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Abstract
Cropping system models are deployed as valuable tools for informing agronomic decisions and advancing research. To meet 
this demand, early career scientists are increasingly tasked with building crop models to fit into these system modelling 
frameworks. Most, however, receive little to no guidance as to how to do this well. This paper is an introduction to building 
a crop model with a focus on how to avoid pitfalls, minimize uncertainty, and maximize value. We synthesized knowledge 
from experienced model builders and literature on various approaches to model building. We describe (1) what to look for in a 
model-building dataset, (2) how to overcome gaps in the dataset, (3) different approaches to fitting and testing the model, and 
(4) how to avoid common mistakes such as over-parameterization and over-fitting the model. The process behind building a 
crop model can be overwhelming, especially for a beginner, and so we propose a three-pronged approach: conceptualize the 
model, simplify the process, and fit the model for a purpose. We revisit these three macrothemes throughout the paper to instil 
the new model builder with the methodical mindset needed to maximize the performance and impact of their crop model.
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1  Introduction

Crop models have the potential to transcend our understand-
ing of how crops interact with agronomic management across 
space and time. Models have been accepted as useful tools that 
help agronomists, farmers, policy makers, and other research-
ers make more informed decisions and recommendations. In 
this paper, we provide a guide on how to build a process-based 
crop model within a larger cropping system framework. There 
are many different kinds of crop models, and so, we want to 
be explicit in defining the scope of this paper: this paper is 
not necessarily applicable to 3D-crop modelling or machine 
learning, although many of the basic principles around quality 
control and model testing are universal for model building.

Building this type of crop model requires finding a bal-
ance between theory and practicality, complexity and cer-
tainty, breadth, and depth, such that the model can capture 
both the internal plant mechanisms driving growth and the 
external interactions of these mechanisms with a dynamic 
cropping system. In their 2012 review, Prost et al. called for 
more debate and discussion about the model design process. 
This paper’s aim is to invite more early career model build-
ers into that conversation, giving an overview of the model 
building landscape: what to look for in a dataset, what ques-
tions to ask, and how to test if your model is good.

Many of the examples referenced in this paper are 
sourced from the Agricultural Production Systems sIMula-
tor (APSIM; Holzworth et al. 2014; 2018); however, the 
principles are applicable to building a crop model within 
other cropping system frameworks (e.g., STICS (Brisson 
et al. 2003) and DSSAT (Jones et al. 2003)).

The goal of a crop model is to simulate plant growth as 
the product of a series of interactions among the plant, soil, 
climate, and management (Hornberger and Spear 1981). The 
model itself is a complex web of simple algorithms, each 
describing a different interaction and tying all the model 
components together. Within the plant itself, the allocation 
and reallocation pathways of biomass and nutrients are a 
constantly changing and interlocking network of supplies 
and demands. Because of this tight coupling, inaccuracies or 
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uncertainties in one process will be potentially compounded 
in another process downstream. Each step in the process of 
model building should be taken with the aim of making the 
model as simple and data-driven as possible to reduce the 
risk of such uncertainties (Stirling 1999). Moreover, given 
the interwoven nature of the different components within 
the model, diagnosing the source of these uncertainties 
becomes increasingly difficult as the model grows in com-
plexity (Balci 1995).

“Garbage in, garbage out” is a common saying among 
model builders; i.e., a model can only be as good as the data 
you use to build it. We propose that the best approach to 
building a model should extend beyond the data itself. This 
approach is particularly useful when modelling with a sparse 
dataset as would be the case with a crop that has not been 
extensively researched. The dataset you use, much like the 
code the model is comprised of, defines the boundaries and 
limitations of the model (Boote et al. 1996; Brisson et al. 
2003). Meanwhile, the quality of a model is akin to how 
useful and robust it is.

The process of building a model should start before the 
model-building dataset is compiled with a concept of how 
the model should work. You, the model builder, should then 
use the data to focus that concept, break the model down into 
simple parts, and fit each part for a purpose, be it minimizing 
uncertainty within the model or targeting the needs of the 
end users. The aim of this three-pronged approach (concep-
tualize, simplify, and fit for purpose) is to avoid over-param-
eterizing the model and to maximize its impact (Fig. 1). We 
will revisit this approach throughout this paper as we delve 
into the specifics of building a crop model.

2 � Getting started

2.1 � Conceptualize: what are the needs 
of the potential model users?

There are many potential uses for a crop model, but most 
model builders aim to build a model that is versatile enough 
to both improve understanding and be a tool for action; 

achieving both aims, however, requires simultaneously tar-
geting two user groups with different needs who operate 
often at different scopes (Boote et al 1996; Prost et al. 2012).

As a model builder, you want to gain the confidence of 
those who will use your model. To gain this confidence, you 
must understand what they need the model to simulate and 
construct a model structure that can fill those needs. While 
this may seem obvious, Prost et al. (2012) found that only 
30 models out of the 518 they reviewed included input from 
the targeted users in the design of the model. It is impor-
tant to determine what crop responses to model to meet the 
needs of the user and what data is necessary to inform those 
responses (Boote et al. 1996). For instance, grain N con-
centration response to management is quite important to a 
chickpea researcher focused on human nutrition, but perhaps 
not so important to a maize researcher focused on ethanol. 
For this purpose, consider what the scope of the model needs 
to be, i.e., how detailed or general the model needs to be. 
Increasing the level of detail in the model increases the risk 
of error (uncertainty) and reduces the model’s stability (ver-
satility) when applied in a more general context (Saltelli 
2019). Once you understand the model’s purpose and scope, 
you can think about what data you need to fit that purpose 
and how data availability may limit the scope.

