
significant differences (P <0.05) between seasons within a given
defoliation class. (d, ¢) Percent contribution of below-crown resistance
to whole-tree hydraulic resistance (%ry,). Different uppercase letters
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Non defoliated Defoliated Non defoliated

indicate significant differences (P < 0.05) between seasons, and
different lowercase letters indicate significant differences between
defoliation classes within a given season. Error bars indicate + 1 SE in
all panels. Note that we did not measure leaf water potentials in winter, so
we could not estimate %ry,. for this season
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Table 2 Summary of the linear mixed-effects models of below-crown
hydraulic resistance (r,) and the percent contribution of below-crown
hydraulic resistance to whole-tree hydraulic resistance (%ry.) as a
function of defoliation class and season

Parameter Log(7yc) sqrt(%ry.c)
R¥(m,c)=0.28,0.89  R*(m,c)=0.51,0.82

Intercept —1.62 +£0.47%%* 4.84+£0.56%*

Non-defoliated —0.41+0.67 (ns) ni

Spring 0.33 £0.09%**

Summer 1.28 £0.09#:* 2.16+0.54*

Non-defoliated: spring —0.04+0.14 (ns)

Non-defoliated: summer  0.60 & 0.14%** ni

The coefficients indicate the difference between each level of a given
variable and its reference level (‘defoliated’ for defoliation class and
‘winter’ for season, except for %ry,. where the reference season was
‘spring’). The values are the coefficient estimates + 1 SE. R? (m,c) refers
to marginal and conditional R* values, respectively

ns no significant differences, ni not included in the model
#%0,001 <P<0.01; ***P<0.001

Although the absolute values of %r,. should be taken
with caution because of the use of approximated values
for the radial modulus of elasticity (see Section 2), our
results imply that constraints on below-ground water
transport increase with drought comparatively more than
above-ground limitations (Domec et al. 2009). Given that
Scots pine needles are even more vulnerable than roots
(Aguadé et al. 2015a; Salmon et al. 2015), the higher
vulnerability of roots compared to branches (Aguadé
et al. 2015a) only partially explains this drought-driven
increase in %r,., which may be more associated to rhi-
zosphere changes outlined in the previous paragraph.

4.2 Defoliation is not associated with increased
below-crown hydraulic resistance

Our results do not support the hypothesis that defoliated trees
would show stronger increases in 7y, during drought. On the
contrary, non-defoliated trees showed larger increases in 7
between spring and summer (Fig. 4). These results are not
entirely consistent with the differences in root vulnerability
to embolism between defoliation classes reported in Aguadé
et al. (2015a). In that study, defoliated trees showed a signif-
icantly steeper decline of root hydraulic conductance with
decreasing water potentials but, at relatively high ¢ (>—
2 MPa), roots of non-defoliated trees tended to show higher
percent loss of conductivity (PLC). Assuming that ¥pp, repre-
sents root water potential, the estimated variation in root PLC
between spring (non-defoliated, ¥pp=—1.4 MPa, PLC=~
38%; defoliated, ypp=—1.3 MPa, PLC=~36%) and sum-
mer (non-defoliated, ¥pp=—1.7 MPa, PLC =~40%;
defoliated, ¥pp=—1.9 MPa, PLC =~42%) is at odds with
the r,. dynamics observed here (Fig. 4).

Differences in r, responses to plot-level soil moisture be-
tween defoliation classes could be related to more intense
local soil water depletion by non-defoliated pines and associ-
ated increases in hydraulic resistances in the soil and the rhi-
zosphere. This could occur because, during summer, tree-level
sap flow of defoliated trees is 60—70% of that of non-
defoliated trees (Poyatos et al. 2013). However, summer vpp
values were similar between defoliation classes (Fig. 3),
showing that the stronger increase in 7, with decreasing soil
moisture observed in non-defoliated pines is unlikely to result
from locally reduced soil moisture.

