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Abstract Milk protein concentrate (MPC) powders offer a great potential for use in
an array of food applications because of their nutritional and functional values.
However, MPC powders with protein content ≥80% (MPC80) exhibit poor solubility
and hence restrict their potential use. The objective of this study was to determine the
impact of adding salt during the diafiltration stage of MPC80 manufacture on
solubility, turbidity, and to compare minerals and protein content of supernatants of
ultracentrifuged samples with control sample. Three types of samples were produced:
MPC80-C (control) with or without salt treatment, MPC80-Na (150 mM NaCl), and
MPC80-K (150 mM KCl). Lower solubility was observed in MPC80-C (53%) as
compared to MPC80-Na or MPC80-K (100%). Higher turbidity was observed in
MPC80-C (530 NTU) and lower turbidity was observed in samples of MPC80-Na
(128 NTU) and MPC80-K (131 NTU). Furthermore, lower protein and calcium
contents were observed in supernatants of ultracentrifuged samples of MPC80-C
(2.3%; 0.35 mg.mL−1) as compared to MPC80-Na (3.8%; 0.63mg.mL−1) and
MPC80-K (3.7%; 0.67 mg.mL−1). The opposite trend was found in reconstituted
samples (5% TS). Our results showed that the addition of salt impacted the
distribution of minerals and proteins in colloidal and soluble phases of MPC80-Na
and MPC80-K. The results from this work will contribute to our understanding of the
role that mineral-induced changes (depletion or addition) play in the functionality of
MPC80.

Keywords Milk protein concentrate . Solubility . Minerals

Dairy Sci. & Technol. (2013) 93:401–413
DOI 10.1007/s13594-013-0110-0

V. Sikand : P. S. Tong (*)
Dairy Products Technology Center, California Polytechnic State University,
San Luis Obispo 93407 CA, USA
e-mail: ptong@calpoly.edu

J. Walker
Statistics Department, California Polytechnic State University, San Luis Obispo 93407 CA, USA



1 Introduction

Milk protein concentrate (MPC) powder is manufactured by ultrafiltration, diafiltra-
tion followed by spray drying (Mistry and Hassan 1991a). The ultrafiltration process
removes smaller components such as lactose, water, minerals, and non-protein
nitrogen compounds from milk while larger components such as caseins, whey
proteins, and lipids are retained. Additionally, a portion of minerals such as calcium,
magnesium, phosphate, and citrate may be retained because they are associated with
casein micelles (Singh 2007). In the diafiltration process, additional lactose and
minerals are removed. Depending on the degree of diafiltration, MPC with 80%
(MPC80) or 85% (MPC85) protein content can be produced. Thus, the final product
of high protein milk powder has higher protein (83.9%), ash (7.05%), and a lower
lactose content (0.73%) (Mistry and Hassan 1991a).

Processing steps such as ultrafiltration, diafiltration, and spray drying used during
the manufacture of MPC results in changes in salt equilibrium between the colloidal
and soluble phases of this system, which may adversely affect the environment of
milk proteins (Mistry and Hassan 1991b; Singh 2007). These changes may negatively
impact functional properties such as solubility. High protein milk powders such as
MPC80 and native phosphocaseinate have been reported to be poorly soluble when
tested at 25 °C (Mistry and Hassan 1991b; Schuck et al. 2007). A subsequent study
by NIZO group (Huppertz et al. 2010) conducted on 32 commercial MPCs collected
globally indicated that the low solubility of MPC80 continued to be a problem.
Solubility was found to be negatively correlated with protein content. Furthermore,
low solubility of MPC85 was found to have increased with respect to increased time
and temperature of storage (Anema et al. 2006; Havea 2006).