2.2 � Simplify: aligning the needs of the model 
with the availability of data

2.2.1 � Minimize uncertainty

When laying the foundation for your model, you want to 
maximize versatility and minimize uncertainty (Fig. 2). 
Increasing model complexity can increase the versatility 
or scope of the model (how many questions the model can 
answer) and decrease the sensitivity of the model to indi-
vidual inputs, but it also increases the model’s overall uncer-
tainty (Muller et al. 2011). The model’s overall uncertainty 
is the cumulative uncertainty of its processes (phenology, 
canopy development, etc.) (Snowling and Kramer 2001). 
The baseline experiment you use to fit each process within 
the model should be aimed at minimizing this uncertainty by 

Fig. 1   A three-pronged 
approach to building a crop 
model.
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being akin to a control plot in a field experiment. Think opti-
mal, well-documented conditions (well-watered, fertilized), 
a single crop variety (preferably one you know a lot about), 
no extremes in terms of management (e.g., plant popula-
tion and row spacing), and no biotic stresses (e.g., pests and 
disease). Removing stress from the environment removes 
uncertainty: stressed treatments require you to simulate not 
only the plant response to stress but also the stress drivers 
correctly. Like a control plot in a field trial, building the 
foundation of a model with data from a simple predictable 
experiment (or, at least, an experiment where there are fewer 
variables at play) provides a good baseline for understanding 
how the plant develops (van Ittersum et al. 2003). Addi-
tional complexity (e.g., response to nutrients or sowing time) 
should be added incrementally, each time with a focus on 
minimizing uncertainty (Snowling and Kramer 2001).

2.2.2 � High‑quality inputs

Any linguist, anthropologist, or politician will tell you: con-
text is important. In a model, the context is wherever the 
plant is growing in the experiment you are simulating. The 
corresponding environmental inputs pertaining to initial soil 
resources, climate, and management feed into the model. 
The algorithms and parameters that make up the model dic-
tate how the plant responds to the inputs. Inevitably, there 
will be errors in the inputs, but some in the crop modelling 
community are starting to develop standards for metadata 
(https://​dssat.​net/​data/​stand​ards_​v2/) in an attempt to allevi-
ate these errors. In general, try to minimize these errors via 

careful scrutiny of your data before fitting your model to 
it: assess the level of uncertainty associated with your data 
sources or the resolution of the data and look for human 
error in both the collection and simulation of the data (Ojeda 
et al. 2021).

Soil-plant interactions in the model are dictated by the 
balance between the supply and demand of key resources 
(e.g., nutrients, water) (Brown et al. 2009, 2019; Monteith 
1986). Detailed soil data, however, is often difficult to find. 
Simulating a dataset that includes initial soil nutrient and 
soil water measurements is ideal. When this data is not avail-
able, estimates of these inputs can be made using a deductive 
approach we will discuss later in the section on simulation-
specific parameters.

Most crop models require daily rainfall, temperature 
(maximum and minimum), and solar radiation data. As these 
data inputs are site-specific, any discrepancy between where 
they were measured and the corresponding plant and soil 
data collected should be noted as a potential source of error. 
Rainfall (and irrigation) brings more water into the system; 
temperature drives how fast the nutrient pools turn over and 
the plant develops; radiation drives evaporative demand 
and plant photosynthesis. If the climate data is incorrect, 
the model will miscalculate how quickly the plant devel-
ops and what resources are available to it. Spend some time 
checking the climate data you have, looking for anomalies 
or extremes, and perhaps compare it to another reference set 
(e.g., another dataset from nearby) if you have one.

For every experimental dataset you access, there is a vari-
ety of metadata (i.e., details about the experimental manage-
ment, environment, and data collection methodology) that 
you will invariably require in your model building. Either 
in the paper or dissertation itself or through correspondence 
with the data custodian, you need to find out the dates and 
details of all management activities in the experiment. This 
can include, but is not limited to, crop variety name, sowing 
date and depth, row spacing, plant population, fertilizer and 
irrigation amount, type, and application date(s), in-season 
sampling dates, tillage, and the previous crop history. Should 
you not be able to acquire this additional data, consider how 
sensitive the simulations are to any input data that need to be 
estimated or deduced. If the model is overly sensitive to the 
uncertainty surrounding these estimated inputs, reduce how 
much you rely on that experiment in your model calibration. 
Such data with higher levels of uncertainty, however, may 
still be useful for testing the sensitivity of your model.

2.2.3 � Focus on the processes

Process-based crop models need time-series data points 
throughout the season to describe/represent/simulate plant 
development and growth. As few biological processes are 
linear, a series of data points (often at least five to six) taken 

Fig. 2   Conceptual figure of the relationship between model complex-
ity and uncertainty Adapted from Passioura 1996 and Gaber et  al. 
2009).
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at different times can map out the correct curvature of a 
relationship describing plant development.

