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Abstract
• Key message Simulated and observed carbon stocks in
Scots pine forests varied considerably with stand age. The
contribution of biomass to the total forest carbon stocks
increased and that of dead organic matter decreased with
increasing stand age.
• ContextUnderstanding changes in forest carbon stocks over
time is important to estimate carbon inventory. Although
Scots pine (Pinus sylvestris L.) is a main species in Turkey,
studies on such changes are still lacking.

• Aims We aimed to estimate the changes in carbon stocks,
with stand age, of Scots pine stands in Turkey using field work
data and a forest carbon model (FBDC model).
• Methods Biomass and dead organic matter carbon stocks
were investigated to adjust the forest carbon model and to
verify the model estimates. Forest carbon stocks with regards
to stand age were simulated.
• Results The simulated carbon stocks were generally in clear
agreement with the observed values on a stand scale. Changes
in simulated and observed carbon stocks of biomass and dead
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organic matter varied with stand age. The contribution of
biomass to total forest carbon stocks increased, and that of
dead organic matter decreased, with increasing stand age.
• Conclusion We found that the carbon stocks in each pool and
their contribution to the total forest carbon stocks variedwith stand
age. Our results are expected to contribute to the understanding of
annual changes in the carbon stocks of Turkish forests.

Keywords Forest carbon . Scots pine . FBDCmodel .

Biomass . Dead organic matter . Verification

1 Introduction

Forest ecosystems contain a substantial amount of carbon (C)
and make a significant contribution to the global C sink (Dixon
et al. 1994; Pan et al. 2011). Maintaining forest C sinks has also
become important to mitigate global climate change. In order to
implement successful forest management policies, a scientific
basis is required (Tewari 2015). Thus, forest C dynamics have
been quantified at various spatial and temporal scales (Dixon
et al. 1994; Luyssaert et al. 2010; Pan et al. 2011).

Forest C stocks and their changes have been estimated di-
rectly through field measurements. However, there are a num-
ber of limitations with this method, including uncertainties in
data extrapolation at temporal and spatial scales, and high de-
mands on labor and cost (Fang et al. 2014). Ecosystem model-
ing is a method frequently applied to estimate forest C stocks
and their changes on regional and global scales (Kurz and Apps
1999; Luyssaert et al. 2010; Sitch et al. 2008). In addition,
ecosystem models can estimate C cycles at different time and
space more efficiently than direct measurement (Liski et al.
2002; Pilli et al. 2013). Considering these advantages, such
models represent an effective alternative to field measurements.

Scots pine (Pinus sylvestris L.) is a main species in
European forests and occupies 1.48 million ha of the total of
21.68 million ha of Turkish forests. Accordingly, understand-
ing C dynamics in Scots pine forests is an important step
toward estimation of the total C stock in Turkish forests.
Previous studies have focused mainly on estimating C stocks
in biomass using forest inventory data, allometry functions,
and constant biomass expansion factors (Misir 2013;
Sivrikaya et al. 2013; Tolunay 2011; Yolasiğmaz and Keles
2009). C stocks in dead organic matter (e.g., O horizon, dead
wood, and mineral soil) have been poorly studied (Tolunay
and Çömez 2008). The lack of measurement makes it hard to
understand the C dynamics in Scots pine forests in Turkey.

Ecosystem models allow us to simulate the forest C cycle,
including biomass and dead organic matter (Kim et al. 2015a).
However, insufficient data on Turkish forests makes it hard to
run most forest C models. The forest biomass and dead organ-
ic matter C (FBDC) model (previously known as the KFSC
model) requires only few parameters and input data (Lee et al.

2014; Yi et al. 2013). For this reason, it seemed highly suitable
to simulate C dynamics in the Scots pine forests of Turkey.
The FBDC model has successfully estimated the forest C dy-
namics on a national scale over several decades in Korea (Lee
et al. 2014, 2015; Park et al. 2013a; Yi et al. 2013).

In this study, we aimed to elucidate the annual
changes in (1) the C stocks of above- and below-
ground biomass, the O horizon, dead wood, and mineral
soil; and (2) the distribution of C stocks among C pools
in Scots pine stands. Field work was conducted to
estimate the model input and parameters of the FBDC
model and to measure the C stocks in each pool. The
FBDC model was adjusted to fit the study site using
empirical data and previous studies. The model esti-
mates of biomass, O horizon, aboveground dead wood,
and mineral soil were then verified by comparing them
with the corresponding observed C stocks. The change
in contribution of each pool to total forest C stocks with
increasing stand age was also estimated.