Various studies on ways to improve solubility of high protein milk powders have
been conducted. The addition of minerals has been reported to play an important role
in the water transfer during spray drying of milk (Schuck et al. 1999). Furthermore,
these authors (Schuck et al. 2002) reported that quality of milk powder depends on
when mineral salt is added such as before, during, or after spray drying. Additionally,
they reported an improved water transfer in casein micelles upon addition of NaCl
and attributed it to hygroscopic nature of NaCl. Enhanced solubility of MPC80 has
been reported where calcium ions were exchanged with sodium ions (Bhaskar et al.
2001). Furthermore, Carr et al. (2002) disclosed that improved cold solubility of
MPC can be achieved upon addition of monovalent salt prior to evaporation or spray
drying of retentate. Similarly, improved solubility of micellar casein was reported by
adding sodium caseinate before spray drying of milk concentrate (Schokker et al.
2011). Thus, improved solubility was attributed to reduced micellar interaction and
increased release of non-micellar casein (Schokker et al. 2011), structural changes,
and mineral composition (Famelart et al. 1999), resulting in modified protein–protein
interactions (Schuck et al. 1999).

Many factors such as temperature and shear and ionic strength play an important
role in imparting solubility of MPC or native micellar casein (Zwijgers 1992; Schuck
et al. 2002; Hussain et al. 2011; Sikand et al. 2012). Minerals, especially monovalent
salts such as NaCl or KCl, can be manipulated to increase ionic strength and may
improve solubility of MPC80. Improved solubility was shown in our laboratory (Mao
et al. 2012) when 50–150 mM NaCl was added during diafiltration stage of MPC80
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manufacture. Enhanced solubility of MPC80 was associated with the modification of
hydrophobicity and the reduction in the formation of disulfide bonds, which may
reduce protein aggregation during concentration and drying.

Like milk, the proteins in MPC are made up of roughly 80% caseins and 20%
whey proteins. The caseins, being the major component of milk protein, exist in
colloidal dispersion and form complexes with inorganic phosphate and calcium
(Schmidt 1982). The colloidal calcium phosphate plays an integral role in maintaining
the structure of casein micelles. Besides colloidal calcium phosphate, other forces such as
hydrophobic, electrostatic, and hydrogen bonding are important for structural integrity.
Various factors such as mineral salts (Griffin et al. 1988; Ward et al. 1997), high pressure
(Altuner et al. 2006), and alkalinization (Vaia et al. 2006) are responsible for disrupting
casein micelle stability. As a result, many changes such as reduced turbidity, modified
distribution of calcium phosphate in colloidal and soluble phase have been reported. Aoki
et al. (1999) reported that an addition of NaCl decreased casein aggregates cross-linked
by micellar calcium phosphate and thus, forming the loosened casein micelle structures.
Upon the addition of NaCl to bovine milk, calcium and phosphate in casein micelles
probably exchanged with sodium and chloride ions in the aqueous phase. As a result,
different properties of casein micelles are exhibited, such as enhanced solubility.

The current study was conducted to measure the solubility of KCl-treated MPC80
samples and was compared with the solubility of NaCl-treated MPC80 samples,
already available in our lab (Mao et al. 2012). There has not been much documen-
tation about effect of adding salt during the diafiltration stage of MPC80 manufacture
on minerals and protein distribution.

The objectives of this study were to: (1) evaluate and compare the solubility of
MPC80 powders manufactured by adding 150 mM NaCl with 150 mM KCl during
the diafiltration step as compared to control (untreated) and (2) evaluate and compare
mineral and protein composition of reconstituted MPC80 powder samples treated
with or without monovalent salts and their respective supernatants from ultracentri-
fuged samples (soluble phase). The results from this work will contribute to our
understanding of the role of mineral-induced changes on MPC80 functionality.

2 Materials and methods

2.1 Samples preparation

MPC80 powder samples were manufactured at Dairy Products Technology Center,
San Luis Obispo, CA. All chemicals used were reagent grade.