There needs to be a balance between the level of detail 
in your dataset and the level of complexity in your model to 
minimize model uncertainty (Brisson et al. 2003). In mod-
elling plant development, consider what processes are key 
for the model user and the corresponding availability of rel-
evant in-season measurements (e.g., canopy development, 
biomass, and nutrient allocation/reallocation). The more 
complex the model, the more quality data is required for 
the model to maintain enough certainty to answer relevant 
questions precisely and accurately (Saltelli 2019; Gaetani 
et al 2020; Muller et al 2011). No matter the process, look 
for data that was collected multiple times during the season 
and experiments that measured more than one attribute at the 
same time; such data will help you dissect the mechanisms 
and pools behind the processes.

2.2.4 � Quality control

No dataset is perfect, but the impact of whatever errors exist 
in it should be monitored. One monitoring approach is out-
putting biomass pools or water balance over time to see if 
the numbers and growth/uptake rates seem reasonable (i.e., 
in accordance with what has been recorded in the literature 
for the targeted or similar crops) or to confirm that resource 
supply and demand relationships (both among the plant 
organs and between the plant and soil) are balanced. Visu-
alizing the data is a particularly effective way of locating 
outliers and errors and is an approach which should be used 
routinely throughout the model-building process.

If something in the dataset seems wrong, it is ideal if you 
can ask the experimentalist about it. If this is not possible, 
find the source of the error by focusing on the main drivers 
of variability in the data. For instance, if the experiment is 
rainfed, rainfall will be the largest water balance term, not 
drainage or evaporation. In this case, look at the rainfall 
data before looking at the soil profile or radiation data. If 
that experiment were to be irrigated, the timing/amount of 
irrigation may be the source of the error, not the rainfall 
data. Simple conceptual models can be used to check that the 
resource allocation within the system is balanced e.g. that 
the crop is not taking up more water than is available, etc.

2.3 � Fit for purpose: work within the dataset’s 
limitations

No matter how much data you aggregate for building your 
model, there will be gaps of knowledge in your model-
building dataset (Boote et al. 1996; Snowling and Kramer 
2001). A model-building dataset, however, should include 
a variety of experiments that, together, cover both the most 
relevant measurements and a diversity of environments 

and management combinations. In experiments with wide 
breadth (multiple locations, varieties, treatments, etc.), the 
field researcher likely did not take many in-depth meas-
urements. In contrast, highly detailed studies measuring a 
range of critical plant and/or soil processes are unlikely to 
be repeated across multiple environments. Find a balance 
between the two: focus on the process the data describes 
rather than the data itself, and understand the limitations 
of your dataset. A good dataset includes enough specifics 
about the corresponding environments, experiments, and 
plant development to allow you to decipher trends and rela-
tionships but is broad enough to give you confidence that 
those trends and relationships are consistent, not outliers.

At the end of the day, it is important to find value in the 
data you have while recognizing its shortcomings. Employing 
a sliding scale of how much trust you put into a given dataset 
allows you to decide how much weight you put on it for model 
development. Identify your ‘anchor’ datasets i.e. relevant 
datasets you are familiar with and have a lot of faith in their 
quality. These are the datasets you should care the most about 
the model capturing. Together with the model structure, the 
quality of these datasets is important for minimizing model 
uncertainty. As the trust or relevance in a dataset declines, 
you, as the model builder, can become more comfortable in 
accepting poor fits and moving on. This process is subjective, 
but it is important to not get caught up in extraneous detail. 
Remember, future experiments can target any holes in this 
initial dataset. For now, start simple and build with purpose.

3 � Fitting the model to the data

3.1 � Conceptualize: how should the model run?

3.1.1 � Start with an existing crop model

Start building by using the framework of an existing crop 
model, preferably a crop similar to the one you are trying to 
simulate (Holzworth et al. 2018). There are common pro-
cesses that span across multiple crop species and thus across 
different crop models (Brown et al. 2018; Robertson et al. 
2002a; Wang et al. 2002). Building on the progress made 
by other model builders also helps you stay on the forefront 
of modelling, increases your confidence that the software 
works and makes it easier to get your finished model pub-
lished as you can cite the foundational work. This approach 
is applicable even if you are just building or adapting a sec-
tion of a current crop model: look at the relevant sections in 
preexisting models of similar crops.

In the process of fitting the original model to your data 
and crop, you will likely change multiple aspects of the 
model. With each change, however, be methodical and try 
to retain any value the old model has to offer; use version 
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control to make it easy to revert to earlier versions as needed. 
As no dataset is comprehensive, look for where other crop 
models may have taken an approach or defined a parameter 
value that could fill-in a deficiency in the model-building 
dataset you compiled (Bouman et al. 1996).

3.1.2 � Equifinality

Especially when faced with modelling data from more com-
plicated experiments, it is tempting to fit the model to the 
data irrespective of logic or reasoning. To guard against this 
temptation, throughout the model-building process, revisit 
your initial simple experiment to perform sensitivity tests. 
Take the simple template and adjust the conditions (water, 
temperature, plant population, etc.) one at a time, making 
sure the model responds logically. In process-based models, 
such sensitivity tests can ensure the process, not just the 
results, are correct or at least reasonable.

