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Abstract
Accurate production estimates, months before the harvest, are crucial for all parts of the food supply chain, from farmers to 
governments. While methods have been developed to use satellite data to monitor crop development and production, they 
typically rely on official crop statistics or ground-based data, limiting their application to the regions where they were cali-
brated. To address this issue, a new method called VeRsatile Crop Yield Estimator (VeRCYe) has been developed to estimate 
wheat yield at the pixel and field levels using satellite data and process-based crop models. The method uses the Leaf Area 
Index (LAI) as the linking variable between remotely sensed data and APSIM crop model simulations. In this process, the 
sowing dates of each field were detected (RMSE = 2.6 days) using PlanetScope imagery, with PlanetScope and Sentinel-2 
data fused into a daily 3 m LAI dataset, enabling VeRCYe to overcome the traditional trade-off between satellite data that 
has either high temporal or high spatial resolution. The method was evaluated using 27 wheat fields across the Australian 
wheatbelt, covering a wide range of pedo-climatic conditions and farm management practices across three growing seasons. 
VeRCYe accurately estimated field-scale yield (R2 = 0.88, RMSE = 757 kg/ha) and produced 3 m pixel size yield maps (R2 
= 0.32, RMSE = 1213 kg/ha). The method can potentially forecast the final yield (R2 = 0.78–0.88) about 2 months before 
the harvest. Finally, the harvest dates of each field were detected from space (RMSE = 2.7 days), indicating when and where 
the estimated yield would be available to be traded in the market. VeRCYe can estimate yield without ground calibration, 
be applied to other crop types, and used with any remotely sensed LAI information. This model provides insights into yield 
variability from pixel to regional scales, enriching our understanding of agricultural productivity.

Keywords  Yield estimating · Crop model · Planting date · Harvest date · Yield map · Yield forecasting · Leaf Area Index · 
Wheat

1  Introduction

Scalable, reliable, and consistent crop yield forecasts are a 
key component to monitor and manage global food security 
(Nakalembe et al. 2021). Therefore, estimates of produc-
tion as far ahead of harvest as possible can be of great value 

to the futures markets as well as to farmers, governments, 
and food distribution agencies (Becker-Reshef et al. 2020; 
Hammer et al. 2001; Benami et al. 2021). Importantly, cli-
mate variability and extreme weather events are projected 
to increasingly affect future crop yields, potentially leading 
to an era of uncertainty in the global food system and severe 
food crises (Ray et al. 2015; Hammer et al. 2001; Feng et al. 
2020). Spaceborne remote sensing is considered a reliable, 
affordable, large-scale, and timely source of data to improve 
crop yield estimation (Becker-Reshef et al. 2020). Therefore, 
numerous yield estimation methods using satellite data have 
been developed in the last few decades (e.g.Franch et al. 
2015; Idso et al. 1977; Prasad et al. 2006; Ferencz et al. 
2004).

Many approaches exist for estimating crop yields using 
remote sensing (Lobell 2013; Moulin et al. 1998) and can be 
divided into three groups: vegetation indices (VI), machine 
learning (ML), and data assimilation.
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1.	 VI-based methods are built on the correlation between 
VIs and crop yield (e.g.Raun et al. 2001; Labus et al. 
2002; Bognár et al. 2017; Becker-Reshef et al. 2010). 
However, relying on an exclusive linear relationship 
identified in one region to provide yield estimates across 
other regions with variable environmental conditions 
may be problematic, particularly where the crops might 
be under stress resulting from low soil moisture, high 
ambient temperatures, or severe frost (Chenu et al. 2013; 
Ababaei and Chenu 2020; Zheng et al. 2015).

2.	 ML-based techniques for crop yield estimation have 
become very popular in the last decade (e.g.Kamir et al. 
2020; Jeffries et al. 2019; Feng et al. 2020; Cai et al. 
2019). However, these methods require a great amount 
of ground data obtained in different ways, including 
yield, sowing (planting) dates, soil properties, farm man-
agement practices, and weather for training and calibrat-
ing the model. Such data is rarely available for yield 
estimation over larger scales, such as at the regional or 
national level (Feng et al. 2020), and therefore, these 
ML-based models are calibrated locally. While locally 
calibrated yield estimation methods may achieve good 
accuracy of yield estimation, the use of these methods 
is limited to the area in which they were calibrated.

3.	 Data assimilation techniques are used to assimilate plant 
and soil observations into a prediction model to improve 
the simulation of crop development and estimate yield. 
These techniques are used to combine remotely sensed 
data with a dynamic model (such as a crop model) to 
reduce the uncertainties from both the model and the 
remotely sensed observations (Houser et al. 2012; Zhang 
et al. 2022; Prévot et al. 2003). However, these data 
assimilation techniques often require local calibration 
through field measurements (Manivasagam et al. 2021; 
Pan et al. 2019; Zhang et al. 2022; Beyene et al. 2022), 
which is one of the main drawbacks of this approach.

Despite the growing availability of Earth observation data 
to monitor crop development and yield estimation, the use 
of spaceborne sensors is limited by the type of data they 
can retrieve. For example, optical remote sensing cannot 
“see” through the crop canopy or the soil surface, but it can 
provide valid information about canopy chlorophyll content 
(Gitelson et al. 2005). Synthetic-aperture radar (SAR) can 
provide complementary data on the roughness, slope, geom-
etry, and moisture of the soil surface (Sadeh et al. 2018; 
Walker et al. 2004). Conversely, crop growth models can be 
used to simulate the main physiological processes, which 
include the phenology stage, leaf and grain development, 
uptake of nutrient and water, biomass status, and response 
to abiotic stresses (Huang et al. 2019; Holzworth et al. 
2014; Chenu et al. 2017). Therefore, merging the capabili-
ties of remote sensing with crop model simulations has a 

great potential for improving capabilities in monitoring crop 
development and yield estimation through time and space 
(Donohue et al. 2018; Chen et al. 2020).

One of the ways to blend the abilities of crop models 
and remotely sensed data is through the incorporation of the 
Leaf Area Index (LAI) observations into the crop growth 
model using data assimilation techniques (Ines et al. 2013; 
Pan et al. 2019; Huang et al. 2019, 2015; Zhang et al. 2022). 
LAI has been found to be a good indicator of phenological 
stage and leaf abundance, as well as crop status, and can be 
used as an indicator of different farm management practices, 
or biotic and abiotic stresses (Huang et al. 2019).

To remove the need for ground-based calibration, Lobell 
et al. (2015) devised a new and innovative method, named 
the SCYM (scalable satellite-based crop yield mapper). This 
method uses region-specific crop model simulations and 
gridded weather data to build a relationship between simu-
lated crop yield and remotely sensed VIs using a multiple 
variable linear regression (Azzari et al. 2017; Lobell et al. 
2015; Dado et al. 2020; Deines et al. 2021). In the process, 
Lobell et al. (2015) used the Agricultural Production Sys-
tems sIMulator (APSIM) (Holzworth et al. 2014) to produce 
a large number of model simulations that cover a representa-
tive range of climate, soil, and management settings for a 
specified region. Despite the potential of this innovative 
approach, it is not built to run in a forecast mode, and its 
operational capability in predicting crop yield is limited, 
particularly in smallholder farms (Nakalembe et al. 2021).

For decades, remotely sensed applications have been lim-
ited by the trade-off between high temporal and high spatial 
resolution satellite data, restricting their ability to estimate 
crop yield at the field and sub-field levels (Waldner et al. 
2019). For example, the attempt to map yield on a large scale 
using light use efficiency models as proposed by Marshall 
et al. (2018) and Dong et al. (2020) showed promising results, 
but it is unable to estimate field and sub-field-scale yield. In 
order to fill that gap, a number of companies developed and 
launched Earth-observing CubeSats to a low Earth orbit, such 
as the Planet Labs’ PlanetScope (PS) constellation. However, 
constellations of CubeSats, exemplified by Planets PS, fre-
quently exhibit somewhat different individual radiometric 
characteristics (Houborg and McCabe 2016, 2018; Sadeh 
et al. 2019; Leach et al. 2019). Recent studies (e.g., Jin et al. 
2017a; Jain et al. 2016; Waldner et al. 2019; Manivasagam 
et al. 2021) show a strong improvement in the prediction accu-
racy when using higher spatiotemporal resolution datasets, 
but the potential of using such a unique high spatiotemporal 
resolution LAI dataset (Sadeh et al. 2021) to improve yield 
estimation and forecasting has yet to be fully evaluated.