MPC80 powders were manufactured as described by Gualco (2010). Pasteurized
skim milk (140 kg) was ultrafiltered by using a model R12 cross flow membrane re-
circulatory pilot plant unit (Niro Inc, Hudson, WI, USA) equipped with dual 10 kDa
cut-off spiral-wound polyethersulfone membranes (Snyder Filtration, Vacaville, CA,
USA). Ultrafiltration (UF) was commenced at 5.9±1.2 °C. During UF, the temper-
ature was allowed to increase in such a way that by end of the UF process, the
temperature was 19.7±1.2 °C. Milk was concentrated up to 6×. UF milk was mixed
with 117 kg of water containing either no salt or salt (150 mM NaCl or KCl). The
product was diafiltrated until 6× concentration was achieved. A pre-mixed salt
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solution (150 mM NaCl or KCl) was used at each diafiltration stage for salt-treated
samples. The ultrafiltered milk was collected after the third (final) diafiltration stage and
spray-dried by using a Niro Filterlab (Hudson, WI) unit. Inlet temperature was 208.7±
19.7 °C and outlet temperature was 82.0±0.8 °C. Thus, three types of MPC80 powders
were produced. The control sample was named MPC80-C and had no salt added in
water during the diafiltration stage of MPC80 manufacturing. The sample was
named MPC80-Na when water was used for washing the retentate containing
150 mM sodium chloride (NaCl), and was named MPC80-K when water was
used during the washing of retentate containing150 mM potassium chloride (KCl)
during powder manufacturing. MPC80 powders were manufactured in three batches
following a randomized complete block design and as a result, a total of nine
samples were produced.

All of the freshly manufactured powders were placed in airtight Ziplock Mylar®
bags and stored in airtight containers at 4 °C for future testing. The powder samples
were tested within 6 months of manufacture.

2.2 Methods

2.2.1 Basic composition

Samples of MPC80 powders (MPC-C, MPC80-Na, and MPC80-K) were analyzed
for basic composition analysis (AOAC 1995). Total nitrogen was determined by the
Dumas method (AOAC 993.13) and multiplied by 6.38 to arrive at the protein
content. Ash content was determined by ignition at 550 °C in an electric muffle
furnace (AOAC 945.46; 33.2.10). Fat content was determined by the Mojonnier
method (AOAC 989.05; 33.2.26) and free moisture content by oven-drying method
(AOAC 990.20; 33.2.44). Lactose content was determined by the HPLC method as
described by Amamcharla and Metzger (2011).

2.2.2 Nitrogen solubility index

Nitrogen solubility index (NSI) of MPC80 powders was measured at room temper-
ature (21±2 °C) by method of (Morr et al. 1985) with some modifications where
500 mg of dry MPC80 powder was mixed with a small aliquot of DI water to form a
paste. Additional water was added to bring the total volume of the dispersion to about
40 mL. The pH of the dispersion was adjusted to 7.0 with a 0.1 N HCl solution. After
stirring for an hour, the dispersion was then transferred into a 50-mL volumetric flask,
diluted to the mark with additional water. An aliquot of the dispersion was centri-
fuged for 30 min at 20,000×g and resulting supernatant fraction was filtered through
Whatman No. 1 filter paper. The Vario Max analyzer (Hanau, Germany) was used to
determine the nitrogen content in the samples by the Dumas method. A conversion
factor of 6.38 was used to convert nitrogen to protein content.

2.2.3 Preparation of reconstituted milk from MPC80 powder samples

Three types of MPC80 powder samples from three different trials were reconstituted
in random order to contain 5% total solids (TS) content. These samples were stirred
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for 4 h at room temperature (21±2 °C). After 4 h of stirring at 900 rpm with a
laboratory stirrer (R010 Power, IKA Works, Wilmington, NC), samples were tested
for pH and were kept in a refrigerator overnight and brought to room temperature
(21±2 °C) the next day. pH of all the samples was measured again to ensure no
spoilage of samples had occurred. One part of each type of sample was kept for
measuring turbidity, protein content, and mineral contents (Ca, Mg, Na, K, and P)
while the other aliquot was subjected to ultracentrifugation for further analyses of
protein and minerals.