Many modellers rely on an educated guess-and-check 
approach when calibrating a model’s parameters for a 
given experiment (Seidel et al. 2018). While not ideal, this 
approach is likely necessary when it comes to parameters 
that are more abstract (e.g., photo-thermal-vernal days to 
floral initiation). If the parameters relate to something that is 
easily measured and conceptualized (e.g., final leaf number 
under short and long days with and without vernalization), 
they should be able to be deduced easily from data or expert 
knowledge. Parameterize your model with data at each stage 
as much as possible, building upon the foundation of the 
previous stage.

Equifinality is the idea that in an open system, there is 
more than one potential way to reach a desired end result 
(Beven and Freer 2001). As a model builder, if you focus on 
the end result (e.g., yield) and not the processes leading up 
to it, you may end up with a model that can simulate yield 
accurately in one location/season, but has little value out-
side that setting. Meanwhile, if you fit the model to capture 
both leaf area index (LAI) throughout the season and yield, 
the potential range of acceptable parameter combinations 
declines. In this sense, having a diverse dataset is crucial 
for decreasing model ambiguity. If you get the process right, 
rather than just trying to hit the target any way you can, your 
model will be sound and robust.

3.2 � Simplify: build chronologically and focus on one 
process at a time

3.2.1 � Appropriate parameterization

To fit a model to data, it is necessary to understand which 
parameters are specific to a simulation and which are part of 
the overall crop model (i.e., consistent across simulations) 
to avoid over-parameterizing the model. The structure of the 

model defines how processes in the model interact with each 
other and site-specific parameters and inputs. Depending on 
the cropping systems framework you are building for, your 
model’s structure might be driven by a single primary pro-
cess like deWit’s model, wherein all processes and param-
eters build off of photosynthesis (Bouman et al. 1996) or be 
more adaptable depending on the complexity of the crop or 
available dataset like the STICS model (Brisson et al. 2003).

Simulation‑specific parameters: characterizing your 
soil  Before you fit the overall crop model parameters, 
make sure that you are confident in your simulation-spe-
cific parameters. In APSIM, these parameters include soil 
upper and lower water limits, soil hydraulic conductivity, 
C:N ratio, and initial organic matter and N levels for each 
layer of the soil profile (the number and thickness of each 
layer is user-defined). The degree of detail needed for these 
parameters depends on the modelling framework you are 
building for.

In general, how well a plant grows is often dependent on 
how much nutrients and water can be sourced from the soil. 
You need to know more than what these soil components 
(nutrients and water) were at one point in time: you need to 
know the dynamics of how those components change and 
interact with each other over time. Setting these soil param-
eters may prove to be difficult as most of the field studies 
populating your model-building dataset likely do not have 
detailed soil nutrient and water data. Moreover, where some 
soil parameters can be measured directly (e.g., soil upper and 
lower limits), others are more conceptual (e.g., soil C and 
N pool decay over time), requiring inferences and deduc-
tions be made, drawing from theory and data from similar 
environments to supplement whatever data you have for your 
study.

Just as we recommended building your model off an exist-
ing crop model, look for an existing soil (perhaps from a 
public soil database or a simulation built for another model) 
to begin the process of parameterizing your simulation site’s 
soil. Use this soil to run a simulation in a tested crop model 
of a common crop like wheat to check if the model out-
puts logical values before using that soil as a foundation for 
building your crop model. As you did with the inputs, use 
a visualization approach to check for errors and missteps 
made in the copying and modifying of any configuration 
from another simulation (Ojeda et al. 2021).

Depending on what data is available to you, the approach 
you take to customize the foundational soil may vary. For 
example, when parameterizing the soil C and N pools, Kivi 
et al. (2022) used data from multiple sites: they took initial 
soil C and N and in-season soil water measurements from 
their targeted site, but then supplemented that data with 
information from similar well-documented sites. Moeller 
et al. (2007) used data from multiple treatments: they found 
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that plant N uptake data in irrigated treatments where no 
N fertilizer was applied could be used to parameterize the 
rate of N mineralization. Huth et al. (2010) used multiple 
years of soil C and N data to calculate the rate of soil C and 
N decay and, thus, deduce how much of the C pool is inert 
vs. labile and the soil C:N ratio over time. All three studies 
applied a conceptual understanding of how C and N flow 
through the system to parameterize the soil dynamics.

There are also many valid approaches to deducing soil 
water parameters when available data is limited. Angus et al. 
(1980) and Peake et al. (2010) demonstrated the merit of 
deducing your soil’s parameters from the soil parameters 
for other sites with similar soils. Hochman et al. (2007) 
parameterized plant available water in soils with subsoil 
constraints by applying theoretically derived modifiers to 
default values extrapolated from top soil measurements. 
Taking a more comparative approach, Whish et al. (2014) 
parameterized soil water uptake by looking at soil water data 
across paddocks with different levels of nematode infesta-
tions, where conceptually, they knew that a larger infestation 
would lead to less water uptake. Similarly, Monteith (1986) 
and Brown et al. (2009) examined the balance between water 
supply and demand across different water regimes. Looking 
at water dynamics on a larger scale, Zhang et al. (2001) used 
data from 250 grassed catchments and theory from previ-
ous studies to parameterize a model that relates rainfall and 
evapotranspiration.