While most studies estimated crop yield at regional, state, 
or national levels (e.g., Ines et al. 2013; Jin et al. 2017b, 
2019; Azzari et  al. 2017; Huang et  al. 2015; Cai et  al. 
2019), only a few of these studies have tried to estimate 



Versatile crop yield estimator﻿	 Page 3 of 22  42

yield without ground calibration data (e.g., Lobell et al. 
2015; Azzari et al. 2017; Jin et al. 2019; Becker-Reshef et al. 
2010; Franch et al. 2015). Moreover, few studies have tried 
to estimate yield at the field and sub-field scales (e.g., Lai 
et al. 2018; Manivasagam et al. 2021; Donohue et al. 2018; 
Sagan et al. 2021; Chen et al. 2020) or have attempted to 
do so without any ground-based data for calibration (e.g., 
Burke and Lobell 2017; Jain et al. 2016; Deines et al. 2021; 
Dado et al. 2020), achieving limited success. To overcome 
these limitations, it has been proposed that new methods 
combining Earth observation data with crop growth model 
predictions are required in order to eliminate the need for in 
situ yield measurement and to provide a tool for global yield 
monitoring (Waldner et al. 2019).

One important management practice that greatly influ-
ences crop development, growth, and yield is the sowing 
date, as it affects the environmental conditions that the crops 
will experience during the growing season (Coventry et al. 
1993; Flohr et al. 2017). While sowing represents the start of 
the growing season, the harvest typically occurs soon after 
crop maturity, at the end of the growing season. Sowing 
dates are a key input in crop models to explore how different 
management practices might affect yield (Flohr et al. 2017; 
Zheng et al. 2012; Chenu et al. 2017). Any uncertainty in the 
sowing date can affect model performance, and it is therefore 
important to have the best possible estimates of the sowing 
date (Mathison et al. 2017).

A new approach for sowing date detection using Planet’s 
PlanetScope imagery reported 85% of successful sowing 
detection rate and an RMSE of 0.9–1.9 days (Sadeh et al. 
2019). This method is based on identifying changes on the 
fields’ surface; it can theoretically also be applied for detect-
ing harvest dates. Data on harvest status is important for 
preparing for transportation of the grains (Shang et al. 2020) 
from the farm to the silos, and from there by train or truck to 
the port to be exported by ships, which can help to optimize 
import-export business opportunities (Amherdt et al. 2021).

In light of the above, this study sought to devise a new 
approach to the prediction of crop yields across a range 
of scales from pixels to entire fields that would require no 
ground-based data at all. The proposed method was tested on 
wheat, being an agricultural commodity that has an impor-
tant place in global food production. Wheat is primarily cul-
tivated in semi-arid regions of the world, rendering it highly 
vulnerable to climate variability (Hammer et al. 2001; Chenu 
et al. 2011), hence the importance of predicting its yield. 
This current study also (i) tested the ability of using field-
level detected sowing dates as a crop model input and evalu-
ate its contribution to the crop yield estimation accuracy; 
(ii) explored the possibility of using a high spatiotemporal 
resolution LAI time series to identify the best-representing 
model simulation out of thousands of possible simulations, 
to determine field-scale yield; (iii) generated yield maps at 3 

m pixel size within the field; and (iv) tested the feasibility of 
modifying the sowing date detection method of Sadeh et al. 
(2019) to detect the timing of harvest.

2 � Material and methods

This study developed a new method, designated VeRCYe—
VeRsatile Crop Yield Estimator (pronounced “versi”), for 
estimating crop yield at the field and sub-field scales. VeR-
CYe uses LAI as the linking variable between remotely 
sensed (RS) data and APSIM’s plant development and yield 
prediction (Fig. 1). It includes three main steps:

1.	 Identification of cultivated fields and the date on which 
they were sown using a CubeSat-based method (Sadeh 
et al. 2019).

2.	 Fusion of PlanetScope (PS) images and Sentinel-2 (S2) 
images to create daily LAI datasets having 3-m resolu-
tion (Sadeh et al. 2021).

3.	 Coupling of the sowing dates and LAI datasets with the 
APSIM-Wheat crop model to estimate wheat yield at the 
field scale.

The accuracy of the estimated yield was compared to the 
field-level yield from 27 fields (with an average size of 175 
ha), as reported by farmers, including 21 fields obtained 
from the National Paddock Survey (Lawes et al. 2021). 
Fields were located in five Australian States, thereby incor-
porating diverse soils, weather conditions, farm management 
practices, and wheat cultivars. Field-level data from three 
growing seasons (2017–2019) were analyzed, including 22 
fields with both a sowing date and a yield map generated by 
the combine harvester, and for 20 fields, a reported harvest 
date.

2.1 � Sowing date detection

This part of the study aimed to generate reliable, field-level 
sowing dates for use as an input to the crop model simula-
tion. In order to extract the sowing dates for each field, the 
semi-automated sowing date detection method proposed by 
Sadeh et al. (2019) was implemented. This method iden-
tifies sowing dates by using Planet’s PlanetScope data to 
detect changes on the fields’ surface caused by no-tillage 
sowing, through the implementation of principal component 
analysis (PCA). The PCA was conducted independently for 
each image, encompassing all four bands (RGB-NIR). This 
analysis yielded four principal components: PC1, PC2, PC3, 
and PC4. Sadeh et al. (2019) found that PC1 was systemati-
cally the best PC to represent the variance in the soils and 
therefore the best to be used for sowing detection. In contrast 
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to Sadeh et al. (2019), the current study used the following 
equation as it provided improved performance:
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Fig. 1   VeRsatile Crop Yield Estimator (VeRCYe) yield estimation workflow, illustrating the integration of remotely sensed (RS) Leaf Area 
Index (LAI) with a crop simulation model.
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where Image
PC1

t1
 is the first principal component of the earlier 

satellite image and Image
PC1

t2
 is the first principal component 

of the later satellite image. The accuracy of the detection 
was evaluated against the dates reported by farmers.

To evaluate the contribution of using the detected sowing 
dates as model inputs, this study used the sowing window 
approach of Waldner et al. (2019). The sowing criterion that 
was used to initiate crop sowing was precipitation of ≥12 
mm over 3 days or more, irrespective of soil moisture from 
26 April to 15 July (this study used ≥12 mm instead of ≥15 
mm as originally used by Waldner et al. (2019)). If the sow-
ing criterion was not met during the sowing window, the 
crop was automatically sown on 15 July. The model’s simu-
lation start dates were determined by setting them to be 10 
days prior to the detected sowing dates for each individual 
field.

2.2 � APSIM model simulations

APSIM is an advanced simulation framework designed to 
model and simulate biophysical processes in agricultural 
systems. It is highly regarded for its ability to simulate a 
wide range of crops under a range of management practices 
and environmental conditions. APSIM models the biologi-
cal and physical processes of agricultural systems at the 
field scale (Holzworth et al. 2018, 2014). It simulates crop 
growth and development (e.g., phenology, leaf area growth, 

biomass accumulation, and yield) and soil processes (e.g., 
soil water balance, soil nitrogen, and carbon cycles) and 
simulates the impact of weather conditions and the effects 
of various management practices (e.g., irrigation, fertilizer 
application, and tillage) on agricultural production. APSIM 
utilizes a comprehensive set of input data to generate precise 
agricultural simulations, encompassing meteorological met-
rics (temperature, rainfall, solar radiation, humidity, wind 
speed), extensive soil profiles (texture, depth, water capacity, 
nutrients, pH, organic matter), specific crop details (variety, 
sowing density, growth stages), and management practices 
(sowing, irrigation, fertilization, and harvesting schedules) 
(Holzworth et al. 2018, 2014). However, APSIM does not 
incorporate modeling of diseases, pest infestations, or nutri-
ent deficiencies, except those related to nitrogen.

The APSIM next-generation crop model (Holzworth 
et al. 2018) allows the running of numerous scenarios 
that represent a realistic range of farm management prac-
tices and environmental conditions (Table 1). This helps 
to overcome gaps in knowledge of farm management 
practices used in specific fields. In this process, ~ 2000 
simulations of APSIM-Wheat were produced for each 
field (Fig. 1). The weather data were sourced from the 
closest weather station (www.​bom.​gov.​au/), and the soil 
properties were from the four nearest soils available in the 
APSoil database (www.​apsim.​info/​apsim-​model/​apsoil/). 
Each APSIM simulation outputs daily crop character-
istics including LAI as well as a grain yield estimation 

Table 1   Inputs used to run APSIM simulations at each studied field.