2.2.4 Preparation of ultracentrifuged samples from MPC80 reconstituted samples

Samples were ultracentrifuged at 100,000×g for 1 h at 21 °C using a SW50.1 rotor
(Beckman Coulter, Fullerton, CA). A firm pellet and a liquid supernatant were
formed upon centrifugation. The supernatant was analyzed for minerals such as Ca,
Mg, Na, K, and P as described in Section 2.2.6 and total nitrogen was measured by
Dumas method.

2.2.5 Turbidity

The turbidity of all the reconstituted MPC80 samples (5% TS) was measured using a
nephelometer (Micro 1000 IR, Fort Myers, FL). These reconstituted samples were
diluted in water (1:25) and kept for an hour to equilibrate at room temperature (21±
2 °C) before measuring turbidity. Turbidity measurements are reported in nephelo-
metric turbidity units (NTU) for each sample.

2.2.6 Mineral analyses

Mineral analysis for reconstituted MPC80 powder samples (5% TS) and ultracentri-
fuged samples was determined by inductively coupled plasma optical emission
spectroscopy (PerkinElmer, Waltham, MA). The mineral content of the reconstituted
and supernatants of ultracentrifuged samples was analyzed by the method of Sikand
et al. (2011).

2.2.7 Protein content and SDS–polyacrylamide gel electrophoresis

The protein content (N x 6.38) was measured in the samples reconstituted to
contain 5% TS and their respective supernatants after ultracentrifugation by
Dumas method.

A qualitative protein composition analysis and level in the reconstituted samples
and their respective ultracentrifuged samples was done by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) (15%) using a Mini-PROTEAN cell
electrophoresis system (Bio-Rad Laboratories, Hercules, CA) per Laemmli method
(Laemmli 1970). The reconstituted MPC80 samples were diluted to contain
2 mg.mL−1 protein content. The ultracentrifuged samples were diluted ten times.
Furthermore, these samples were mixed with a sample buffer in a 1:1 dilution under
reducing conditions. Gels were run at 110 volts. Gels were stained with Coomassie
R-250 for 8–12 h and then de-stained the following day.
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2.2.8 Statistical analyses

All analyses were done using ANOVA in the statistics program JMP 9.0.2 (SAS
Institute). The response variables in each ANOVA were NSI, turbidity, mineral
content, and protein content. Because samples were produced from three separate
batches of MPC80 powder, a random batch factor was included in the analysis along
with the treatment factor. Differences between the three treatments (MPC80-C,
MPC80-Na, and MPC80-K) were tested using Tukey’s HSD intervals with α=0.01.

3 Results and discussion

3.1 Basic composition

Compositional analyses of the three types of MPC80 powders are shown in Table 1.

3.2 Nitrogen solubility index

NSI for MPC80 samples was measured for MPC80-C, MPC80-Na, and MPC80-K.
The solubility for these samples ranged from 53 to 100% and is shown in Table 2.
MPC-C sample had a solubility of 53%. These results confirm previously reported
findings of poor solubility measured at 25 °C of high protein milk powders such as
MPC80 and micellar casein (Mistry and Hassan 1991b; Schuck et al. 2007). These
results are in agreement with Carr et al. (2002) who reported low solubility (<60%) of
fresh MPC85 reconstituted at 22 °C (±2 °C). De Castro-Morel and Harper (2002)
attributed low solubility of MPC to susceptibility of milk proteins specifically whey
proteins to heat denaturation. Furthermore, low solubility was attributed to casein
aggregation via non-covalent bonding (Havea 2006; Anema et al. 2006) and slow
release of casein micelles during dispersion (Mimouni et al. 2010).

The solubility of high protein milk powders such as MPC80 and micellar casein
has been reported to improve by addition of monovalent salts such as NaCl. The
hygroscopic nature of NaCl was used to explain the enhanced reconstitution of
micellar casein. Furthermore, improved rehydration due to minerals was associated
with modified protein–protein interactions (Schuck et al. 1999) followed by modifi-
cation in the casein micelle structure (Baldwin 2010). Carr et al. (2002) reported
significantly improved solubility (>60%) for MPC85 samples treated with monova-
lent salt as compared to control sample. These samples were stored at 40 °C for
1 month. The improved solubility of salt-treated samples was observed upon powder