Aquaporins, the integral membrane proteins conducting
water in and out of the cells (Maurel et al. 2008), could have

Fig. 5 Modelled responses (and T T TTTT T Mo TTT T T T 1
95% confidence bands) of below-
crown hydraulic resistance (ry) to
soil water content (SWC) for 2.0e-05 — Defoliated
defoliated and non-defoliated — Non-defoliated
Scots pines, according to the .
linear mixed-effects model in NV’
Table 4. The rug depicts the 1.5e-051
location of the actual observations 7
used in the model; when lines are o
placed at the top (bottom) of the ©
plot, they denote positive % 1.0e-051
(negative) residuals VB
=
5.0e-061
0.0e+00__j yumpn 11 L L0000 L 1L
0.075 0.100 0.125 0.150 0.175
SWC (m® m?3)
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also played a role in modifying extra-xylary components of
root hydraulic conductance (e.g. Vandeleur et al. 2009).
Upregulation of aquaporin activity has been reported to occur
during extreme drought (Johnson et al. 2014), and it may have
contributed to minimise the summer increase in ry. of
defoliated pines, as there is evidence that defoliation may be
related to increased aquaporin expression in leaves and roots
(Liu et al. 2014).

4.3 Below-ground hydraulic constraints in the context
of the whole-plant physiology of declining Scots pine

Increased 7y, during drought was not related to defoliation, a
result which is consistent with the lack of association between
defoliation and root functioning in other drought-exposed
Scots pine populations (Brunner et al. 2009). Therefore,
below-ground hydraulics cannot explain the larger declines
in whole-plant hydraulic conductance of defoliated pines dur-
ing drought (Poyatos et al. 2013). Minimising drought-driven
increases in r,. may have contributed to the higher gas ex-
change rates observed in defoliated pines during summer
(Salmon et al. 2015). Likewise, we observed less variable
APy, under varying soil water content in non-defoliated pines
(Fig. 5), which is consistent with their more isohydric behav-
iour compared to defoliated pines (Salmon et al. 2015).
Nevertheless, the fact that higher tree-level hydraulic sensitiv-
ity in defoliated pines is not explained by differences in
below-ground hydraulics (Aguadé et al. 2015a; this study)
does not imply that below-ground processes are irrelevant
during drought-induced decline. At longer time scales, in-
creased below-ground biomass allocation enhances survival of
Scots pine saplings (Garcia-Forner et al. 2016; Matias et al.
2014). Deep rooting can buffer the impact of extreme drought
(Nardini et al. 2016), and declines in modelled below-ground
hydraulic conductance have been recently associated with in-
creased mortality risk across species (Johnson et al. 2018).

Our results need to be interpreted together with the evi-
dence supporting the role of carbon limitations in driving
Scots pine drought-induced mortality (Aguadé et al. 2015a,
b; Galiano et al. 2011; Garcia-Forner et al. 2016; Poyatos et al.
2013; Salmon et al. 2015). High root turnover to compensate
for drought-related root mortality (Meier and Leuschner 2008)
may aggravate carbon limitations, consistent with depleted
root non-structural carbohydrate (NSC) reserves in defoliated
pines measured in 2012 (Aguadé et al. 2015a, b). The need to
maintain adequate NSC levels for a proper hydraulic and met-
abolic functioning of the plant (Dietze et al. 2014; Martinez-
Vilalta et al. 2016) appears to dominate the physiological re-
sponse of defoliated pines (Salmon et al. 2015), as prioritising
carbon acquisition at the expense of water loss seems to pro-
mote survival under extreme drought in this species (Garcia-
Forner et al. 2016).

@ Springer :i
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5 Conclusions

We still know very little about the role of below-ground hy-
draulics on drought-induced tree mortality mechanisms,
which mostly reflects the difficulty in measuring the relevant
processes involved. We provide one of the few studies ad-
dressing the dynamics of below-ground hydraulics measured
in drought-exposed trees in the field, without constraints on
root development (i.e. by pots) and fully acclimated to pre-
vailing climatic and below-ground conditions. This study has
a number of limitations, including the low replication, the
uncertainties associated to £, estimation and the assump-
tion of steady state in the calculation of .. This latter
assumption may not hold during extreme drought when
the stem may be shrinking because of the depletion of
internal water storage. However, our results complement
previous studies of the ecophysiology of Scots pine under
extreme drought based on above-ground responses and
contribute to guide further field-based research on tree
functioning and survival under extreme drought. Our re-
sults may also serve to improve models, which frequently
assume fixed contributions of root hydraulic conductance
to whole-plant conductance (e.g. Sperry and Love 2015;
Sperry et al. 2016).