Inputs Values/rules Sources/references

Constant
  Sowing date The detected sowing date Sadeh et al. 2019
  Sowing depth 30 mm National Paddock Survey

Lawes et al. 2021
  Row spacing 25 cm National Paddock Survey

Lawes et al. 2021
  Accumulated rainfall required for sowing 12 mm
  Duration of rainfall accumulation 7 days  

Changing/factorials
  Weather data (temperature, rainfall, solar 

radiation)
From the nearest weather station Australian Bureau of Meteorology

  Cultivars Early, mid, and late-maturing local cultivars Zheng et al. 2015 and National Paddock Survey
  Plant population 50, 100, 150 plants per m2 Chenu et al. 2013 and National Paddock Survey
  Soil characteristics The nearest 4 soils APSoil database
  Initial soil water 20%, 50%, 100% of the plant’s available  

water capacity from the soil
  Fertilization at sowing 30, 50, 100 N kg/ha Chenu et al. 2013
  Fertilization at Zadok Stage—31 (stem elon-

gation stage)
0, 30, 60 N kg/ha Chenu et al. 2013

  Fertilization at Zadok Stage—40 (booting 
stage)

0, 30 N kg/ha Chenu et al. 2013

http://www.bom.gov.au/
http://www.apsim.info/apsim-model/apsoil/
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(kg/ha). Simulations that best reflected the LAI evolution 
were selected using an automatic rule-based algorithm 
(described below) to estimate the likely final yield. The 
range of plausible scenarios for each studied field is sum-
marized in Table 1.

2.3 � Remotely sensed LAI

As S2 was unlikely to provide cloud-free images every 5 
days, this study used the newly developed method of Sadeh 
et al. (2021) to fuse PS and S2 imagery into daily 3 m LAI to 
generate a time series of LAI for each of the fields analyzed. 
In this process, images sourced from PS (with a spatial reso-
lution of ~ 3 m, and a daily revisit time) and S2 (resolution 
of 10 m and 5-day revisit time) were fused to create daily, 
S2-consistent crop Green LAI at 3-m resolution; the Green 
LAI refers to the leaves which are photosynthetically active 
(Daughtry et al. 1992). The motivation to use the fused data-
set was based on the assumption that high spatiotemporal 
resolution time series will improve the ability to monitor the 
crop development and therefore improve the yield estimates 
at the field and sub-field levels. In this process, (i) S2-based 
LAI data were generated using the Biophysical Processor 
module embedded within ESA’s Sentinel Application Plat-
form (SNAP) software (Louis et al. 2016; Weiss and Baret 
2016), (ii) the PS and S2 RGB-NIR bands were fused into 
daily 3 m surface reflectance images, (iii) a VI was calcu-
lated based on the fused images, and (iv) the VI images were 
converted to LAI using a linear regression between the VI 
images and the S2-LAI time series. This fusion was con-
ducted over the region of interest with the regression model 
self-adjusting through space and time (Sadeh et al. 2021).

This study tested the ability of using both the original 
remotely sensed LAI time series (the output of the fusion 
process), being equivalent to the generic S2-LAI product 
(but in 3 m daily datasets), and the improved remotely sensed 
LAI dataset, which adjusted the generic S2-LAI product 
estimations to better estimate wheat Green LAI (Sadeh 
et al. 2021). The adjustment of LAI values was achieved by 
“fine-tuning” from the generic S2-LAI images. This refine-
ment utilized second-order polynomial regressions, which 
were found by Sadeh et al. (2021) to be the optimal method 
for representing the correlation between the in situ Green 
LAI and the values estimated remotely for a given vegeta-
tion index. In addition, for each of these datasets, this study 
investigated which of the 13 different VIs tested by Sadeh 
et al. (2021) to fuse PS and S2 into high spatiotemporal 
resolution LAI, resulted in the best performance for the VeR-
CYe approach. The VIs tested were as follows: NDVI, EVI2, 
MTVI2, MSAVI, WDRVI-Green, WDRVI, GCVI, OSAVI, 
GSR, GNDVI, RDVI, TVI, and SR. For more details, please 
refer to Sadeh et al. (2021).

2.4 � Coupling APSIM simulations with remotely 
sensed LAI

Unlike many of the data assimilation-based meth-
ods which incorporate the RS LAI into the crop model 
(e.g.Manivasagam et al. 2021; Zhang et al. 2022), here, ~ 
2000 different APSIM simulations were generated for each 
field, spanning a realistic range of possible on-farm and 
environmental variables (Table 1). Simulations most prob-
able to accurately estimate the yield of the field of interest 
were selected based on a comparison between the patterns 
of the simulated LAI and the RS LAI during the growing 
season. The selection process includes five steps:

Step 1. Calculating for each APSIM simulation the fol-
lowing variables:

(a)	 The gap in LAI between the maximum (max) simulated 
and RS LAI.

(b)	 The gap in days between the timing of max simulated 
LAI and max RS LAI.

(c)	 The RMSE between simulated and RS Green LAI, rep-
resenting the stages when the leaves are photosyntheti-
cally active (Daughtry et al. 1992), in the range of 1 to 
max RS LAI (before the season’s LAI peak).

(d)	 The RMSE between simulated and RS Senescence-
LAI, representing the stages when the leaves are not 
photosynthetically active (Delegido et al. 2015), in the 
range between the max RS LAI and 1 (after the sea-
son’s LAI peak).

Step 2. Selecting only the simulations with the lowest 
20% gap in LAI between the maximum (peak) simulated 
and RS LAI.

Step 3. Selecting from the simulations selected in step 
2, only the simulations with a gap in days between the tim-
ing of the max simulated and RS LAI that is within a range 
of +/−5 days. If none of the simulations comply with this 
rule, then the selection range is increased to +/−10 days 
gap between the timing of the max simulated and RS LAI. 
If still none of the simulations meet this rule, then the range 
is increased by an additional +/−5 days until the criterion 
is met.

Step 4. Identifying the best fit simulated LAI to the RS 
LAI. However, this constantly resulted in underestimation 
of the estimated yield; the simulations which ended with 
high accuracy of yield estimation (in comparison to the 
reported yield) frequently had higher simulated LAI dur-
ing the senescence period than the RS Senescence-LAI. 
This suggested that the RS Senescence-LAI failed to accu-
rately estimate the true LAI of the crop, which aligned 
with the findings of Sadeh et al. (2021) that estimating 
wheat LAI at the senescence stage using the S2-LAI prod-
uct achieved poor results in comparison with its Green 
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LAI estimations. An illustration of the underestimation 
of the RS Senescence-LAI compared to in situ LAI meas-
urements (collected using the SunScan Canopy Analysis 
System) is shown in Fig. 2.

In order to overcome the underestimation of the RS 
Senescence-LAI, the simulations that continue for the next 
step must be simulations with the highest 20% of the aver-
age Senescence-LAI (of the selected simulations in the 
final step). The threshold of 20% resulted from sensitiv-
ity tests conducted to evaluate which percentage of the 
RMSE between the simulated Senescence-LAI and the RS 
Senescence-LAI typically performed best in this process. 
The sensitivity tests aimed to identify the smallest pos-
sible percentage in order to minimize the sample size of 
the data analyzed to save processing time. A breakdown of 
the simulated LAIs and their associated yield estimation is 
shown in Fig. 3. Here, the remaining 389 APSIM simula-
tions (out of ~ 2000 initial simulations), which resulted 
from the gap in max LAI value and timing filters (steps 2 
and 3 above) are plotted. In Fig. 3, the simulations whose 
estimated yield ended above the average of all 389 simu-
lations are colored more darkly (dark green for simulated 
LAI and dark blue for its associated estimated yield) than 
the simulations whose estimated yield ended to be below 
the average (light green for simulated LAI and light blue 
for its associated estimated yield). Figure 3 shows no 
clear trend of which simulation resulted in a higher, and 
therefore more accurate, yield estimation at the Green LAI 
stage. However, at the senescence stage, a clear trend was 
found, with the simulations having a low Senescence-LAI 
more likely to result in lower yield estimation. The result 
of this rule (step 4) is presented in Fig. 4B.