Table 1 Basic composition (mean ± SD) of MPC80-C (without salt treatment), MPC80-Na (treated
with NaCl), and MPC80-K (treated with KCl) powder samples (n=3)

Sample type % Protein content % Fat content % Lactose content % Moisture content % Ash content

MPC80-C 80.9±1.0 4.16±0.1 0.31±0.0 5.2±0.3 6.9±0.1

MPC80-Na 80.0±0.6 3.86±0.1 0.29±0.0 3.6±1.9 10.7±0.4

MPC80-K 80.0±1.0 3.7±0.0 0.30±0.0 4.0±0.3 12.4±0.5
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reconstitution at either 40 or 50 °C as compared to the control samples. In our study,
we observed improved solubility (100%) in MPC80-Na and MPC80-K samples when
they were tested in fresh samples, and similar results were obtained when tested for
solubility at various intervals over 1 year for samples stored at 4 °C and at 21 °C. The
data included in this study is for the solubility measurement of MPC80-Na and
MPC80-K samples at 4 °C within 6 months of storage. Furthermore, we observed
that samples treated with salt were more than 90% soluble when kept at room
temperature for 1 year (results not included). Similar results for enhanced solubility
of MPC85 were previously reported where calcium was partially replaced with
sodium (Bhaskar et al. 2001). This improved solubility after prolonged storage was
attributed to the enhancement of electrostatic repulsive forces between the casein
micelles (Havea 2006).

Besides electrostatic forces, hydrophobic forces play an important role in the
solubility of high protein milk powders (Anema et al. 2006; Havea 2006; Mao et
al. 2012). Enhanced solubility of MPC80 treated with monovalent salts likely modi-
fies hydrophobicity sites and reduces disulfide bond formation. Thus, such changes
could modify protein–protein interactions that may limit protein aggregate formation
and contribute to the improved solubility (Mao et al. 2012).

3.3 Turbidity

The turbidity for all three types of samples is given in Table 3. A significant decrease
in the turbidity was observed in the MPC80-Na and MPC-K as compared to MPC-C
sample. Low turbidity can be attributed to casein micelles dissociation as turbidity is
a function of light scattering by the suspended colloidal casein micelles in the milk.

Casein micelles are well-known stable entities under the environmental conditions
of milk. Various forces such as hydrophobic, electrostatic, hydrogen bonding, and
calcium phosphate linkages are responsible for their stability. Several factors such as
calcium chelators (Griffin et al. 1988), reduced pH (Famelart et al. 1999), high
pressure (Altuner et al. 2006), alkanization (Ahmad et al. 2009), and ionic strength
(Huppertz and Fox 2006) are accountable for imbalanced forces, and thus, are
responsible for the structural integrity of casein micelles. Considering differences in
ionic strength between control and salt-treated samples, exhaustive dialysis (24 h) of

Table 2 Nitrogen solubility index (NSI) measurement of reconstituted MPC80-C (without any salt
treatment), MPC80-Na (treated with NaCl), and MPC80-K (treated with KCl) samples (n=3)

Sample type NSI

MPC80-C 52.9 b

MPC80-Na 100.0 a

MPC80-K 100.0 a

SE 1.13

HSD 5.70

Letters indicate differences by Tukey’s HSD procedure using α=0.01

SE-standard error for the mean of each treatment group, HSD-smallest difference between means of two
groups that is statistically significant (α=0.01)
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MPC80-Na and MPC80-K samples against MPC80-C was conducted. Also, the
turbidity of the MPC80-Na and MPC80-K dialyzed samples against MPC80-C was
tested. The turbidity of dialyzed samples was noted to be slightly higher, although not
much different, than salt-treated undialyzed samples but still was significantly lower
than the control samples (results not shown). This decrease of turbidity probably
corresponds to a modification of the casein micelle organization. Thus, our results
indicate that even after dialysis of MPC80-Na and MPC80-K against MPC80-C, both
dialyzed samples still had reduced light scattering properties, which may be attributed
to irreversible casein micelles dissociation. Thus, casein micelles were unable to
regain their original light scattering power even after exhaustive dialysis.