Part of the deduction approach is applying periodic logic 
checks throughout the parameterization process to make sure 
a given parameter value makes sense in the system. Such 
logic checks on crop-soil-climate interactions should play 
an active role in any model development, including crop 
models outside of cropping system frameworks. For exam-
ple, when parameterizing soil N pool fractions and turnover 
rates, check if the values associated with all components 
contributing to the N balance (e.g., microbial N and leach-
ing) are sensible. If not, determine what components need to 
be adjusted and how are they influencing the others. Change 
the parameterization to reflect which factor logically domi-
nates the soil N dynamics. Run such logic checks on the 
parameters throughout the building process as changing 
something in one part of the model may impact the dynam-
ics of another part.

Model parameters  Once you are confident in the inputs 
and simulation-specific parameters, you can move onto the 
model parameters (parameters that make up the crop model 
itself, not specific to any one location or experiment, e.g., 
phenology, rate, and pathways of plant development). Model 
parameters dictate how crops respond to the environment 
and management they encounter.

As the output from one process may impact the inputs to 
another, start with the most independent processes before 

moving onto the more dependent processes. For example, 
phenology is a largely independent process as it is rarely 
impacted by plant growth and resource availability. On the 
other hand, plant growth is a more dependent process as it 
is driven by phenology. Likewise, as mentioned earlier, start 
the building process by parameterizing potential growth and 
yield-forming processes for stress-free treatments. To model 
stress responses is to model a deviation of the processes 
away from their potential. If you do not have the potential 
correct, it is impossible to correctly parameterize stress 
responses in your model. In this section, we will discuss the 
processes in the order we suggest you parameterize them.

3.2.2 � Phenology

There is often discrepancy between the resolution at which 
the model predicts phenology and the data that is available. 
Should your model predict the timing of emergence, end 
juvenile, floral initiation and flowering, but your model-
building dataset only has data for flowering timing, there 
are a lot of parameter combinations that will fit the data well 
(He et al. 2017). To minimize the uncertainty around phenol-
ogy, begin with parameterizing phenology chronologically 
from sowing to maturity.

The primary metric of development is cell division, 
driven by temperature (often defined as thermal time). The 
first step in defining phenology is determining what time 
interval you will use to calculate thermal time. Within a 
given cropping systems framework, the time interval should 
be consistent across all crop models. From the literature (or 
your own experiments), determine the base, optimal, and 
maximum temperatures for plant development (Ritchie and 
NeSmith 1991; Robertson et al. 2002b; Yin et al. 1995). Use 
the recorded stage dates to build a thermal timeline (i.e., 
the accumulation of thermal increments over the growing 
season).

For example, APSIM calculates thermal time in 3-hour 
increments as an interpolation of the minimum and maxi-
mum air temperatures (Jones et al. 1986). The rate at which 
thermal time is accumulated is the response variable of a 
simple stepwise linear regression that relates the aforemen-
tioned base, optimal, and maximum temperatures to the ther-
mal time. The rate of accumulation as well as the threshold 
temperatures may change during the life-cycle of the plant.

In general, starting from sowing, determine how long 
it takes the plant to get from point A to point B on that 
timeline. Consistency in scoring and staging the plant is 
important: if you are, or can consult with, the experimen-
talist, developing a detailed guide for the people record-
ing the phenology will increase the confidence you have 
in the data. That said, in situations where the phenology 
data was sourced from previous studies, consider the level 
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of ambiguity in some of the phenological data (e.g., the defi-
nition of 50% flowering date) and steer toward quantitative 
data (e.g., number of main stem nodes) as much as possi-
ble. The high level of uncertainty surrounding phenological 
parameters, often due to the strong influence of genotype by 
management by environment interactions and discrepancies 
in measurement methodology, may be reduced after years 
of additional model-testing field experiments as was the 
case with the APSIM canola model (Robertson and Lilley 
2016) or may require statistical or machine learning calibra-
tion approaches such as those demonstrated with APSIM 
Oryza model (Nissanka et al. 2015) and with the APSIM 
Maize model (Akhavizadegan et al. 2021). It is important 
to remember that model construction is an ongoing process 
(Boote et al. 1996).

While thermal time controls the speed of movement 
toward a target on the phenological timeline, vernalization 
requirements and photoperiod sensitivity can alter the size 
of the target. Create a conceptual model capturing the factors 
you expect to influence phenology. Use data from a non-
stressed treatment to define the degree to which the plant 
is sensitive to these factors; it may vary depending on the 
variety, location, and year.

A threshold amount of cumulative thermal time units is 
needed for any plant to begin its reproductive stage, but for 
some plants, this amount lessens with the accumulation of 
thermal units within a range of colder temperatures in a pro-
cess known as vernalization. Similarly, the duration of the 
daylight hours can impact the rate at which thermal time 
units are accumulated if the plant is photoperiod sensitive. 
For vernalization and photoperiod sensitivity, modifiers can 
be applied to adjust the baseline phenology relative to the 
temperature or photoperiod, respectively. Initially, it is best 
to be conservative with these modifiers: it is rare that the 
plant in the field is responding to just one factor at a time 
(Zhao et al. 2014). For example, while it may appear that 
colder temperatures are accelerating phenology, this impact 
may be exacerbated by some stress (pertaining to a disease, 
pest, water, etc.) that exists in that one location but not in 
another.

3.2.3 � Canopy development and biomass accumulation

After defining the thermal time targets for each phenologi-
cal stage, it is time to outline how the plant develops during 
those time intervals. Map out conceptually how you expect 
the plant to develop and fit the parameters in a chronological 
order as early development will impact later development.