Step 5. Finally, estimating the field-scale yield as the 
mean of the simulations with the lowest 20% RMSE between 
simulated and RS Green LAI. An example of the output of 
the field-scale yield prediction is shown in Fig. 4C. In order 
to cover different scenarios, if step 4 results in fewer than 10 
simulations, then the estimated yield is set as the mean of all 
these 10 simulations, i.e., without applying step 5.

In the scenario of an extremely low yield, such as during 
a severe drought, the ability to accurately estimate LAI using 
satellites is very limited. While crop models still simulate 
crops with very low LAI in such scenarios, the extremely 
underdeveloped crop surrounded by bare soil is typically asso-
ciated with a reduced RS LAI owing to the mixed pixel effect 

LAI

Fig. 2   An illustration of the underestimation of the remotely sensed 
(RS) Senescence Leaf Area Index (LAI) (blue and red lines) in com-
parison to the in situ Senescence-LAI (dashed black line). RMSE is 
presented (i) between the fused images LAI and in situ LAI measure-
ments (“fused LAI–in situ RMSE”) and (ii) between the fused images 

LAI and the Green LAI in  situ measurements only (“fused LAI–in 
situ Green LAI RMSE”). The RMSE for the comparison between 
fused LAI and in situ LAI is 1.69, whereas the RMSE for fused LAI 
versus in situ Green LAI stands at 1.17.

LAI Yield (kg/ha)

Time

Fig. 3   A breakdown of the simulated Leaf Area Index (LAI) and their 
associated yield estimation after applying the gap in max LAI value 
and timing filters, which resulted in 389 selected simulations (out of 
~ 2000). This figure shows a comparison of simulated and remotely 
sensed (RS) maximum LAI for the simulations fall within ±10% of 
the RS maximum LAI values and ±5 days of the peak timing.
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(Gao et al. 2012). Such crops typically have a very low yield 
and therefore should be addressed as a worst-case scenario. 
Consequently, in case that the maximum RS LAI of the season 
was lower than 0.9, the estimated yield is set as the mean of 
the three simulations with the lowest yield estimation.

The threshold selected to trigger the “severe drought” 
methodology was selected (i) based on the limited ability of 
spaceborne remotely sensed data to sense the undeveloped 

crops in such a scenario; this is mainly owing to the sparse 
vegetation cover during a severe drought, and (ii) based on 
in situ evaluation of wheat fields during the 2018 drought in 
South-East Australia, using LAI-2000 Plant Canopy Ana-
lyzer (LI-COR), which was later compared with the RS LAI 
data to affirm the validity of the selected LAI threshold.

The proposed method was not developed using yield or 
LAI data of the 27 fields analyzed in this study; however, 

Fig. 4   An example of how the 
best-fit simulations are identi-
fied out of thousands of differ-
ent simulations of APSIM that 
were generated for a field, span-
ning a realistic range of possible 
on-farm and environmental 
variables. The green lines rep-
resent the simulated Leaf Area 
Index (LAI), and the blue lines 
represent the associated yield 
predictions, while the remotely 
sensed LAI in black. A The ini-
tial ~ 2000 APSIM simulations; 
B the outcome of steps 2–4, 
where only simulations within 
+/−10% of the remotely sensed 
(RS) max LAI and +/− 5 days 
are selected (78 simulations in 
this example); and C the output 
of field-scale yield estimation, 
when the estimated yield is 
determined based on all the 
simulations which met all the 
criteria (steps 1–5). Reported 
yield, 2618 kg/ha; estimated 
yield, 2394 kg/ha; error, −224 
kg/ha; estimated yield standard 
deviation (STDV), 198 kg/ha; 
number of best-fit simulations, 
16.

LAI Yield (kg/ha) 

Time

(A)

(B)

(C)



Versatile crop yield estimator﻿	 Page 9 of 22  42

one field was studied in depth to have a good understanding 
of the differences of the simulated LAI and RS LAI data-
sets. In addition, a similar process was used for two fields 
with extremely low yield, to understand the limitation of RS 
LAI to monitor crop development in severe drought condi-
tions and APSIM’s ability to simulate similar LAI values in 
such conditions. All the other fields analyzed were blindly 
tested as independent data. This study evaluated VeRCYe 
performance in two modes, yield estimation at the end of 
the season and in-season forecasting mode. The end of the 
season yield estimation mode uses the whole LAI time series 
of the growing season (i.e., 100% of the LAI data). The per-
formance of this mode was evaluated more extensively both 
at field and pixel levels as this was the main scope of this 
study. The forecasting mode in this study operated in a way 
that it would provide a preliminary indication if VeRCYe can 
be used to also forecast yield before the end of the season. 
In this mode, VeRCYe was modified to use only the highest 
50%, 40%, 30%, and 20% of the season’s remotely sensed 
LAI data, as shown in Fig. 5, and was evaluated only at the 
field level. The period covered by this range of LAI percent-
age was recognized once the season’s peak LAI was identi-
fied by using the concept of equivalent ratios. It is impor-
tant to note that in this theoretical experimentation, APSIM 
simulations were generated from weather data recorded up to 
harvest. For this stage, only the RS LAI based on the RDVI 
was used, since it resulted in the best yield estimation accu-
racy while comparing the performance of the generic and 
adjusted LAI as inputs to VeRCYe. The objective here was 
also to see if the size of the LAI time series could be mini-
mized and if so by how much, to save computation time and 
memory space while running the analysis. As a preliminary 
evaluation of the forecasting capabilities, this study used the 
same observed weather data in both modes.

2.5 � Generating yield maps at the pixel level

VeRCYe estimates yield at the pixel level by converting the 
3 m daily LAI maps produced from the fusion between PS 
and S2 (Sadeh et al. 2021). In this process, a Conversion 
Factor was used to convert LAI maps to yield maps (kg/ha). 
The Conversion Factor in our methodology serves as the 
bridge from this singular yield estimate, as derived from 
the APSIM simulation, to a more comprehensive yield map 
such that:

where estimated yield is the estimated field-scale yield and 
the remotely sensed LAImax corresponds to the season’s 
maximum field-scale median LAI value from the RS LAI 
map, for the day on which RS LAI was detected as being 
the maximum within that field during the growing season. 
Next, using Eq. 3, each pixel of the LAI map was multiplied 
by the Conversion Factor, which converted the LAI values 
into yield (kg/ha) at the pixel level. This process resulted in 
a yield map at a spatial resolution of 3 m.

The accuracy of these yield maps was assessed using 
yield data collected by combine harvesters equipped with 
on-board yield monitors, which collected geolocated point 
yield data during the harvest. In this study, the harvest-
ers’ raw point measurements (commonly provided at a 
density of 10 m) were interpolated to a grid using the 
inverse distance weighting (IDW) interpolation (Bartier 
and Keller 1996) into standardized 5 m yield maps, after 
removing outlier measurements of less than 100 kg/ha or 
above 10,000 kg/ha, as well as data points located within 
5 m of the field boundaries. Finally, the generated yield 
maps were smoothed by using a low pass filter (3 × 3 
pixels kernel).

2.6 � Harvest date detection

While forecasting yield is an important and challenging 
task, this study also identified when the crop is harvested 
and the predicted yield was ready to be transported from 
the farm for trading in the market. Consequently, the sow-
ing detection method of Sadeh et al. (2019) was applied to 
harvest detection using PlanetScope imagery. It was found 
that the sowing detection method was effective in detecting 
the harvested area of the field, after modifying the “change” 
equation (Eq. 1) to

(2)Conversion Factor =
Estimated yield

Remotely sensed LAImax

,

(3)Yield map = LAI map × Conversion Factor,

(4)Change = Image
PC1

t1
− Image

PC1

t2
,

LAI Yield (kg/ha)

40%

50%

30%

20%

Time

Fig. 5   Illustration of the periods covered by the highest 50%, 40%, 30%, 
and 20% of the season’s remotely sensed Leaf Area Index (RS LAI) 
data. The RS LAI in black and the dashed red lines illustrate the field’s 
highest percentage of the RS LAI values during the growing season.
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where the Image
PC1

t2
 is the first principal component of the later 

image in the time series and Image
PC1

t1
 is the first principal com-

ponent of the earlier image. This modification was required, 
as sowing often corresponds to a change in color from bright 
to dark, while at harvest, the field changes from dark to bright.

3 � Results

3.1 � Sowing date detection accuracy

Implementing the sowing date detection method proposed 
by Sadeh et al. (2019) resulted in the accurate detection of 
sowing in 20 out of the 22 (90.9%) fields analyzed. For the 
fields that were successfully detected, there was an average 
gap of only 0.95-day (0.5-day gap for the median) between 
the detected and reported sowing dates (RMSE = 2.7 days).