2 Materials and methods

2.1 Site description and field work

In this study, the data of stand characteristics and C
stocks of above- and below-ground biomass, O horizon,
aboveground dead wood, and mineral soil reported in
Çömez (2010) were used (Table 1). This study was
conducted in Scots pine forests in the Sundiken
Mountains, which are located in the central Anatolia region
of Turkey (39° 56′–39° 59′ N, 31° 03′–31° 11′ E). According
to the WorldClim 1.4 data set, the annual mean temperatures
range between 7.2 °C and 9.2 °C and the annual mean precip-
itation was about 700–900 mm (Çömez 2010). The soil group
and texture was almost Luvisol and sandy clay loam, and
acidity (pH) ranged from 5.0 to 6.6 in the research area
(Çömez 2010; IUSS Working Group WRB 2006).

A total of 63 sample plots was selected from Scots
pine stands with different ages (8- to 177-year-old),
diameters at breast height (DBH; 0–46.79 cm), tree
heights (0.9–29.38 m), and canopy covers (10–90 %)
in 2008. The areas of the sample plots varied between
100 m2 and 400 m2. The mean age of each plot was
determined by counting the annual rings in samples
taken with an increment borer from five trees. One tree
with a mean DBH of each sample plot was excavated in
order to weigh individual tree components (stem,
foliage, and branch). The tree roots, the other tree com-
ponent, were sampled and weighed in 24 sample plots
due to limitations of labor and cost. Based on the data,
a regression model of each tree component was devel-
oped according to the DBH and tree height. The mass
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of tree components in each plot was estimated using
these regression models. The C stocks in 44 sample
plots were selected to estimate growth models, and
those in 19 plots were used to verify the models.

O horizon samples were taken randomly from an area
of 0.25 m2, with four replications in each sample plot.
All dead wood materials in sample plots were collected
and weighed. To estimate the C stocks in the mineral
soil, one soil pit was dug at a random point in each
sample plot. Soil samples were collected from the
different mineral soil horizons up to 1 m in depth with
1-L soil corers. The soil samples were air-dried and
sieved with a 2-mm screen. To estimate the soil bulk
density, all roots and coarse material bigger than 2 mm
were separated from the mineral soil.

Subsamples of tree components, O horizon, and
aboveground dead wood were dried at 65 °C and soil
samples were dried at 105 °C to constant weight. Then,
C concentration was measured using a CHN analyzer
(LECO TruSpec 2000 Analyzer; LECO Corporation,
St. Joseph, MI). To measure the amount of C in trees,
O horizon, aboveground dead wood, and mineral soil,
the C concentration was multiplied by the dry weight.
In particular, the C stock at each soil depth was mea-
sured from the C concentration, bulk density and layer
thickness, and the total C stocks in the mineral soil
were determined by summing the C contents at all soil
depths. Consequently, the C stocks (Mg C ha−1) in the
total biomass, O horizon, mineral soil, and aboveground
dead wood were 2.69–294.85, 2.15–34.91, 53.79–
160.84, and 0–4.62, respectively.