3.4 Mineral analyses

Table 4 shows ANOVA results, conducted on each of the five minerals to detect
differences between the treatments (with and without salt treatments). Mineral anal-
yses were conducted for MPC80-C, MPC80-Na, and MPC80-K of reconstituted
powder containing 5% TS. The reconstituted MPC80-C samples contained signifi-
cantly (P=0.0004) increased total calcium (1.07 mg.mL−1) than the MPC80-Na

Table 3 Turbidity measurement of reconstituted MPC80-C (without any salt treatment), MPC80-Na
(treated with NaCl), and MPC80-K (treated with KCl) samples (n=3)

Sample type Turbidity (NTU)

MPC80-C 530.33 a

MPC80-Na 128.83 b

MPC80-K 131.75 b

SE 1.13

HSD 5.70

Letters indicate differences by Tukey’s HSD procedure using α=0.01

SE-standard error for the mean of each treatment group, HSD-smallest difference between means of two
groups that is statistically significant (α=0.01)

Table 4 ANOVA results showing mean mineral content (mg.mL−1) for reconstituted (5% TS) MPC80-C,
MPC80-Na, and MPC80-K samples (n=2)

Sample type Ca Mg K Na P

MPC80-C 1.07 a 0.046 a 0.029 b 0.108 b 0.60 a

MPC80-Na 0.80 b 0.024 a 0.012 b 1.112 a 0.56 a

MPC80-K 0.81 b 0.042 a 1.833 a 0.052 c 0.57 a

P value 0.0004 0.0775 0.0013 <0.0001 0.1256

SE 0.0076 0.0035 0.0367 0.0036 0.0072

HSD 0.0547 0.0621 0.7104 0.0374 0.1590

Letters indicate differences by Tukey’s HSD procedure using α=0.01

SE-standard error for the mean of each treatment group, HSD-smallest difference between means of two
groups that is statistically significant (α=0.01)
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(0.80 mg.mL−1) and MPC80-K (0.81 mg.mL−1) samples. No significant difference
(P=0.1256) was found in the total phosphate between the three treatment groups. Our
results are in agreement with previous findings (Famelart et al. 1999) of depleted
colloidal calcium upon addition of monovalent salt (NaCl) and thus, improving the
rehydration of high protein milk powders due to minerals distribution. As expected,
significantly higher sodium (1.11 mg.mL−1) in MPC80-Na and higher potassium
(1.83 mg.mL−1) in MPC80-K was observed as compared to sodium and potassium
content in MPC80-C (0.11 mg.mL−1 and 0.03 mg.mL−1, respectively).

The mineral content of the supernatant fractions from ultracentrifuged milks was
measured. The ANOVA results comparing the ultracentrifuged samples are displayed
in Table 5. MPC80-Na and MPC80-K both had higher concentrations of total calcium
(P=0.0069) and Pi (P=0.0037) than the MPC-C samples. Our results are in agree-
ment with previous findings of solubilization of calcium and phosphate upon addition
of monovalent salt such as NaCl (Famelart et al. 1999). Similar observations of
calcium and phosphate solubilization have been reported using high pressure
(Schrader et al. 1997) or calcium chelator (Udabage et al. 2000), thus leading to
changes in the mineral distribution and hence calcium dissociation from casein
micelle. No significant difference was observed in Mg levels in samples with or
without salt treatment (P=0.0779). As expected, higher sodium and higher potassium
content was observed in MPC80-Na (1.01 and 1.70 mg.mL−1) as compared to the
control’s sodium and potassium content (0.096 and 0.028 mg.mL−1). It has been
reported that the monovalent ions, mainly Na, K, and Cl ions are present in the
aqueous phase while ions such as Ca, Pi, citrate, and Mg are associated with casein
micelles and to some extent in the aqueous phase. Sikand et al. (2011) reported high
solubility in two commercial MPI samples and enhanced solubility was attributed to
increased levels of monovalent cations such as sodium and potassium and decreased
levels of divalent cations such as calcium and magnesium. In our current study, a
significant decrease in Ca and a slight decrease in Pi were observed in the
reconstituted milk of salt-treated MPC80 samples. This decrease in Ca and Pi may
be due to the displacement of calcium bound to the casein micelle through phospho-
seryl residues with sodium or potassium during washing process (diafiltration stage)
of MPC80 manufacturing. However, these minerals were found to increase in the