3.2 � Field‑scale yield estimation accuracy

The results, as shown in Table 2, indicate that when using 
the fused LAI equivalent to the original generic S2-LAI, 
VeRCYe was able to estimate field-scale yield with a 
RMSE of 971 kg/ha (relative RMSE 39%) and an average 
and median error of −740 kg/ha and −573 kg/ha, respec-
tively (for the best preforming VI). The R2 between the 
yield estimates using this dataset and the reported yield 
ranged between 0.84 and 0.89 for all VIs tested, while 
overall, the Modified Triangular Vegetation Index 2 
(MTVI2)–based fused LAI outperformed the other VIs for 
most of the performance metrics. Using the adjusted LAI 

improved the accuracy of the field-scale yield estimation 
substantially, with a RMSE of 757 kg/ha (relative RMSE 
30%) and an average and median error of −519 kg/ha and 
−438 kg/ha, respectively (for the best preforming VI). The 
best preforming VI fusion-based LAI for the original LAI 
was MTVI2, and for the adjusted LAI, Renormalized Dif-
ference Vegetation Index (RDVI) was found to achieve the 
best accuracy. These two VIs were reported by Sadeh et al. 
(2021) to be among the best preforming VIs to estimate 
wheat Green LAI using their proposed fusion method.

The R2 between the estimated and reported yield 
ranged between 0.83 and 0.88 for all VIs tested, while 
overall, the RDVI-based fused LAI outperformed the 
other VIs for most of the performance metrics. Over-
all, this study found that VeRCYe was not very sensi-
tive to the VI used to generate the fused LAI, as shown 
in Table 2. However, overall, the results highlight that 
using the fused LAI equivalent to the original generic 
S2-LAI underperformed for the field-scale yield pre-
dictions, resulting from using the adjusted LAI dataset. 
This study found that the adjusted RS LAI based on the 
RDVI resulted in the best yield prediction accuracy with 
R2 = 0.88 and RMSE = 757 kg/ha (average of −15%) 
between the reported and estimated yield (Fig. 6). In 
addition, this method was able to estimate both the low-
est (under 500 kg/ha) and highest yields (above 6500 
kg/ha) with satisfactory accuracy, having an RMSE = 
178 kg/ha (average error = 1 kg/ha, −1%) and 522 kg/ha 
(average error = 468 kg/ha, −7%), respectively. Despite 
these satisfactory results, VeRCYe tended to underes-
timate the reported yield in the tested conditions, as 
shown in Fig. 6.

Table 2   Performance of VeRsatile Crop Yield Estimator (VeRCYe) 
field-scale yield estimations (n = 27) using either (i) the fused-based 
Leaf Area Index (LAI) dataset equivalent to the generic Sentinel-2 
(S2) LAI (original) or (ii) the adjusted fused-based LAI that correct 
for underestimation of high LAI values (LAI > 3). This table shows 

which of the 13 different vegetation indices (VI’s) used in Sadeh 
et  al. (2021) to fuse PS and S2 into high spatiotemporal resolution 
LAI resulted with the most accurate yield estimation. The best perfor-
mances in each performance metric are highlighted in bold.

VI NDVI EVI2 MTVI2 MSAVI WDRVI Green 
WDRVI

GCVI OSAVI GSR GNDVI RDVI TVI SR

Original LAI
  Average error (kg/ha) −845 −856 −740 −807 −847 −833 −827 −851 −826 −835 −774 −819 −835
  Median error (kg/ha) −868 −868 −573 −573 −868 −898 −870 −868 −870 −868 −653 −675 −833
  RMSE (kg/ha) 1049 1059 971 1031 1044 1006 993 1053 993 1017 1002 1025 1038
  Relative RMSE (%) 42 42 39 41 42 40 40 42 40 41 40 41 41
  R2 0.85 0.85 0.85 0.84 0.86 0.88 0.89 0.85 0.89 0.87 0.84 0.86 0.86 

Adjusted LAI
  Average error (kg/ha) −545 −558 −550 −572 −594 −563 −561 −538 −575 −556 −519 −579 −627
  Median error (kg/ha) −378 −378 −511 −488 −488 −525 −380 −378 −488 −525 −438 −488 −554
  RMSE (kg/ha) 817 850 817 834 887 845 854 809 866 832 757 829 913
  Relative RMSE (%) 33 34 33 33 35 34 34 32 35 33 30 33 36
  R2 0.86 0.84 0.86 0.86 0.83 0.85 0.84 0.86 0.84 0.85 0.88 0.86 0.83
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3.3 � Yield map accuracy

The ability of VeRCYe to estimate yield at the pixel level 
was tested for 22 fields. The results, as shown in Table 3, 
indicate that when using the fused LAI, which was equiva-
lent to the original generic S2-LAI, the proposed yield 

estimation method was able to produce estimated yield 
maps with an RMSE of 1108 kg/ha and an average and 
median error of −467 kg/ha and −534 kg/ha, respectively 
(for the best preforming VIs), at the pixel level (for all pix-
els of all maps). The R2 between the yield estimates using 
this dataset and the reported yield ranged between 0.28 
and 0.32 for all VIs tested, while overall the RDVI-based 
fused LAI slightly outperformed the other VIs.

In contrast to the improvement achieved by using the 
adjusted LAI dataset in estimating field-scale yield, using it 
to generate yield maps did not result in improved accuracy. 
Using the adjusted LAI resulted in an RMSE of 1213 kg/ha 
and an average and median error of −668 kg/ha and −819 kg/
ha, respectively (for the best performing VIs), at the pixel level. 
The R2 between the estimated yield maps and the harvesters’ 
yield maps ranged between 0.27 and 0.32 on average for all 
VIs tested, while overall, the RDVI and the GSR-based fused 
LAI outperformed the other VIs in most of the parameters. It is 
important to note that in some cases the correlation at the pixel 
level between the harvester and the estimated yield maps was 
higher than R2 = 0.81 (RMSE > 525 kg/ha) as shown in Fig. 7.

3.3.1 � Sowing dates as model inputs

The result of the analysis shows a significant improvement 
in the accuracy of the yield estimation when using the 
detected sowing dates as inputs to the model instead of a 
rule-based sowing window. As shown in Fig. 8, using the 
sowing window with the adjusted fused-based LAI, the 
R2 and RMSE between the reported and estimated yield 
were 0.71 and 1271 kg/ha, respectively, while using the 
detected sowing dates resulted in R2 = 0.88 and RMSE of 
757 kg/ha.

Fig. 6   Comparison between wheat yield reported by farmers and that 
estimated at the field scale by VeRsatile Crop Yield Estimator (VeR-
CYe), when using the adjusted RS LAI based on the RDVI. Each red 
square represents one of the 27 fields for which yield was reported 
by farmers; the whiskers represent the standard deviation of the esti-
mated yield; the black line represents the 1:1 line; and the blue line 
represents the trend line. The accuracy analysis resulted in median 
error = −438 kg/ha, RMSE = 757 kg/ha, and R2 = 0.88.

Table 3   The performance of VeRsatile Crop Yield Estimator (VeR-
CYe)e to accurately generate sub-field-scale yield estimation by cre-
ating 3 m yield maps (n = 22). This table shows a comparison of 
the accuracy of the yield maps from either (i) the fused-based Leaf 
Area Index (LAI) dataset equivalent to the generic Sentinel-2 (S2) 

LAI (original) or (ii) the adjusted fused-based LAI. This table shows 
which of the 13 different vegetation indices (VI’s) tested by Sadeh 
et al. (2021) to fused PS and S2 into high spatiotemporal resolution 
LAI, resulted in the most accurate yield map estimation. The best 
performance in each metric is highlighted in bold.