2.2 FBDC model structure and parameterization

The FBDC model is a generic model, simulating the complex
C dynamics of dead organic matter with simple biomass
regression models and only a few parameters (Lee et al.
2014; Yi et al. 2013). The main feature of this model is the
low level of required input data and its high applicability at
various spatial and temporal scales. It was first called the
Korean Forest Soil Carbon (KFSC) model (Lee et al. 2014;
Yi et al. 2013). We changed the name to the FBDC model
because it can simulate C dynamics for both biomass and dead
organic matter. This model consists of a biomass compartment
and a dead organic matter compartment (Yi et al. 2013). The
biomass category includes five tree components: the stem,
branch, foliage, coarse root, and fine root pools, and their
growth rates were estimated using a yield table and allometric
function. The dead organic matter compartment includes the
five primary dead organic matter pools (aboveground woody
debris from stems, aboveground woody debris from branches,
aboveground litter, belowground woody debris, and below-
ground litter) and the three secondary dead organic matter
pools (aboveground humus, belowground humus, and soil
organic C) that were classified by their source and degree of
decomposition and kinetics (Lee et al. 2014). The
following C processes were simulated in this model:
(1) C stocks in biomass increase by sequestering atmo-
spheric C; (2) a proportion of stems, branches, foliage,
and coarse roots input organic C into primary dead
organic matter pools (the O horizon and dead wood);
(3) the annual production of dead fine roots becomes
input to the mineral soil pool; (4) C in the O horizon
and dead wood decay to the mineral soil C pool; and
(5) C in the mineral soil finally decays to atmospheric
C. Because the FBDC model was not parameterized for
Scots pine forests, an adjustment was required. To
estimate the growth function of each tree compartment
with stand age, field data were used. The Gompertz
function was used to formulate non-linear growth of
tree with stand age {Biomass = a * exp [b * exp (c *
Stand age)]; a, b, and c are constants}. The best-fitting
model for each compartment was estimated with the PROC
NLIN procedure in SAS 9.4 due to the non-linearities
(Table 2). Measurement data of biomass C from 44 plots were
used in this procedure. The actual growth of the trees in each
plot, unfortunately, did not exactly follow the best-fitting func-
tions due to heterogeneity in productivity among the plots. In
order to calibrate for this heterogeneity, the following factor
was invented (Lee et al. 2014):

Growth Modifier ¼ Stem Cobs

Stem Cest
ð1Þ

where StemCobs is the observed stemC stock from field work,

Table 1 Stand characteristics and carbon (C) stocks in the study site.
DBH Diameter at breast height

Minimum Mean Maximum

Stand characteristics

DBH (cm) 0 29.24 46.79

Height (m) 0.85 16.22 29.38

Mean age (year) 8 85.46 177

Canopy cover (%) 10 56.45 90

Stand density (trees ha−1) 50 2658.51 40,000

C stocks (Mg C ha−1)

Stem 0.91 71.34 202.65

Branch 0.44 12.56 37.54

Foliage 0.66 4.05 8.62

Aboveground biomass 2.21 87.95 247.93

Root 0.48 17.47 46.92

Total biomass 2.69 105.42 294.85

O horizon 2.15 15.37 34.91

Aboveground dead wood 0 0.94 4.62

Mineral soil (1 m depth) 53.79 99.65 160.84
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and Stem Cest is the estimated stem C stock from the best-
fitting function at a certain stand age. The growthmodifiers, as
input data for the FBDC model, were multiplied by the best-
fitting regression model of each biomass compartment in each
plot. These modifiers determined the level of biomass growth
and annual dead organic matter input to forest soils. Because
fine roots were not investigated in this study, the following
ratio of fine root to foliage with stand age was used to estimate
the C stocks in fine roots (Vanninen et al. 1996):

Fine root : Foliage ¼ Stand ageþ 0:1012 r2 ¼ 0:67
� � ð2Þ

Bymultiplying these ratios with the C stocks in the foliage,
the C stocks in the fine roots could be estimated.

The substitution of parameters was needed in the FBDC
model in order to simulate the C cycle in the Scots pine plots
(Table 3). Most parameters were substituted by parameters
that represented the regional environment. A detailed descrip-
tion of the dead organic matter C processes in the FBDC
model is given by Yi et al. (2013).

2.3 Initialization and simulation of C stocks

Due to the lack of data on C stocks in dead organic matter
pools at plots with an age of 0, these pools needed to be
initialized. The dead organic matter C pools in the study sites
were initialized with a spin-up process (Kurz et al. 2009; Lee
et al. 2014). Due to the maximum stand age (177 years old)
and the management plans of Turkish General Directorate of
Forestry, the spin-up process was conducted by 200-year
interval clear cutting. That process was conducted until the
quasi-steady state in which the difference in the C stocks in
the mineral soil pool between two successive rotations was
less than 1 %.

After the initialization process, the forest C dynamics
in each plot was simulated over the stand age in 2008.
The simulated average and standard deviation of the C
stocks in the biomass, O horizon, aboveground dead
wood, and mineral soil were estimated. Because the C
dynamics in each plot from 1 to 200 years old could be
simulated with the FBDC model, the continuous change
in the simulated C stock over the stand age in each
pool (up to 200 years old) was also provided. The
changes in the simulated C stocks in the C pools were
the averaged value among the sampling plots from 1 to
200 years of age.