Table 5 ANOVA results showing mean mineral content (mg.mL−1) for supernatants of ultracentrifuged
samples from reconstituted (TS 5%) MPC80-C, MPC80-Na, and MPC80-K samples (n=3)

Sample type Ca Mg K Na P

MPC80-C 0.346 b 0.021 a 0.028 b 0.096 b 0.214 b

MPC80-Na 0.625 ab 0.028 a 0.016 b 1.010 a 0.440 a

MPC80-K 0.668 a 0.038 a 1.707 a 0.049 b 0.469 a

P value 0.0069 0.0779 <0.0001 0.0001 0.0037

SE 0.0449 0.0058 0.0231 0.0404 0.0296

HSD 0.3023 0.0322 0.1984 0.3268 0.2041

Letters indicate differences by Tukey’s HSD procedure using α=0.01

SE-standard error for the mean of each treatment group, HSD-smallest difference between means of two
groups that is statistically significant (α=0.01)
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supernatants of ultracentrifuged MPC80-Na and MPC80-K. This can be attributed to
calcium dissociation from casein micelles because, upon ultracentrifugation, higher
levels of calcium and phosphate are observed. Huppertz and Fox (2006) reported that
the addition of increasing level of NaCl (0–600 mM) resulted in increased levels of
calcium in the serum phase of concentrated milk (15% TS). These authors attributed
increased levels of soluble calcium to the increased ionic strength resulting in an
increased solubility and calcium phosphate dissociation due to lower ion activity
coefficient. Similarly, we observed an increased level of calcium in supernatants of
ultracentrifuged MPC80-Na and MPC80-K. Contrary to the findings of Huppertz and
Fox (2006) our study shows an increase in the phosphate levels of MPC80-Na and
MPC80-K.

Similar observations were made with respect to an increase in pH by alkalinization
(Ahmad et al. 2009). Furthermore, these authors reported that with alkalinization, Pi
probably changed from HPO4

−2 to PO4−3. The latter form of PO4
−3 has a greater

affinity for Ca as compared to HPO4
−2 (Vaia et al. 2006). Ahmad et al. (2009)

suggested that calcium specifically interacts with phosphoseryl residue of casein
micelles and is surrounded by PO4

−3 to form calcium phosphate salt. These authors
attributed high calcium and phosphate in the supernatants to newly formed calcium
phosphate that remained non-sedimentable by ultracentrifugation.

3.5 Protein analyses

The protein content in reconstituted milk (5% TS) and the supernatant fractions of
ultracentrifuged milks were measured. Table 6 shows the ANOVA results. The mean
total protein content in the reconstituted MPC80-C, MPC80-Na, and MPC80-K was
not significantly different (P=0.4444). However, the mean total protein content of the
ultracentrifuged supernatants of MPC80-Na and MPC80-K was higher (3.78 and
3.68%) than the MPC-C (2.34%; P<0.0001). Thus, release of protein in the super-
natant of ultracentrifuged samples indicates casein micelle dissociation. The soluble
protein complex may be responsible for subunit or submicelle structure of casein
micelles, through which they are attached to colloidal calcium phosphate. Similar
results of depleted colloidal calcium phosphate upon using calcium-chelating agents

Table 6 ANOVA results showing mean protein content (g.100 g−1) for reconstituted (TS 5%) samples and
supernatants of ultra-centrifuged samples of MPC80-C, MPC80-Na, and MPC80-K (n=3)

Sample type Protein (reconstituted samples) Protein (ultracentrifuged samples)