VI NDVI EVI2 MTVI2 MSAVI WDRVI Green WDRVI GCVI OSAVI GSR GNDVI RDVI TVI SR

Original LAI
  Average error (kg/ha) −604 −625 −572 −652 −665 −644 −606 −605 −605 −660 −467 −660 −652
  Median error (kg/ha) −627 −607 −677 −681 −690 −646 −600 −627 −601 −654 −534 −683 −672
  RMSE (kg/ha) 1108 1133 1215 1145 1184 1165 1148 1109 1147 1156 1199 1146 1183
  R2 0.30 0.31 0.28 0.30 0.32 0.31 0.32 0.30 0.32 0.31 0.30 0.30 0.32 

Adjusted LAI
  Average error (kg/ha) −894 −911 −687 −839 −886 −845 −813 −895 −812 −872 −668 −852 −856
  Median error (kg/ha) −999 −999 −855 −845 −966 −944 −926 −999 −927 −966 −819 −851 −976
  RMSE (kg/ha) 1288 1303 1281 1258 1285 1235 1214 1289 1213 1250 1299 1261 1272
  R2 0.30 0.31 0.27 0.29 0.32 0.31 0.32 0.30 0.32 0.31 0.30 0.30 0.32
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3.3.2 � Yield forecasting using VeRCYe

In contrast to using the whole LAI time series of the growing 
season, this study also tested if VeRCYe has the potential 
to be used for yield forecasting rather than estimating and 
mapping the yield at the end of the growing season. Accord-
ingly, VeRCYe was modified to use only the highest 50%, 
40%, 30%, and 20% of the season’s remotely sensed LAI 
data, as shown in Fig. 5.

The results of the analysis show that even when using 
50% or less of the RS LAI dataset (Fig. 9), VeRCYe was 
able to forecast the final yield (R2 = 0.88–0.78) from about 
2 months before the harvest (Fig. 10), while slightly under-
performing the yield estimation made using the full RS LAI 
data (Fig. 6). However, as shown in Fig. 9, the shorter the 
time period used, the lower the accuracy. In addition, when 
comparing the forecasted yield by using both the generic 
and adjusted LAI as inputs to VeRCYe, using the adjusted 
LAI led to better accuracy in most cases, except for the R2 
(Fig. 9). Figure 10 shows how long before the harvest the 
yield could be forecast and the duration of the period that 
LAI was monitored to enable that forecast (more than a 
month after the LAI peak for 50% of the data and less than 
3 weeks after the peak for 20% of the LAI dataset).

The findings of this study underscore the significance of 
segmenting the LAI dataset into two distinct components: 

Green LAI and Senescence-LAI. This segmentation is cru-
cial for enhancing the accuracy of yield forecasts (Fig. 9). 
When the LAI dataset is analyzed over a shorter temporal 
span, the critical distinctions between Green LAI and Senes-
cence-LAI become less pronounced, leading to a decrease in 
the precision of the resultant field forecasts.

3.3.3 � Harvest date detection

This study identified and mapped harvested area over the 
studied fields, by applying the sowing detection method pro-
posed by Sadeh et al. (2019). All 20 analyzed fields had their 
harvest date detected with an average −0.1-day gap (0-day 
gap for the median) between the detected and the reported 
harvest dates (RMSE = 2.6 days). The results show that 
after making small adjustments for harvest detection, the 
method was also suitable for detecting harvested area and 
its timing (Fig. 11). As illustrated in Fig. 11(A), the pre-
harvested wheat can be seen in a dark brown color, while the 
harvested area has bright yellow/gray colors. Figure 11(B) 
shows the images resulting from subtracting Image

PC1

t1
 from 

Image
PC1

t2
 , where a change between the images resulted in 

high values (green) and insignificant changes resulted in low 
values (red). The area classified as harvested is shown in 
white (Fig. 11(C)), and the gray areas are classified as noise.

Yield (kg/ha)

0 - 800
800 - 1,600
1,600 - 2,400
2,400 - 3,200
3,200 - 4,000

Harvester Estimated yield map

0 0.50.25
Km

Estimated yield map (kg/ha) 

(C)(B)(A)
Harvester yield map (kg/ha)

Fig. 7   Yield map produced by the combine harvester (A) and a yield 
map produced using the proposed methodology (B) and their com-
parison (C) for a wheat field located near Birchip, Victoria, Australia. 
B The estimated 3 m pixel size yield map. C The correlation between 

the two yield maps is presented in the form of a scatterplot, where the 
black line signifies the 1:1 line and the blue line signifies the trend 
line. The correlation analysis between these maps found a RMSE = 
525 kg/ha and R2 = 0.81.
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Es�mated yield (kg/ha)

Reported yield (kg/ha)

(A)
Detected sowing date 
&
Adjusted LAI

(B)
Detected sowing date
&
Non-adjusted LAI

(C)
Sowing window
&
Adjusted LAI

(D)
Sowing window 
&
Non-adjusted LAI

Average error -519 -774 -918 -1,073
Median error -438 -653 -944 -1,089
RMSE (kg/ha) 757 1,002 1,271 1,431
R2 0.88 0.84 0.71 0.65

(A) (B)

(C) (D)

(E)

Fig. 8   Comparison between the accuracy of the VeRsatile Crop Yield 
Estimator (VeRCYe) yield estimations when using the detected sow-
ing dates for each field and its accuracy when a rule-based sowing 
window was used to determine the fields’ sowing dates for APSIM 
simulations. A The outcome of VeRCYe using the adjusted fused-
based Leaf Area Index (LAI) with the detected sowing dates, B the 

fused-based LAI dataset equivalent to the generic Sentinel-2 (S2)-
LAI (original) with the detected sowing dates, C the adjusted fused-
based LAI with a sowing window, D the fused-based generic S2-LAI 
with a sowing window, and E statistical summary of the analysis is 
presented in the table at the bottom of the figure.
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4 � Discussion

4.1 � Wheat yield estimation at the field scale

Despite extensive research on remotely sensed yield esti-
mation, it remains difficult to directly compare the results 
of this study with other studies on field-scale yield estima-
tion, mainly owing to the lack of similarity in crop type, 
geographical location, and time frame of these estimations 
(Dado et al. 2020). However, this study demonstrated the 
capacity of VeRCYe both to predict and to map wheat yield 
prior to harvest with satisfactory accuracy, along with its 
potential in yield forecasting months before the harvest. 
The results suggest that using wheat-adjusted LAI (Sadeh 
et al. 2021) improves the accuracy of field-scale yield esti-
mates substantially in comparison to using the fused LAI, 
which is equivalent to the original generic S2-LAI.

VeRCYe was found to provide a scalable approach for 
estimating wheat yield without the need for calibration, per-
forming almost as well (and sometimes even better) than 
approaches that use field data for calibration (e.g., Feng 
et al. 2020; Donohue et al. 2018; Filippi et al. 2019; Zhao 
et al. 2020; Cai et al. 2019; Chen et al. 2020); all of these 
studies required the collection of an extensive and unique 
dataset measured in situ to train or calibrate their models. 
These datasets are rare, expensive to obtain, and very time 
consuming to perform. Furthermore, these methods, which 
require calibration through ground data, are typically lim-
ited in applicability to the areas from which the ground data 
were obtained. In addition, most methods provide yield 
estimates at a low resolution and often cannot be used for 
field and sub-field-scale yield predictions. One of the rea-
sons why many of these studies have estimated yield at the 
regional scale is the difficulty to predict yield at a smaller 
scale, owing to variability of the environmental conditions 

Fig. 9   Results of using VeR-
satile Crop Yield Estimator 
(VeRCYe) in forecasting mode 
when using only the highest 
50%, 40%, 30%, or 20% of the 
season’s remotely sensed (RS) 
Leaf Area Index (LAI) data. 
This figure shows the outcome 
of yield forecasting at a field 
scale from using the generic and 
adjusted LAI datasets, by exam-
ining their RMSE and average 
error in kg/ha (gray columns) 
and R2 (red lines).
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Fig. 10   Outcomes of the yield 
forecasting at a field scale from 
using the generic (light-gray) 
and adjusted (dark-gray) Leaf 
Area Index (LAI) datasets. 
Sub-figure (A) shows how 
long before the harvest the 
yield could be forecasted and 
sub-figure (B) the length of the 
period needed to be monitored 
after the peak of the season’s 
LAI for each of the highest 
50%, 40%, 30%, or 20% of the 
season’s remotely sensed (RS) 
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and farm practices, even within the same region (Feng et al. 
2020). The development of VeRCYe was motivated to over-
come these limitations, with its great advantage being that 
it uses agro-physiological knowledge embedded in a crop 
model (APSIM), which can be directly related to crop per-
formance monitored by a satellite through time and space. 
In addition, VeRCYe can theoretically be applied to different 
crop types across different regions, without the need for local 
calibration, while being applicable for a rapidly changing 
environment (e.g., Ababaei and Chenu 2020; Collins and 
Chenu 2021) to which farmers are already adapting (e.g., 
Flohr et al. 2018).