Within each developmental stage, simplify the process 
of parameterization by focusing on one morphological 
process at a time, starting with the most independent: 
canopy development. As canopy development is directly 
related to phenology, parameterize the leaf, tiller, and/or 

branch appearance rate(s) relative to the nodal appearance 
rate. If you do not have that level of detail in your dataset, 
take a simpler approach and focus on full canopy develop-
ment using LAI and/or radiation interception data.

In APSIM’s canola model, phyllochron and LAI could 
be measured easily, but leaf area varied depending on the 
location of the leaf on the plant and the carbon supply 
(Robertson and Lilley 2016). As such, a reasonable maxi-
mum value for the specific leaf area (SLA) was estimated 
from existing literature and models of similar crops. The 
model builders then deduced the rate and extent to which 
this maximum value needed to decrease as carbon supply 
decreased and the canopy filled such that the model simu-
lation reflected the measured LAI and SLA data collected 
at different plant densities.

After canopy development, focus can shift to plant 
growth and the allocation of biomass within the plant. A 
radiation use efficiency (RUE) value can be sourced from 
a field study, but the idealized RUE value that the model 
will use to calculate potential plant growth is likely higher 
than what was measured in the field. Once you have total 
biomass accumulation from the RUE, consider the alloca-
tion of that biomass to various organs within the plant. 
Ask the question: at different stages of development, what 
fraction of the total biomass is allocated to the stem vs. the 
leaves, reproductive components, etc.?

In general, while preflowering development occurs 
independently of growth, the rate of development and 
growth interact strongly post-flowering (Brukhin and 
Morozova 2011). When transitioning your focus from ther-
mal time-driven development to plant growth, consider the 
role the resource availability of radiation and water play 
in these processes.

Ideally, within each plant organ, you want to know how 
much of the biomass can be reallocated to other organs 
(termed in APSIM as the metabolic and storage pools) to 
meet supply/demand requirements and how much cannot 
(structural pool, biomass necessary for plant growth). In 
general, however, there is a lack of data about the mecha-
nisms driving biomass allocation. As with defining the soil 
parameters, there are multiple ways to determine the rela-
tive size of these pools. If you have partitioned biomass 
measurements from multiple points during the season, 
graphing the relationship between the organ biomasses or 
an organ biomass against the total biomass can provide 
insight to those relationships at different points of time. 
Alternatively, or additionally, if you have organ nutrient 
concentrations over the season, you can infer the fraction 
of biomass allocation or reallocation needed to result in 
the changes in concentration over time.

In order to determine the source and sink dynamics of N 
remobilization during the grain filling in APSIM-Nwheat, 
Asseng et al. (2002) derived values for how assimilates were 
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remobilized from measured differences in the water soluble 
carbohydrates and protein carbohydrates between anthesis and 
maturity in the stems, spikes, and leaves. To reduce the risk 
of overfitting the model to one experiment/environment, they 
repeated these measurements in two cultivars at three differ-
ent N fertilizer rates in three field locations. This approach to 
modelling N remobilization in APSIM-Nwheat was adopted 
and modified from a preexisting model (CERES Wheat, 
Jones et al. 1983) and a detailed review of existing literature 
on N remobilization in wheat across different environments 
informed what field measurements could be used to calibrate 
the model. Asseng et al. (2002) then ran multiyear simulations 
in sites where field data had not been collected to see if the 
simulations agreed logically with what had been reported in 
the literature. From these simulations, they could better under-
stand the extents of the model’s versatility and bias.

Without such detailed data, some crop modellers make 
assumptions about the functional balance needed between 
organs to optimize crop growth while others look for simi-
larities between their crop and others to surmise generalized 
partitioning routines (Brown et al. 2019). Irrespective of the 
method, run simple logic checks within your crop model to 
make sure that conceptually the biomass is not being overall 
located to any organ.

3.2.4 � Senescence and stress

Applying senescence should be the final step of building the 
baseline model. As quality data on the amount of senesced 
biomass is difficult to obtain and frequently lacking, a deduc-
tive or simplified approach may be necessary to parameter-
ize this process. If some of this data is available, you can 
derive the timing and rate of senescence from the balance 
of the remaining green/active biomass. Without such data, 
the simplest approach to senescence is setting it as a linear 
progression from some initiating stage to when the crop can 
be harvested.

After completing the parameterization of the baseline 
model with data from nonstressed experiments, you can start 
fitting the model to data from stressed experiments. First, set 
simulation-specific parameters to make sure you are captur-
ing the stress accurately. Then, you can apply modifiers to 
delay phenology, reduce biomass accumulation, or acceler-
ate senescence in response to a given stress. These modifiers 
can be stage-dependent: at some stages of development, the 
plant may be particularly vulnerable to stress (e.g., setting 
grain number) and at others it may be able to recover. If plant 
response to stress is dependent on the level or timing of the 
stress, you can define a stress level indicator to feed into 
stage-dependent linear interpolations of plant response to 
the stress. If the plant response is more definitive, set limits 
of threshold values above or below which the plant dies or 
growth ceases.