MPC80-C 4.200 a 2.343 b

MPC80-Na 4.183 a 3.777 a

MPC80-K 4.150 a 3.677 a

P value 0.4444 <0.0001

SE 0.0255 0.0233

HSD 0.2067 0.1539

Letters indicate differences by Tukey’s HSD procedure using α=0.01

SE-standard error for the mean of each treatment group, HSD-smallest difference between means of two
groups that is statistically significant (α=0.01)
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resulting in micellar casein dissociation with an increase in protein components (α-
CN, β-CN, and k-CN) in supernatant samples has been reported (Griffin et al. 1988).
In the current study, SDS-PAGE analyses of three types of supernatants of ultra-
centrifuged samples showed differences with respect to band intensities when equal
quantities of the samples were loaded. Figure 1 shows that the band intensities of α-
CN and β-CN protein of the ultracentrifuged supernatants of MPC80-Na and
MPC80-K were higher than the MPC-C. Our results indicate that MPC80-Na and
MPC80-K induced solubilization of casein especially α-CN and β-CN protein when
compared to MPC80-C sample.

Rose (1968) reported protein solubilization at both sides of milk’s neutral pH.
More solubilization has been found to be on acidic side (pH 5.3) as compared to other
side of neutral pH (pH 7.0 or more). For the current study, MPC-C samples had a pH
of 7.53, MPC80-Na had a pH of 7.76, and MPC80-K had a pH of 7.93. The study
revealed protein solubilization only in MPC80-Na and MPC80-K as compared to
MPC80-C. Similar effects of increased casein protein content in the pasteurized
ultracentrifuged samples in bovine milk (pH=8.6) and buffalo’s milk (pH=9.7) have
been reported (Ahmad et al. 2009). These authors attributed these changes to mod-
ifications in mineral equilibrium and protein ionization, which induces changes in
casein micelles. Furthermore, these authors stated that increased levels of nitrogen
content in the supernatants of ultracentrifuged samples confirm casein micelles
dissociation. Our results are in agreement with Farrell et al. (1988) who reported
increased solubility of proteins by the addition of KCl. Furthermore, these authors
reported that with increased levels of ionic strength (35 to 140 mM), increasing
values of calcium-induced solubility in alpha-casein was observed. Increased
solubility may be the result of interactions between charged proteins groups and salt
(K+ or Na+ and Cl−). Our current study shows similar protein levels in the
reconstituted samples while higher solubilization of casein proteins especially α-

αs-casein
β-casein
κ-casein

β-lactoglobulin
α-lactalbumin

1          2         3      4 5        6        

Fig. 1 SDS-PAGE of reconstituted MPC80 and ultra-centrifuged samples. Lanes 1–3 Reconstituted
MPC80-C, MPC80-Na, and MPC80-K; lanes 4–6 supernatants of ultra-centrifuged MPC80-C, MPC80-Na,
and MPC80-K samples
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CN and β-CN in supernatants of ultracentrifuged samples of MPC80-Na and
MPC80-K as compared to MPC80-C (Fig. 1).

4 Conclusions

The impact of salt addition during the diafiltration stage of MPC80 manufacturing on
the solubility, minerals, and protein composition in reconstituted and in the soluble
phase were investigated in the present study. This study has shown that both MPC80-
Na and MPC80-K powder samples were readily soluble as compared to MPC80-C.
Low calcium contents were observed in the reconstituted samples of MPC80-Na and
MPC80-K powder samples as compared to MPC80-C. In contrast, higher calcium
contents and protein contents (α-CN and β-CN) were observed in the soluble phase
of MPC80-Na and MPC80-K as compared to MPC80-C. Our study notes an increase
in pH in reconstituted samples (5% total solids) of MPC80-Na (7.76) and MPC80-K
(7.93) as compared to MPC80-C (7.53) and this observation is in contrast to many
previous studies due to reported decrease in pH. The results from previous studies
indicate a binding of sodium with casein resulting in H+ release. The salt-induced
changes in the minerals and protein composition are probably responsible for
structural modifications of casein micelles and may account for higher solubility.
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