The observed patterns in 7y, and %ry,. highlight the
dynamic nature of below-ground hydraulics in forests
experiencing drought-induced decline processes, as al-
ready suggested by a modelling study using data from
the same site (Sus et al. 2014). Our results suggest a
partial buffering of below-ground hydraulic constraints
during summer drought in trees experiencing drought-
induced defoliation and are consistent with carbon limita-
tions being involved in the process of drought-induced
decline in Scots pine. We did not find direct evidence of
extensive root hydraulic impairment associated with defo-
liation and hence with increasing mortality risk, as shown
for some angiosperm species (Rodriguez-Calcerrada et al.
2016). More detailed measurements would be needed to
disentangle the role of different components of below-
ground hydraulics during drought-induced decline in situ,
including changes in the functional balance of shallow
and deep roots (Grossiord et al. 2016; Johnson et al.
2014) and the dynamics of hydraulic conductance in the
xylem and the soil-root interface.
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Appendix

Table 3 Main characteristics of

the trees studied (defoliation class Tree Class  Green leaves DBH h Ap A Ap ApAg
(defoliated and non-defoliated), (%) (cm) (m) (cm®) (cm?) (m?) (m* cm )
diameter at breast height, height
(h), basal area (Ay), sapwood area 364 D 40 40.1 115 12629 4300 1953 0.045
(A,), maximum leaf area (4, ), 542¢ D 45 426 145 14253 4960 1946  0.039
Jeaf to-sapwood area ratio 544 D 45 284 161 633.5 1742 853 0.049
(AL:As)) 693 D 35 4238 1.7 14387 501.4 10.47 0.021
699* D 40 45.7 15.7 1640.3 583.3 15.23 0.026
704 D 50 48.0 11.2 1809.6 652.1 16.64 0.026
706 D 50 38.8 14.6 1182.4 397.3 20.89 0.053
707 D 45 249 11.5 487.0 114.7 6.69 0.058
714 D 50 40.9 14.9 1313.8 450.7 16.52 0.037
748*% D 40 37.8 11.9 1122.2 372.8 22.25 0.060
561*% ND 80 355 16.1 989.8 319.0 17.06 0.097
562*%  ND 80 38.3 18.0 1152.1 385.0 37.24 0.097
572*%  ND 100 44.7 17.3 1569.3 554.5 45.99 0.083
711 ND 90 46.5 15.2 1698.2 606.8 3291 0.054
712 ND 80 59.4 14.4 2771.2 1042.8 93.33 0.089
713 ND 80 26.7 8.2 559.9 144.3 19.94 0.138
715 ND 100 45.8 14.1 1647.5 586.2 37.02 0.063
716 ND 80 43.8 14.9 1506.7 529.0 31.63 0.060
717 ND 100 41.7 15.2 1365.7 471.7 25.84 0.055
725%  ND 100 41.0 14.4 1320.3 453.3 23.03 0.051

The subset of trees with measurements of xylem radius variations is marked with an asterisk (¥)
D defoliated, ND non-defoliated, DBH diameter at breast height

Table4  Summary of the linear mixed-effects models of below-crown stem pressure difference (APy,.) and below-crown hydraulic resistance (7,.) as a
function of soil water content (SWC), vapour pressure deficit (VPD) and defoliation class

log(APy.) log(7c)
R¥(m,c)=0.28, 0.81 R¥(m,c)=0.29, 0.85
Intercept —3.02+0.56%"* —16.2+0.5] %%
Non-defoliated —2.33+0.59% —1.99+0.74*
Log(SWC) —0.15+0.23 (ns) —1.77£0.13%%*
VPD 1.94 + 0.42% 3 ni
VPD? —0.18+0.08* ni
Non-defoliated: log(SWC) —0.69 + 0,18 —0.81+0.20%
Log(SWC): VPD 0.63 +0.227%* ni

For factors, the coefficients indicate the difference between each level of a given variable and its reference level. In models, the reference defoliation class
was ‘defoliated’. The values depicted are estimates + SE. R? (m,c) refer to marginal and conditional R* values, respectively

ns no significant differences, ni not included in the model
*0.01 <P <0.05; ¥*0.001 <P<0.01; ***P<0.001
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Fig. 6 Modelled response
surfaces of below-crown stem
pressure difference (AP,.) as a
function of vapour pressure
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