3.3 � Fit for purpose: sensitivity and uncertainty 
analyses

No model is perfect. It is valuable to know the parametric 
source(s) of uncertainty in the model (Muller et al. 2011). 
A sensitivity analysis looks at that uncertainty, detailing 
how much the output of the model changes as the result of 
changing one or more parameters (Beven 2018; Monod et al. 
2006; Muleta and Nichlow 2005; Saltelli 2002). Ranking 
the importance of the parameters based on how sensitive 
the outputs are to changes in the parameters is a common 
way of conducting a sensitivity analysis (Monod et al. 2006; 
Muleta and Nichlow 2005; Saltelli 2002). Two common ver-
sions of this approach are the Morris and Sobol methods 
(Morris 1991; Sobol 2001). The Morris method is a one-
at-a-time approach that looks at the relative response of the 
model outputs to a change in a single parameter. The Sobol 
method looks at how much the model output responds to 
variability in a single parameter vs. to the interaction effect 
that variability has with the other parameters. Repeated ran-
dom sampling approaches like Monte Carlo simulation or 
parametric bootstrapping are valuable as they increase the 
probability that the parameter sensitivity is consistent across 
a range of contexts.

4 � Testing your model

Any publication or presentation of a new crop model will 
make that model look as good as possible. To make sure that 
your model is actually good (and to determine how good 
another model really is), it is important to apply critical 
thinking to what tests are used to evaluate the model’s per-
formance and what the test results mean (Gauch et al. 2003).

The aim of testing your model is to see if the parameters 
calibrated for the model-building dataset are relevant for data 
outside of that dataset. This is done by evaluating how well 
the model can simulate data outside of your model-building 
dataset, preferably data that comes from a range of environ-
ments and is relevant to the targeted model users’ systems 
(Gauch et al. 2003). There are multiple statistical approaches 
to testing a model, but none of them are comprehensive: 
each test will convey a different aspect of the model’s accu-
racy or lack thereof. It is also important to contextualize the 
resulting graphs or indices as some approaches are sensitive 
to outliers and others to the size of the dataset. As there are 
strengths and weaknesses to every testing approach, it is 
best to use more than one (Wallach 2006). Applying more 
than one test can shed light on the source of the error, the 
residual error (i.e., how close the simulated data is to the 
real data), and whether there is a bias in the model (i.e., 
whether the model outputs trends higher or lower than the 
real-world data).
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4.1 � Conceptualize: what are you testing?

There are two primary methods for selecting what data will 
go into your testing dataset: the split dataset and the inde-
pendent dataset. In a split dataset, the data used to build 
and test the model source from the same studies. The subset 
of data that is used for testing should be selected at ran-
dom (e.g., bootstrapping) (Liu et al. 2018; Wallach 2006). 
Alternatively, you can test the model with a dataset that is 
completely independent from the initial model-building 
dataset. Both approaches are valid, although the latter may 
demonstrate the scope of the model better because it would 
bring more variability in the environment, management, and 
climate into the equation with data from a new set of inde-
pendently conducted field experiments.

4.2 � Simplify: graphical and statistical analyses

There are many publications that go into detail about what 
test is best to use for what dataset/model (Gauch et al. 2003; 
Monod et al. 2006; Moriasi et al. 2007, 2015; Wallach 2006; 
Yang et al. 2014). Here, we will briefly discuss the most 
commonly used/recommended tests for crop models and the 
reasoning for them.

Before applying statistical tests to your model, take a 
graphical approach to look for visual agreement between 
the observed and simulated data (Moriasi et al. 2015; Wal-
lach 2006). Graphical time series visualization can pinpoint 
where the observed and simulated data start to disagree and, 
thus, reduce the risk of equifinality. For example, when eval-
uating simulated data across a temporal scale, graphing the 
data would show if the error lies in the rate of plant develop-
ment or the allocation of resources at a given time.

Commonly, model builders regress simulated data 
against the corresponding observed data in what is called 
“predicted-observed graphs” with a 1:1 line plotted for refer-
ence. There is much debate about the orientation of the plot 
axes, i.e., whether to put the predicted or observed data on 
the x-axis (Piñeiro et al. 2008). Correndo et al. (2021) dis-
cussed the importance of reflecting on the unknown uncer-
tainty level in both the predictions and observations in order 
to better understand the model’s accuracy and precision as 
independent metrics of its performance. For this, they rec-
ommended using the Standardized Major Axis (SMA) linear 
regression model that symmetrically takes into account error 
in both the predicted and observed data with respect to the 
1:1 line, removing the aforementioned ambiguity of axis 
orientation. SMA, however, is sensitive to the size of the 
dataset and should not be used with smaller (n<20) datasets.

It is important to not just visualize the relationship 
between the predicted and observed data, but also the differ-
ences. While quantitative methods discussed later in this sec-
tion analyze the average difference between the predicted and 

observed data, Bland Altman (1965) plot analysis, like the 
time series graphs, shows if there is any relationship between 
the model errors and where it occurs. Bland Altman analy-
sis plots the difference between the predicted and observed 
against the mean to see if there is a bias toward lower or 
higher values and the distribution of the frequency of differ-
ences to check for normality (Bunce 2009; Giavarina 2015).

The most common statistical tests for process-based 
models (as well as machine-learning models) are Root 
Mean Squared Error (RMSE) and the coefficient of deter-
mination (r2).