The SCYM approach (Lobell et al. 2015), which offers 
yield estimation at the pixel level and employs regression 
methods to relate satellite imagery to gridded meteorologi-
cal data, had some promising results when first tested in 
estimating yield at the field-scale for maize (R2 = 0.35) 
and soybean (R2 = 0.32) in the Midwestern United States 
(Lobell et al. 2015). However, later studies that tested the 
method for wheat yield estimation achieved limited suc-
cess. Despite several attempts to use SCYM for wheat 
yield estimation with a range of different satellites having 
different temporal and spatial resolutions (Azzari et al. 
2017; Jain et al. 2017; e.g., Jain et al. 2016; Shen and 
Evans 2021; Campolo et al. 2021), none of these attempts 
resulted in better performance than the proposed VeRCYe 
approach, as demonstrated in this study.

Globally, agriculture is critical to the livelihoods of mil-
lions of people, with low-yield harvests being directly cor-
related to high levels of food insecurity (Becker-Reshef et al. 
2020). Therefore, when crop conditions are extremely poor, 
yield forecasting methods require these failures to be flagged 
early. Methods that use ground-based data for calibration 

and training of their models (such as those using machine 
learning techniques) typically do not have the required 
ground reference data to represent the yield heterogeneity 
of the region of interest over space and time (Benami et al. 
2021). Not having training data that reflects extremely low-
yield scenarios may prevent these methods from producing 
accurate and reliable yield estimates. Conversely, VeRCYe 
managed to estimate such extremely low-yield fields (Fig. 6), 
despite being tested over wheat fields heavily impacted by 
one of the worst droughts in Australia in the last decade 
(Tian et al. 2019). This was achieved by identifying a field-
scale failure, which was determined as a worst-case scenario.

Despite its popularity, the use of the peak LAI to esti-
mate yield is likely to achieve poor predictions (Waldner 
et al. 2019). LAI by itself is limited as a linear indicator for 
the crop’s yield, as this may be due to failure of plant devel-
opment, or biotic or abiotic stresses (Huang et al. 2019; 
Benami et al. 2021). That also applies for the limited linear 
relationship between the VIs peak and the final yield (Kamir 
et al. 2020). However, it has been indicated by Dado et al. 
(2020) that using the peak of the Green Chlorophyll Vegeta-
tion Index (GCVI) and a window of 30 days after the peak 
allowed a slightly better yield estimation to be achieved 
than using the GCVI peak alone. Similarly, the current 
study indicates that the wider the window, the more accu-
rate the yield estimation (Fig. 9 and 10). Accordingly, this 
study also highlights the need to watch the Senescence-LAI, 
owing to its important role in grain development. Figure 3 
shows that while the simulated LAI peaks from different 
combinations of possible scenarios may be similar in timing 
and magnitude, only during the Senescence-LAI could the 
full pattern that better represented the final yield be identi-
fied. As optical remote sensing largely represents the Green 

Fig. 11   Example of harvest 
detection. This figure illustrates 
the harvest detection of a 1400-
ha farm near Mullewa, Western 
Australia, using four Planet-
Scope images taken over 8 days. 
Refer to the text for details.
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LAI (Haboudane et al. 2004), identifying an identical pat-
tern between the simulated and RS LAI over the entire time 
series very likely results in an underestimation of the final 
yield. Therefore, VeRCYe includes a step which divides the 
RS LAI series into two, Green LAI and Senescence-LAI, 
and analyzes each separately.

In addition, the agreement between APSIM simulated 
LAI values and the remotely sensed LAI is not perfect 
(Waldner et al. 2019), even without the imbedded noise in 
the satellite data (Sadeh et al. 2021). For example, Ahmed 
et al. (2016) reported that APSIM leans slightly towards 
the overestimation of LAI. The observed discrepancy found 
in this study may be attributable to either inaccuracies in 
the remotely sensed LAI or potential limitations within the 
crop mode. Consequently, future research should strive to 
ascertain the origin of this error and examine its implications 
for methodologies that aim to integrate remote sensing data 
with crop modeling.

4.2 � Yield maps at the pixel scale

Yield maps can help with estimating profitability, assessing 
the impacts of treatments used, establishing management 
zones, estimating the amount of nutrients removed by the 
harvested crop, improving farmers’ skills, reducing yield 
gaps, and identifying areas that have predominantly large 
continuous gaps (Fulton et al. 2018; Lobell et al. 2015; Zhao 
et al. 2020). However, to reduce yield gaps (the difference 
between achievable yield and the actual yield), accurate 
yield estimates and their magnitude are needed, which rep-
resents their spatial and temporal variability (Hochman et al. 
2012). The 3 m yield maps produced by VeRCYe can help to 
address these challenges, especially in regions where reliable 
geolocated yield data obtained from harvesters is not avail-
able, such as in many developing countries.

The accuracy of the yield maps generated by VeRCYe 
resulted in R2 = 0.32 (RMSE of 1213 kg/ha) using the 
best-performing VI (RDVI). These results are equivalent 
to the accuracy of other yield mapping methods reported 
in the literature (e.g.Manivasagam et al. 2021; Sagan et al. 
2021; Kamir et al. 2020; Dado et al. 2020). However, unlike 
VeRCYe, the methods used in these studies require local 
calibration, which limits their ability to estimate crop yield 
over large areas or in different environments from where the 
calibration data was gathered.

The SCYM (Lobell et al. 2015), which is similar to VeR-
CYe, can theoretically be applied anywhere in the world and 
produce a yield map at the pixel scale. While a pixel-by-
pixel comparison of SCYM against harvester-based yield 
monitor data showed similar results, these studies looked 
at crop types other than wheat. For example, for maize, 

Jeffries et al. (2019) reported R2 average value of 0.12 and 
Deines et al. (2021) reported R2 = 0.31–0.4, and for soy-
bean, Dado et al. (2020) reported R2 = 0.27. Waldner et al. 
(2019) suggested that the temporal resolution is more import 
than the spatial resolution for accurate yield estimation, and 
therefore, the accuracy reported in this study may have been 
achieved owing to the high-temporal resolution (daily) of the 
dataset rather than its high-special resolution (3 m).

The comparative lower accuracy of the yield map esti-
mated by our method relative to the yield map generated 
from the combine harvester can be attributed to several fac-
tors. One potential source of this discrepancy is the positional 
accuracy of the sensors, which is reported to have a RMSE of 
less than 10 m (Planet Team 2018). Additionally, the absence 
of a co-registration component in the fusion process may 
contribute to this inaccuracy. More significantly, however, the 
reduced accuracy appears to be a consequence of the method 
used to convert LAI pixel data into yield estimates, facilitated 
by the Conversion Factor. In its present implementation, the 
Conversion Factor effectuates a linear transformation from 
LAI to yield. This linear approach may not be entirely repre-
sentative, considering that the relationship between LAI and 
yield is not strictly linear. As a result, this linear conversion 
is likely to lead to underestimation of yield in high-yielding 
portions of the field and overestimation in areas of lower 
yield. Therefore, it is crucial for future research to explore 
alternative formulations of the Conversion Factor concept, 
potentially adopting non-linear models that more accurately 
reflect the complex relationship between LAI and yield.

4.3 � Sowing dates as model inputs

Sowing dates are an important input for crop models; there-
fore, obtaining accurate farm and regional scale information 
about the date when a crop was sown can assist in improv-
ing the reliability of crop simulations (Chenu et al. 2017; 
Holzworth et al. 2014; Flohr et al. 2017; Zheng et al. 2018; 
Mathison et al. 2017). Not knowing that parameter may 
result in a failure in capturing the full yield variation present 
within that region (Deines et al. 2021). Therefore, instead of 
using officially reported sowing dates (e.g., Marinho et al. 
2014; Jin et al. 2016; Sakamoto et al. 2005) or a sowing date 
window (e.g., Azzari et al. 2017; Lobell et al. 2015), this 
study used the actual detected sowing dates as model inputs.

This study showed that when using the detected sowing 
dates, VeRCYe’s yield estimation accuracy was substantially 
higher than using a rule-based sowing window (Fig. 8). 
While this is true when using VeRCYe at the field scale, 
future studies should explore the benefit of detecting the 
sowing date for each individual field when implementing 
VeRCYe at a regional scale.
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4.4 � Yield forecasting using VeRCYe

This study showed that VeRCYe can be very useful in esti-
mating and mapping wheat yield at the end of the growing 
season without a requirement for local calibration, which has 
many applications. However, producing reliable forecasts of 
yield as far as possible ahead of harvest is important for food 
security monitoring, commodity traders, governments, and 
market stability (Benami et al. 2021; Becker-Reshef et al. 
2020; Hammer et al. 2001). Hence, a method that is able to 
provide reliable wheat yield forecasting through space and 
time is needed.