2.4 Verification

The simulated C stocks in the tree biomass (stems, branches,
foliage, and roots), O horizon, aboveground dead wood, and
mineral soil at the stand age in 2008 were thoroughly verified
by comparing them to the corresponding observed C stocks at
the plot scale. For this verification procedure, we used the
measurement data from 19 plots that were not used to estimate

Table 2 Regression model of each biomass compartment. The
regression models were based on the Gompertz function. Biomass
carbon (C) stock (Mg C ha−1) for each compartment (age) = a × exp
[b × exp (c × age)]. The annual increase of C stock was calculated by
the first-order derivative of each function

Compartment Parameter

a b c

Stem 163.0 −3.13 −0.016
Branch 50.0 −3.38 −0.010
Foliage 4.5 −2.47 −0.100
Coarse root 49.2 −2.83 −0.012

Table 3 Parameters of the forest
biomass and dead organic matter
carbon (FBDC) model. AWDS
Aboveground woody debris from
the stem, AWDB aboveground
woody debris from branches, ALT
aboveground litter, BWD
belowground woody debris, BLT
belowground litter, AHUM
aboveground humus, BHUM
belowground humus, SOC soil
organic carbon

Parameter Value Reference

Turnover rate (year−1)

Stem 0.0043 Liski et al. (2002)

Branch 0.027 Liski et al. (2002)

Foliage 0.25 Muukkonen (2005); Çömez (unpublished)

Coarse root 0.027 Liski et al. (2002)

Fine root 0.84 Landsberg et al. (2005)

Decay constant (k; year−1)

AWDS and AWDB 0.028 Liski et al. (2002)

ALT 0.341 Sariyildiz (2008)

BWD 0.028 Assumed to equal the decay constant of AWDS

BLT 0.462 Kim (2002)

AHUM and BHUM 0.012 Liski et al. (2005)

SOC 0.0012 Liski et al. (2005)
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the best-fitting models. The C stocks in the dead organic matter
pools were verified with the measurement data from 63 plots.
The accuracy of the model estimates was estimated as the slope
and r2 of the linear relationship between the simulated and
observed C stocks with SAS 9.4 software. The simulated C
stocks in each biomass pool (the stems, branches, foliage, and
roots) were verified. The observed C stocks in the O horizon
were compared to the sum of the simulated C stocks in the
aboveground woody debris from branches and the above-
ground fallen leaves. The C stocks in the aboveground woody
debris from stems in the FBDCmodel corresponded to those of
the aboveground dead wood. Finally, the observed C stocks in
the mineral soil were compared to the sum of the simulated C
stocks in dead fine roots, humus, and the other mineral soil.

3 Results

3.1 Verification of model estimates

The simulated C stocks in the biomass, O horizon, andmineral
soil were in clear agreement with the corresponding observed
C stocks at the stand scale (Table 4). The simulated C stocks in
the stems, branches, foliage, and roots were accurate. The
difference between the simulated and observed C stocks of
each tree component was, on average, less than 10 %
(r2≥0.93) and the slope of each pool was not significantly
biased (a = 1; P > 0.05). The root mean square errors
(RMSEs) of the simulated C stock of tree components were
also less than 4 Mg C ha−1. Compared to biomass C pools, the
dead organic matter C pools showed a high level of uncertain-
ty. The simulated C stocks in the O horizon and mineral soil

were 7 % and 2 % more than the observed values and these
estimates were not significantly biased (a = 1; P > 0.05).
However, they showed lower prevision (r2 =0.52, 0.77) and
high levels of root mean square errors (11.84 and 68.74 Mg C
ha−1). Especially, the simulated C stocks in the aboveground
dead wood were overestimated by about 4.3 times, with low
precision (r2 =0.25) and high RMSE (10.54 Mg C ha−1). In
addition, the slope of linear relationship for aboveground dead
wood was also significantly biased (a≠1; P<0.05).