RMSE (Eq. 1) is valuable for its real-world practicality as 
it outputs the error in the units of the measurement. When 
communicating with the stakeholders of the model, convey-
ing the model error in real-world units can increase both 
their understanding of and confidence in the model.

Meanwhile, r2, while highly relatable given the preva-
lence of its usage in general and acts as more of a measure 
of precision than accuracy (Bunce 2009; Gauch et al. 2003; 
Lemyre et al. 2021; Piñeiro et al. 2008; Yang et al. 2014). 
This metric should be limited to use in presentations to a lay 
audience, rather than a singular measure of model accuracy.

A major shortcoming with both RMSE and r2 is that they 
are sensitive to outliers and assume that the observed data is 
consistent with minimal variability within itself. Alternative 
commonly used and recommended statistical options that ana-
lyze the model accuracy relative to the precision of the observed 
data are the Nash-Sutcliffe efficiency (NSE), Root Mean 
Squared Deviation (RMSD), and RMSE-observation standard 
deviation ratio (RSR) (Moriasi et al. 2007; Piñeiro et al. 2008).

NSE (Eq. 2) normalizes the residual variance between 
the observed and simulated data to the variance within the 
observed data. This statistical output shows the flexibility of 
the simulated data to fit the variability in the observed data, 
not just capture the mean. NSE, like r2, captures how closely 
the simulated vs. observed data fits a 1:1 line. The higher the 
NSE, the better, but it is important to keep in mind that the 
size of the dataset or natural variability of some types of meas-
urements may produce low values irrespective of the model’s 
performance level (general performance ratings for NSE val-
ues are 0.75 < NSE ≤ 1.0 for Very Good; 0.65 < NSE ≤ 0.75 
for Good; 0.5 < NSE ≤ 0.65 for Satisfactory; NSE ≤ 0.5 for 
unsatisfactory; Moriasi et al. 2007).

RMSD (Eq. 3) reports the mean deviation between the 
predicted values and the 1:1 line of a predicted-observed 
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regression where the predicted values are graphed on the 
x-axis (Piñeiro et al. 2008). Meanwhile, RMSE relates pre-
dicted values to the predicted-observed regression line, pro-
viding an underestimation of the error between observed and 
predicted values.

RSR (Eq. 4) normalises RMSE to the standard deviation 
of values in the observed data. While the lower the RMSE, 
the better, a low RMSE does not necessarily mean that the 
model is capturing the dynamic variability of the system if the 
variability in the observed dataset is low (general performance 
ratings for RSR values are 0 ≤ RSR ≤ 0.5 for Very Good; 0.5 
< RSR ≤ 0.6 for Good; 0.6 < RSR ≤ 0.7 for Satisfactory; 0.7 
< RSR for unsatisfactory; Moriasi et al. 2007).

Percent bias (PBIAS) (Eq. 5) looks at whether the simulated 
data tends to trend higher or lower than the observed data, 
where a value of zero means a perfectly accurate model, posi-
tive values mean the model is underestimating the observed 
data, and negative values mean that it is overestimating. 
PBIAS is particularly useful in ensuring that the supply/
demand dynamics are balanced in the model. While the closer 
to zero the PBIAS is, the better, the threshold values for the 
performance ratings are dependent on what is being measured 
(Moriasi et al. 2007). In crop models, we expect the model 
to be biased, however, and generally to overestimate yield, 
biomass and leaf area since few models (at the time of this 
publication) account for the biological limitations of pests and 
diseases. In the future, this bias may lessen, but it will likely 
always exist as few biological pressures are easily and consist-
ently detected in the field.

4.3 � Fit for purpose: scenario analysis

You may not have data to test all the conditions relevant/
important for the targeted model users. It is still important to 
make sure that the model works well in those conditions and 
to test the limits of the model (Holzworth et al. 2011). Setting 
up scenario analyses and confirming that the model’s outputs 
are logical will increase the users’ confidence in the capacity 
of the model to perform well outside of its building and test-
ing datasets (Ojeda et al. 2021). Data trends relative to other 
similar (or known) crops can also help confirm the logicality 
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of these theoretical tests. For instance, simulate crop growth 
in an environment where the crop should not be able to grow 
well or at all: if a model were to let a summer crop grow well 
in the winter, there is likely something wrong with that model.

5 � Conclusion

Building a crop model is a difficult task and one that will 
never be completed. As more data becomes available, the 
more the model can be improved, as long as the foundation 
is strong. Just as there is no perfect model (or experimen-
tal dataset), there is no one perfect approach to building a 
model. The aim of this paper was to provide a basic roadmap 
for a model-building journey by suggesting what kind of 
questions the model builder should ask, how to work around 
data gaps, and how to test the validity of the model.

We propose a three-pronged approach to model build-
ing: (1) conceptualize the model before you start to build 
so you know what data you need to achieve the desired aim 
and scope of the model, (2) simplify the model-building 
process by focusing on one process at a time to guard against 
the pitfalls of over-parameterization and equifinality, and (3) 
fit for purpose so that the model is targeted and meets the 
needs of the users. The foundation of this approach is based 
on the belief that the process of building a model needs to 
extend beyond fitting the model to a dataset. Each step in 
the building process should be taken methodically with a 
focus on both data and logic rather than expediency. Our 
approach aims to minimize uncertainty and maximize utility 
in the model.
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