The current study tested VeRCYe’s potential in the 
forecasting mode, which uses only a part of the LAI data 
(Fig. 5), theoretically enabling it to forecast the yield about 2 
months before the harvest (Fig. 10). The results show a mod-
erate decline in the accuracy of the forecasted yield when 
a shorter LAI window around the peak of the LAI is used. 
Future studies should examine VeRCYe’s performance when 
the field’s LAI is being monitored from the beginning of the 
season up to three weeks after the peak, which according to 
Fig. 10 would allow to forecast yield more than 2 months 
before the harvest.

This study noted that computation wise, there is not much 
of a difference when running VeRCYe, at the field level, with 
the whole LAI time series of the growing season, or only the 
highest 50%, 40%, 30%, and 20% of the season’s remotely 
sensed LAI data. However, it is likely that when running 
the proposed method on large scales, then the length of the 
period covered will affect the processing time.

4.5 � Harvest date detection

The findings of this study underscore the efficacy of the 
tested change detection method in accurately identifying 
harvested wheat fields and tracking harvest progression 
both spatially and temporally. In this instance, the discern-
ible contrast between senescing crops and the post-harvest 
residue was effectively utilized as an indicator of harvest 
completion. The technique developed by Sadeh et al. (2019) 
proved highly effective in detecting harvested fields across 
the Australian wheatbelt. However, there remains a need 
for further research to assess its applicability in different 
environmental contexts and to evaluate its performance 
at a larger scale. A critical factor contributing to the high 
accuracy of this study was the employment of PlanetScope’s 
daily imagery. Nonetheless, it is important to note that in 
certain situations, the frequent presence of cloud cover may 
impede the use of such imagery. Consequently, it seems 
plausible to suggest that in other regions of the world, SAR-
based change detection methods might be more appropriate 
for similar applications.

4.6 � Limitations and prospects

Despite the results presented in this paper, there are some 
limitations and prospects that should be noted. The assump-
tion that LAI and yields can be simulated accurately by crop 
models, such as APSIM, is the basis of VeRCYe. However, 
those models generally do not take biotic stress into consid-
eration. In addition, they are also theoretic models and are 
thus imperfect by nature. Brown et al. (2018), who evaluated 
the APSIM-Wheat performance, found the model to estimate 
wheat yield with R2 = 0.84 and RMSE = 100.5 kg/ha. While 
APSIM was used in this study, VeRCYe could be imple-
mented using other process-based crop models that may be 
better adapted to other regions and/or crops. Future studies 
should evaluate its performance with other crop models.

VeRCYe uses the remotely sensed LAImax (the day when 
RS LAI was detected as being the maximum during the 
growing season at the field level) to convert the LAI values 
into yield at the pixel level. However, this approach is not 
ideal, given that spatial differences in LAI may be due to 
different causes (e.g., different soil types, different topog-
raphies prone to flooding or frost, differences in water or 
nutrient availability), which are likely to impact differently 
the crop development and growth and ultimately the yield.

Yield estimation at the field-scale or its associated yield 
map (accurate as they can be) only provides information 
about yield, and the map itself cannot identify the yield-
impacting factors. By contrast to most other yield estimation 
methods, VeRCYe identifies the best model simulations out 
of thousands of simulations that cover a representative range 
of on-farm management practices and possible environmen-
tal conditions. This enables the on-farm management prac-
tices used in the selected best-fit simulations to be extracted 
for investigation. For example, when analyzing field-scale 
yield over a specific region, the practices resulting in the 
highest or lowest yields can be identified, and the manage-
ment practices that may help farmers to improve their pro-
ductivity can be recommended. However, it is possible that 
the method produces accurate yield estimates for the wrong 
reasons. Having multiple changing parameters may end up 
with more knobs than can be turned, which can increase the 
chance of getting right-looking answers from an incorrect 
set of parameters. Therefore, further research is needed to 
verify if the optimal APSIM parameters actually reflect the 
conditions on the ground, which requires a very detailed 
record of farm management practices used by the farmers. 
However, such an analysis is beyond the scope of this study.

Importantly, VeRCYe was used here with APSIM simula-
tions generated from weather data recorded up to harvest. In 
a full forecasting mode, forecasted weather data or historical 
weather data capturing climatic variability for the site should 
be used to evaluate the likely crop growth and development 
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of the reminder of the season. The process of selecting the 
best fit simulated LAI to the RS LAI should also be the focus 
of future studies, together with testing VeRCYe’s ability to 
generate yield forecasts using forecasted weather data.

While the method proposed here was tested for the esti-
mation of wheat yields, it is probable that it would also be 
capable of predicting yield for other crops. This can be done 
by running a suitable crop simulator (e.g., APSIM-Maize) 
and by adjusting the parameters listed in Table 1 to reflect 
the typical local practices for each crop. However, the results 
of this study indicate that adjustment of generic S2-LAI data 
for improving the estimates of the Green LAI, as proposed 
by Sadeh et al. (2021), is needed in order to achieve better 
yield estimation. Moreover, it is likely that such an adjust-
ment will also be needed when implementing VeRCYe with 
other crop types.

While this method relies on the availability of LAI data 
from optical sensors, these are highly sensitive to the pres-
ence of clouds and shadows in the imagery, which is likely 
to limit the ability to perform at its best over certain regions. 
SAR sensors have the advantage over optical sensing of pro-
viding all-weather capability, and harnessing these offers the 
prospect of an improvement to VeRCYe should include the 
use of SAR-based LAI or SAR-optical fused LAI.

In the context of this study, the utilization of PlanetScope 
imagery proved as useful for generating high-resolution 
fused images and in accurately detecting sowing and harvest 
dates. However, it is critical to acknowledge that Planet-
Scope data is not freely available for commercial applica-
tions. This aspect necessitates further research to investigate 
the viability of alternative satellite imagery sources that are 
accessible to the public at no cost. Exploring these freely 
available options is essential for the broader applicability 
and sustainability of similar studies in commercial settings.

The advantage of being able to estimate field and farm 
productivity remotely without the need of having “boots on 
the ground” has been magnified by the outbreak of COVID-
19. While lockdowns and prolonged COVID-19 quarantine 
measures delay/limit the supply of essential products, such 
as fertilizers, herbicides, machinery, or even the availabil-
ity of seasonal workers, affecting the farmers’ performance, 
it has also decreased feed wheat and wheat-based product 
demand (FAO 2021). VeRCYe can potentially help to moni-
tor these influences remotely across different regions without 
the need to risk surveyors in collecting ground data.

The proposed method allows the crop performance to be 
monitored throughout the season, from their sowing dates 
until the farmer decides to harvest and the yield becomes 
available to be traded as a food product.

5 � Conclusions

The main contribution of the VeRCYe method is that 
it overcomes the major limitation of previous studies, 
namely, the need for ground data in model building and 
calibration for estimating wheat yield. VeRCYe does so by 
leveraging the combined advantages of crop model simu-
lations and high spatiotemporal resolution remote sens-
ing. This approach allowed sowing date data required for 
model inputs to be estimated from satellite data. It also 
permits remotely sensed field- and pixel-scale estimation 
of crop yield without the need to compromise between 
high temporal resolution and high spatial resolution. Since 
VeRCYe is not dependent on ground calibration data, it 
offers broad applications across regions where ground 
calibration data are not available. Experiments to test the 
method showed it to be reliable for estimating field-scale 
wheat yields (R2 = 0.88, RMSE = 757 kg/ha). Importantly, 
these experiments also revealed the potential of VeRCYe 
to produce 3 m resolution yield maps months before the 
wheat harvest (R2 = 0.32, RMSE = 1213 kg/ha). Although 
the current study was conducted on wheat, the method 
may also be implemented to predict the yields of other 
crop types, with only minimum adaptation. This study thus 
outlined an innovative approach to monitor farm manage-
ment practices at 3 m, from sowing, through monitoring 
the crop performance throughout the season, until harvest 
when the yield becomes available for trading as a food 
product. Furthermore, the information generated with this 
method can be used to understand yield variability from 
a regional scale to a pixel scale and may provide insights 
into the causes and spatial distribution of this variability.
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