3.2 Changes in forest C stocks with stand age

The simulated biomass C stocks gradually increased from
0.61 Mg C ha−1 to 235.25 Mg C ha−1, and the observed bio-
mass C stocks also demonstrated an increase with increasing
stand age (Fig. 1a). In contrast, the simulated C stocks in the O
horizon had an inconsistent relationship with stand age
(Fig. 1b). The simulated C stocks in the O horizon decreased
to 17.35MgC ha−1 on average at the early development stage,
and then gradually increased to 29.65 Mg C ha−1. The simu-
lated C stocks in the aboveground dead wood also exhibited
an inconsistent relationship with stand age (Fig. 1c). The
simulated C stocks in aboveground dead wood decreased
from 20.33 Mg C ha−1 to 7.07 Mg C ha−1, and then increased
to 20.25 Mg C ha−1. The observed C stocks in the O horizon
and aboveground dead wood differed from the simulated C
stocks. Compared to the other dead organic matter C pools,
the simulated mineral soil C stocks were insensitive to stand
age (Fig. 1d). The simulated C stocks in the mineral soil
ranged from 108.60 Mg C ha−1 to 123.36 Mg C ha−1 during
the early development stage.

The contribution of each C pool to the total C stock also
varied with stand age. In general, the contribution of biomass
increased while those of the dead organic matter pools
decreased with increasing stand age (Fig. 2). The simulated
results showed that the biomass pool explained between
0.22 % and 53.00 % of the total C stocks relative to stand
age. The contributions of the O horizon, dead wood (including
aboveground dead wood and dead coarse roots) and mineral
soil decreased with increasing stand age while those of the O
horizon and dead wood became constant. The contributions of
the simulated C stocks in the O horizon, dead wood, and
mineral soil pools decreased from a maximum of 32.57 %,
24.06 %, and 53.42 % to 6.97 %, 12.23 %, and 27.80 %,
respectively.

4 Discussion

4.1 Reliability of the model estimates

Forest C models can be used to estimate forest C stocks but
such models often require a number of input data and

Table 4 Linear relationship between simulated and observed carbon
stocks. Simulated value = a ×Observed value (a = coefficient of slope).
All P values of slopes in the regression models were significant (a≠ 0).
RMSE Root mean square error

Pool All sample plots

Slope r2 RMSE
(Mg C ha-1)

Biomass

Stem 1.00 1.00 0

Branch 0.90 0.93 2.94

Foliage 1.03 0.94 1.08

Roots 0.94 0.95 3.52

Dead organic matter

O horizon 1.07 0.52 11.84

Mineral soil 1.02 0.77 68.74

Aboveground dead wood 4.26* 0.25 10.54

*P < 0.05 [slope of linear relationship is significantly different from 1
(a ≠ 1)]
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parameters. For example, many forest C models (e.g.,
Yasso, Forest-DNDC, and RothC) require data on soil

properties and various climatic and vegetation condi-
tions (Chertov et al. 2001; Coleman and Jenkinson
2008; Lee et al. 2010; Liski et al. 2005). However,
our verification results showed that the model estimates
agreed well with observations, especially for C stocks in
the biomass (Table 4). An accurate estimation of C
stocks in each tree compartment is crucial to estimate
C stocks in the biomass and annual input to dead or-
ganic matter pools. In this study, the accurate estimation
of C stocks in each tree compartment was attributed to
the wide range of stand age in sample plots and the
small variation in spatial scale. Allometric relationships
between tree compartments vary with stand age
(Jalkanen et al. 2005; Lehtonen et al. 2004) and climat-
ic factors (Friedlingstein et al. 1999; Litton et al. 2007).
The range of stand age in sample plots was wide
enough to represent the growth pattern of each tree
component during its life cycle. In addition, variation
in allometric relationships by climatic factors might be
constrained due to proximity of the geographical loca-
tion of sample plots.

Fig. 1 Relationship between simulated (model simulation; black solid line) and observed (black dots) carbon (C)) stocks with stand age in a biomass, b
O horizon, c aboveground dead wood, and d mineral soil

Fig. 2 Contributions of simulated carbon (C) stock in each pool to total
forest C stock with increasing stand age. Black solid and dashed lines
Contribution of biomass and dead wood (aboveground dead wood and
dead coarse roots), respectively; grey solid and dashed lines contribution
of the mineral soil and O horizon, respectively
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The simulated C stocks in the O horizon and mineral
soil pools also seemed accurate because the simulated C
stocks were not significantly biased. In addition, the
simulated and observed C stocks in these pools were
also similar on average. However, the relatively lower
r2 and high level of RMSE of the simulated C stocks in
the O horizon and mineral soil indicated uncertainties.
This phenomenon seemed to be attributed mainly to the
parameter set (Peltoniemi et al. 2006). Most parameters
used in this study were cited from studies conducted in
other regions. These parameters thus did not perfectly
represent the environment of the study site in this study.
To improve model performance, using a local parameter
set will be needed.

C stocks in the O horizon during the early development
period and in aboveground dead wood, especially, were
overestimated (Fig. 1; Table 4). During simulation, we
assumed that only the stem was harvested and the other tree
compartments were left. Branch became input to the O
horizon pool due to limitations of model structure and as-
sumption. This assumption could lead to overestimation of
the simulated C stocks in O horizon during early period. The
overestimation of aboveground dead wood was attributed
mainly to Turkish forest management policies in Turkey,
which attempt to suppress pest-borne disease or epi-
demics, as well as the use of harvest residue and dead
wood for fire fuel by local villagers. Accordingly, con-
sideration of forest management policies and practices
can improve model accuracy (Kim et al. 2015c;
Verkerk et al. 2011; Wang et al. 2013).

4.2 Comparison of the changes in simulated and observed
C stocks with stand age

The changes in the simulated C stocks with increasing stand
age were analyzed by model simulation. The relationship be-
tween simulated and observed C dynamics with stand age in
dead organic matter differed greatly (Fig. 1). The differences
between the simulated and observed C stocks in the O horizon
and aboveground deadwoodwere especially substantial in the
initial stages of stand development. These differences might
be attributed to the initial C stocks in those pools (Peltoniemi
et al. 2006). Initial C stocks in dead organic matter are affected
by the history of land use and management (Jandl et al. 2007).
For example, the initial C stocks in dead organic matter could
decrease if the harvest interval was shortened (Park et al.
2013b). In this study, a 200-year harvest and no land-use
change were assumed. Unfortunately, there were no available
data with respect to management and land-use history for our
study site. In addition, the C stocks in dead organic matter were
measured at the same time in 63 plots that exhibited wide spa-
tial heterogeneity (Fig. 1). This made it difficult to establish a
clear pattern of changes in the observed forest C stocks

(Mohren et al. 2012; Rantakari et al. 2012; Yuan et al. 2013).
Long-term monitoring and land-use data are required to enable
a more accurate estimate of forest C dynamics with stand age.

Most previous studies have focused on the C stocks in
Scots pine stands at certain stand ages (Helmissari et al.
2002; Lehtonen et al. 2004; Muukkonen 2007; Petersson
and Ståhl 2006). Our integrative analysis, designed to under-
stand changes in the contributions of C pools to the total forest
C stocks with stand age, was thus worthwhile (Fig. 2). These
changes in contributions could also be used as conversion
factors for estimating C stocks in other pools based on the
measurement of one pool. The contribution of biomass
increased and that of dead organic matter decreased with in-
creasing stand age. The rise in biomass C stocks overwhelmed
that of dead organic matter as the stands matured. However,
this relationship may be less accurate for Scots pine forests in
other climatic zones. A different biomass growth rate or decay
rate of dead organic matter could affect the ratio of each C
pool to the total forest C stock (Khaine and Woo 2015;
Vucetich et al. 2000; Zhu et al. 2010). Any difference in forest
management could also affect those ratios (Kim et al. 2015b;
Park et al. 2013b). Thus, the ratios should be adjusted to a
regional scale in order to improve applicability and accuracy.

Forest C stocks generally increased with increasing stand
age and decreasing frequency of harvest rotation (Jiang et al.
2002; Liski et al. 2001). In this study, the contribution of the
biomass pool to the total C stocks becomes particularly dom-
inant as stand age increases (Fig. 2). Harvests instantly reduce
biomass C stocks and annual input of dead organic matters
decrease with decreasing biomass C stocks. More frequent
harvests suppress a level of biomass C stocks and increase
in dead organic matter C stocks. Thus, forest C storage and
sequestration could decrease under a harvest rotation that is
shorter than 200 years.

5 Conclusions

We elucidated annual changes in C stocks of each pool using
empirical data and model simulation. The C stocks in C pools
and their contribution to total forest C stocks varied greatly
with stand age. A forest C modeling method, simulating an-
nual forest C dynamics with a small data set, was also
developed. Our results will contribute to the understanding
of the time series of C dynamics in Turkish forests.
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